11

1.2

1.3

14

1.5

1.6

Chapter 1

The Schroédinger Equation

(@ F; (b) T; (¢) T.

(@) Egpoon =hv =he/A=(6.626 x 10> 1 )(2.998 x 10° m/s)/(1064 x 10~ m) =
1.867 x 107" J.
(b) E=(5x10°J/5)(2x 10°s)=0.1 T=n(1.867x 10" J)and n =15 x 10"

Use of Epoon = e/ gives
23 34 8
& (6:022x107)(6.626x10 i $)(2.998x10° m/s) _ 40015
300x10~° m

@ T,=hw->=
(6.626 x 107* 7 5)(2.998 x 10° m/s)/(200 x 10" m) — (2.75 eV)(1.602 x 10" J/eV) =
553x10"7T=345¢eV.

(b) The minimum photon energy needed to produce the photoelectric effect is
75eV)(1.602 x 107 J/eV) = hv =hc/A=(6.626 x 107" J s)(2.998 % S
2.75 eV)(1.602 x 107" J/eV) = hy =hc/A = (6.626 x 107" J 5)(2.998 x 10° m/s)/A

and 1 =4.51 x 107" m =451 nm.

(c) Since the impure metal has a smaller work function, there will be more energy left
over after the electron escapes and the maximum 7 is larger for impure Na.

bv/T

(a) At high frequencies, we have ™" >>1 and the —1 in the denominator of Planck’s

formula can be neglected to give Wien’s formula.
(b) The Taylor series for the exponential function is e* =1+ x+x*/2!+---. For x <<1,

we can neglect x> and higher powers to give e* —1 ~ x. Taking x = hv/kT , we have for
Planck’s formula at low frequencies

av’ 27hv’ N 27hv’ _27zv2kT

ebV/T _1 B cZ(e/’lV/kT _1) ~ Cz(hV/kT) B CZ

A=h/mv =137h/mc = 137(6.626 x 10* I §)/(9.109 x 10" kg)(2.998 x 10°* m/s) =
332 x 10" m=0.332 nm.
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1.7

1.8

1.9

1.10

1.11

1.12

Integration gives x = —% gt® +( gty + Vo)t +c,. If we know that the particle had position
X, attime fo, then x, = -2 gtg +(gty +Vo )ty + ¢, and ¢, = x — L gtg —Vyty. Substitution

of the expression for ¢, into the equation for x gives x = x, —% g(t—t, )+ Vo (t=1y).

(R i) OW/O1) = —(R22m) (D> /ox?) + VP . For W = ae e /" we find

oW /0t = —ibY , OY /0x = —2bmh~'x¥, and 0°Y /0x? = —2bmh~ "V — 2bmh” x(0 /ox)
= 2bmh™"Y — 2bmh x(=2bmh” X W) = 2bmh'W + 4b*m*h > x> . Substituting into the
time-dependent Schrodinger equation and then dividing by ¥, we get

(0 1)(=ibY) = (B 12m)(=2bmh™" + 4b*m*h > x*)¥Y + V¥ and V = 2b°mx>.

(@) F; (b) F. (These statements are valid only for stationary states.)

y satisfies the time-independent Schrédinger (1.19). oy /0x = be™ ™ Dbexe™™ ;
Pwlox? = Dbexe™™ — dbexe™™ +4bct e = —6bexe™™ +4bAxle ™ Equation
(1.19) becomes (—h2/2m)(—6bcxe™™ +4bcix e ™™ ) + (2c*h2x% /m)bxe™™ = Ebxe™ .
The x° terms cancel and E = 3h%c/m =

3(6.626 x 10* J 5)*2.00(10”° m) %/47*(1.00 x 10" kg) = 6.67 x 10° I.

Only the time-dependent equation.

@) |¥ P dx=2/b>)x*e P gy =

2(3.0 x 107 m)(0.90 x 107 m)?e 200 mm/G0nm (9 0001 x 10~ m) =3.29 x 10°°,
(b) For x >0, we have | x| = x and the probability is given by (1.23) and (A.7) as

joz "R gy = (2/b%) joz " 262 g = (2/b3)e 2B (bx? 12— xb? 12— B} J4) B =
—e (PP + x/b+1/2) B™ = —e V3 (4/9+2/3+1/2) +1/2 = 0.0753.

(c) VY is zero at x =0, and this is the minimum possible probability density.

(d) J:OO | ¥ ’2 dx = (2/b) J:O x2e®¥ b dx + (2/b%) I;O x2e2¥? dx. Let w = —x in the first

0 o0
integral on the right. This integral becomes I wre 2V (—dw) = J.o w?e2"? dw, which

equals the second integral on the right [see Eq. (4.10)]. Hence
j_‘” WP dx=(4/b) j 0°° x>0 dx = (4/°)[21/ (b/2)*] = 1, where (A.8) in the

Appendix was used.
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1.13

1.14

1.15

1.16

1.17

1.18

The interval is small enough to be considered infinitesimal (since ¥ changes negligibly
within this interval). At 7= 0, we have | ¥ [2 dx = (32/7¢%)2x%e ¥ /< g =

[32/7(2.00 A)®1"*(2.00 A)%e2(0.001 A) = 0.000216.

b 1.5001 nm _; _ _ 1.5001 nm _ _
J. ‘LI]‘Z dx — J. a le 2x /a dx =_¢ 2x /a /2 | =(_e 3.0002 + e 3.0000)/2 —
a 1.5000 nm 1.5000 nm

4.978 x 107,

(a) This function is not real and cannot be a probability density.

(b) This function is negative when x < 0 and cannot be a probability density.
(c) This function is not normalized (unless b = 7) and can’t be a probability density.

(a) There are four equally probable cases for two children: BB, BG, GB, GG, where the
first letter gives the gender of the older child. The BB possibility is eliminated by the
given information. Of the remaining three possibilities BG, GB, GG, only one has two
girls, so the probability that they have two girls is 1/3.

(b) The fact that the older child is a girl eliminates the BB and BG cases, leaving GB and
GG, so the probability is 1/2 that the younger child is a girl.

The 138 peak arises from the case '*C'*CFg, whose probability is (0.9889)> = 0.9779.
The 139 peak arises from the cases '?C'*CF4 and *C'>CFg, whose probability is
(0.9889)(0.0111) + (0.0111)(0.9889) = 0.02195. The 140 peak arises from “C'">CFg,
whose probability is (0.011 1) = 0.000123. (As a check, these add to 1.) The 139 peak
height is (0.02195/0.9779)100 = 2.24. The 140 peak height is (0.000123/0.9779)100 =
0.0126.

There are 26 cards, 2 spades and 24 nonspades, to be distributed between B and D.

Imagine that 13 cards, picked at random from the 26, are dealt to B. The probability that

i g 24232221,,,141312 _ 13(2) _ 6
every card dealt to B is a nonspade is 55959395 151514 = 2633, = 25

Likewise, the

probability that D gets 13 nonspades is %. If B does not get all nonspades and D does not

get all nonspades, then each must get one of the two spades and the probability that each

gets one spade is 1 — 2% - 2—65 =13/25. (A commonly given answer is: There are four

possible outcomes, namely, both spades to B, both spades to D, spade 1 to B and spade 2
to D, spade 2 to B and spade 1 to D, so the probability that each gets one spade is 2/4 =
1/2. This answer is wrong, because the four outcomes are not all equally likely.)

1-3
Copyright © 2014 Pearson Education, Inc.



1.19 (a) The Maxwell distribution of molecular speeds; (b) the normal (or Gaussian)
distribution.

1.20 (a) Real; (b) imaginary; (c) real; (d) imaginary; (e) imaginary; (f) real;
(9) real; (h) real; (i) real.

1.21 (a) A point on the x axis three units to the right of the origin.
(b) A point on the y axis one unit below the origin.

(c) A point in the second quadrant with x coordinate —2 and y coordinate +3.

122 —_:——.:—:—:_i

123 (@) i*=-1. (b) P =i’ =i(-)=—i. () i*=@G*)*=(1*=1.
(d) i*i=(-i)i=1.
(e) (1+5)(2-3i)=2+10i-3i—15i* =17 +7i.
1-3i  1-3i 4-2i  4-14i-6  —2-14i

(f) =

= = = =-0.1-0.71.
4+2i 4+214-2i 16+8—-8i+4 20

1.24 (a) 4 (b) 2i; (c) 6-3i; (d) 27°.

125 (a) 1,90° (b) 2, a/3;
(€) z=-2¢"" =2(-1)¢™"?. Since —1 has absolute value 1 and phase 7, we have

7= zemem'/3 _ 261(47[/3) _ rez@

d) [z]=(2+)y))"? =12 +(-2)*1"* =5"%; tanf=y/x=-2/1=-2 and
y y
=-63.4° = 296.6° = 5.176 radians.

, so the absolute value is 2 and the phase is 4n/3 radians.

1.26 On a circle of radius 5. On a line starting from the origin and making an angle of 45° with
the positive x axis.

1.27 (a) i= lem/z; (b) 1= 1eiﬂ';
(c) Using the answers to Prob. 1.25(d), we have
(d) r=[(-D*+(-1)*1"* =2"%; §=180°+45°=225°=3.927 rad; 2"2&’**"",

51/26541761 .

9

1.28 (a) Using Eq. (1.36) with n =3, we have ¢* =1,
&' = cos(27/3) +isin(27/3) = —0.5+ix/3 /2, and &P = —0.5-i\/3 /2.
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1.29

1.30

1.31

1.32

1.33

(b) We see that w in (1.36) satisfies w@* = €° =1, so the nth roots of 1 all have absolute

value 1. When £ in (1.36) increases by 1, the phase increases by 2z/n.

¢l — e _ cos@+isinf —[cos(—0) +isin(-0)] _ cosf+isinf —(cos—isinf) _ sin 0
2i 2i 2i ’

where (2.14) was used.

¢ e _ cos@+isinf +[cos(=0) +isin(—0)] _cosf+isinf+cosf—isinf _ cos 0
2 2 2 '

(@) From f =ma, 1 N=1kg m/s*.
(b) 1J=1kg m%s".

-19 -19
po Q0 | 20.602x107 O)790.602x107° C) 000

4regr®  47(8.854x107' C? /N-m?)(3.00x107"* m)?

where 2 and 79 are the atomic numbers of He and Au.

(@) 4xsin(3x*)+2x?(12x*)cos(3x*) = 4xsin(3x*) + 24x° cos(3x?).

(b) (¥ +x)[f=(8+2)—(1+1)=8.

(@ T; (b) F; (c) F; (d) T; (e) F; (f) T.
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2.1

2.2

2.3

2.4

2.5

Chapter 2

The Particle in a Box

(a) The auxiliary equationis s* +s—6=0 and s =[-1+ M] /2=2 and -3. So
y = +ce

(b) Settingx =0andy=0, we get 0=c¢, +¢, (Eq. 1). Differentiation of y gives
y'=2¢,e™ —3cye". Setting x=0and y' =1, we have 1 =2¢, —3c, (Eq. 2). Subtracting
twice Eq. 1 from Eq. 2, we get 1 = -5¢, and ¢, = —0.2. Equation 1 then gives ¢, = 0.2.

For y"+ py' +qy = 0, the auxiliary equation is s* + ps +¢ = 0= (s —s,)(s —s,), where s,
and s, are the roots. Comparison with Eq. (2.8) shows that s, =2+i and 5, =2 -1, so
the auxiliary equation is 0 = (s —2 —i)(s —2 +1i) = s* —4s + 5. Therefore p =—4 and

g =5. The differential equation is y" —4y'+5y =0.

a) The quadratic formula gives the solutions of the auxiliary equation s> + ps+¢g =0
q g ry €q ps+q

[Eq. (2.7)]as s =(—p £+ p2 —4¢q) /2. To have equal roots of the auxiliary equation
requires that p2 —4g =0. Setting g = p2 /4 1in the differential equation (2.6), we have
V" + py'+(p*/4)y =0 (Eq. 1). The auxiliary-equation solution is s = —p/2. Thus we
must show that y, = xe ”'? is the second solution. Differentiation gives

yh=e P2 pxe P22 and y§ = —pe P'* + p?xe P2 /4. Substitution in Eq. (1) gives
the left side of Eq. (1) as —pe P2 + p*xe 7?4+ pe 7' — p>xe P2 /2 + p*xe 7% /4,
which equals zero and completes the proof.

(b) The auxiliary equation s* —2s+1=(s—1)> =0 has roots s = 1 and s = 1. From part

(), the solution is y = ¢je” + ¢, xe”.

In comparing Eqgs. (1.8) and (2.2), y in (2.2) is replaced by x, and x in (2.2) is replaced by
t. Therefore x and its derivatives in (1.8) must occur to the first power to have a linear
differential equation. (a) Linear; (b) linear; (C) nonlinear; (d) nonlinear; (€) linear.

(@ F; (b) F; (c) T; (d) F (only solutions that meet certain conditions such as being
continuous are allowed as stationary-state wave functions); (e) T.
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2.6

2.7

2.8

2.9

() Maximum at x = //2. Minimum at x = 0 and x = /, where the ends of the box are at x =
0 and /.

(b) Maximum at /4 and 3//4. Minimum at 0, //2, and /.

(c) Minimum at 0, /3, 2//3, and /. Maximum at //6, [/2, 51/6.

@ [5% |y P de=@/D*sin® (nrx/ Dy dx = 2/ D[x/ 2~ (1 f4nz)sinQuax /D] [, =
1/4—-(1/2nr)sin(nz/2), where (A.2) in the Appendix was used.
(b) The (1/2n7x) factor in the probability makes the probability smaller as » increases,

and the maximum probability will occur for the smallest value of n for which the sine
factor is negative. This value is n = 3.

(c) 0.25.

(d) The correspondence principle, since in classical mechanics the probability is uniform
throughout the box.

(a) The probability is |y |* dx = (2/1)sin?(z x/1) dx = (1/A)sin? (z - 0.600/2) - (0.001 A)
=6.55 x 10~*. The number of times the electron is found in this interval is about

10%(6.55 x 107*) = 655.

(b) The probability ratio for the two intervals is

sin’[7(1.00 / 2.00)]/sin2[7z (0.700/2.00)] =1.260 and about 1.260(126) = 159

measurements will be in the specified interval.

(a) The number of interior nodes is one less than 7.

2 —
02)"y n=4 2y n=4
1 -
| /\
O.VS OI}\/l
x/1
-1 4 0

0 0.25 0.5 0.75 1

x/l
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n=>,5
14 1 -
0 \
0. 4 0. 8 1
x/l
0 y y Y
0.2 0.4 0.6

-1 - 0

08 x/I 1

(b) w? =(2/1)sin’*(4zx/l) and d(y *)/dx = (4/1)(4x/1)sin(4x x /1) cos(4x x/1).
Atx=1/2, d(l//2)/dx =(4/1)(4rx/1)sin(2x)cos(2r) = 0.

210 (@) Eyper — Elower = (2 —1°)1*/8mi* =
3(6.626 x 107* 7 5)%/8(9.109 x 10" kg)(1.0 x 10" m)*=1.81 x 107" J.
(b) |AE|=hv=hc/A and A =he/|AE| =
(6.626 x 10°* T 5)(2.998 x 10° m/s)/(1.81 x 107" I)=1.10 x 10 * m =110 A.
(c) Ultraviolet.

211 E =n’h*/8mi* and n=8mE)"*1/h . We have E = mv?/2 =1(0.001 kg)(0.01 m/s)* =
5% 1077, son=[8(0.001 kg)(5 x 10°* ]"*(0.01 m)/(6.626 x 10°* J s) =3 x 10%°,

212 Eyper — Ergyer =hv = (5" =2°) 1> /8mI* and [ = (21h/8mv)"? =

[21(6.626 x 107* T 5)/8(9.1 x 10" kg)(6.0 x 10" s )]"*=1.78 x 10 m =1.78 nm.

213 Eypper — Eigyer = hv = (n* 1)1 [8ml*, so n* —1=8ml*v/h =8ml*c/ Ah =
8(9.109 x 10! kg)(2.00 x 107"° m)*(2.998 x 10°® m/s)/[(8.79 x 10~° m)(6.626 x 107*J 5)]

=15. So n> =16 and n = 4.

2.14  hv = (n; —n2)h*/8mi*, so v is proportional to n; —n>. Forn=1to02, n; —n’ is 3 and

forn=21to 3, ny —n> is 5. Hence for the 2 to 3 transition, v = (5/3)(6.0 x 10"*s™") =
10 x 107",

215  hv =(n; —n2)h*/8ml*, so n} —n> =8ml*v/h =
8(9.109 x 107" kg)(0.300 x 10~ m)*(5.05 x 10" s7')/(6.626 x 107°* J s) = 5.00.
The squares of the first few positive integers are 1, 4, 9, 16, 25,..., and the only two
integers whose squares differ by 5 are 2 and 3.
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216 v=h""(E, . — Eowe) = h" (h*/8mI*)(n; —n}) = (h/8mI*)k, where k is an integer.

pper

For n,—n, =1 and n, =1,2,3,..., we get the following & values:
k=2"—1"=3; k=3"-2=5; k=4>-3"=7; k=9,11,13,15, etc.
For n,—n,=3 and n, =1,2,3,..., we get

k=417 =15 k=5 -2"=21; k=6"-3%=27; k=33,39,etc.

For n,—n, =5 and n, =1,2,3,..., we get k =35, 45,55, etc.

The smallest £ that corresponds to two different transitions is £ =15 for the 1 to 4
transition and the 7 to 8 transition.

2.17 Each double bond consists of one sigma and one pi bond, so the two double bonds have 4
pi electrons. With two pi electrons in each particle-in-a-box level, the 4 pi electrons
occupy the lowest two levels, n = 1 and n = 2. The highest-occupied to lowest-vacant
transition is from n =2 to n =3, so |AE|= hv = he/Ad = (3* = 2*)h? /8mi* and

_8mlPc 8(9.109x107" kg)(7.0x107"" m)*(2.998x10° m/s)

- 5h 5(6.626x1074 T s)

320 nm

A =32x10" m =

2.18 Outside the box, i = 0. Inside the box, y is given by (2.15) as
v=a cos[h_l(ZmE)l/2 x]+ bsin[if‘z_l(ZmE)l/2 x]. Continuity requires that y =0 at x =—//2
and at x =1/2, the left and right ends of the box. Using (2.14), we thus have
0 = acos[i ' (2mE)"*1/2]- bsin[A'(2mE)"*1/2] [Eq. (1)]
0 = acos[i ' (2mE)"?1/2]+ bsin[h ' 2mE)"?1/2] [Eq. (2)].
Adding Egs. (1) and (2) and dividing by 2, we get 0 = acos[i"' (2mE)"?1/2], so
either a=0 or cos[A'(2mE)"*1/21=0 [Eq. (3)].
Subtracting Eq. (1) from (2) and dividing by 2, we get 0 =5 sin[h_1(2mE)1/ 21/2], so
either 5=0 or sin[z'(2mE)"?1/2]=0 [Eq. (4)].

If a =0, then b cannot be 0 (because this would make w = 0), so if @ = 0, then
sin[A”'(2mE)"?1/2]1=0 [Eq. (5)] and w = bsin[A(2mE)"?x]. To satisfy Eq. (5), we
must have [h_1(2mE )1/ 21/ 2] = kx, where £k is an integer. The wave functions and energies
when a =0 are

w = bsin[2kzx/l] and E = (2k)*h*/8miI* , where k=1, 2, 3.... [Eq. (6)]
(For reasons discussed in Chapter 2, £ = 0 is not allowed and negative values of k do not
give a different y.)
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If b = 0, then a cannot be 0 (because this would make y = 0), so if b = 0, then
cos[i”'(2mE)"?1/2]=0 [Eq.(7)] and v = acos[h ' (2mE)"*x]. To satisfy Eq. (7), we
must have [ (2mE)"?1/2] = (2 +1)7/2, where j is an integer. The wave functions and
energies when b = 0 are

w =acos[(2j+Dzx/l] and E = (2 +1)*h* /8mi* , wherej=0, 1,2, 3,... [Eq. (8)]
(As discussed in Chapter 2, negative values of j do not give a different y.)

In Eq. (8), 2j + 1 takes on the values 1, 3, 5,...; in Eq. (6), 2k takes on the values
2,4,6,.... Therefore £ = n2h2/8m12, where n =1, 2, 3,..., as we found with the origin at

the left end of the box. Also, the wave functions in Egs. (6) and (8) are the same as with
the origin at the left end, as can be verified by sketching a few of them.

2.19 Using square brackets to denote the dimensions of a quantity and M, L, T to denote the
dimensions mass, length, and time, we have [E] = MLT = [h]a[m]b[l]c = [E]aTaMbLC =

(MLszz)aTaMch = M“L**“T™ In order to have the same dimensions on each side of

the equation, the powers of M, L, and T must match. So1 =a+b, 2=2a+c¢, -2=-a.
Wegeta=2, b=1-a=-1,andc=2—-2a=-2.

2.20 From Egs. (1.20) and (2.30), ¥ = ¢ /% ¢,/ @mE) “¥h ¢ o iCmE) iy

2.21 (a) Let r=Q2m/h*)"?(V, — E)"* and s = 2m/h*)"* EY* . Then y, = Ce’* and
wy = Acossx + Bsinsx. We have y| = Cre’™ and yy{ = —sAsinsx + sBcossx. The
condition y{(0) =y ;(0) gives Cr =sB,s0o B=Cr/s = Ar/s = AV, - E)?/EY? | since
C = A, as noted a few lines before Eq. (2.33).
(b) wy =Ge™ and yy; =—rGe ™. From (a), yy; = —sdsinsx + s(Ar/s)cossx. The
relations (/) =y (1) and wy (1) = wy (1) give —sAsinsl +rAcossl = —rGe™" and

Acossl +(Ar/s)sinsl = Ge™". Dividing the first equation by the second, we get

—ssin sl +rcoss/

: =—r and 2rscossl = (s2 —? )sin s/. Substitution for » and s gives

cossl+rs™ sins/
202m/R*)VyE — E*)'? cos[(2mE) 2 1/ 1] = 2m/h*)(2E - V,)sin[(2mE)"? 1/ 1], which is
(2.33).

2.22 (a) As Vy; — oo, 2E on the left side of (2.33) can be neglected compared with V5, and E?
on the right side can be neglected to give tan[(2mE )1/ 21/n] = =2(V,E )1/ 2/ Vo =
=2(E/V, )1/ 2 The right side of this equation goes to 0 as V|, = o0, so
tan[(2mE)"?1/h] = 0. This equation is satisfied when (2mE)"?1/h = nz, where n is an
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2.23

2.24

2.25

2.26

2.27

integer. Solving for E, we get E = n’h? / 8mil>. (Zero and negative values of n are
excluded for the reasons discussed in Sec. 2.2.)

(b) w1 and yyy are given by the equations preceding (2.32). In y, x is negative, and in yy,
x 1s positive. As ¥, — o, y; and yip go to 0. To have y be continuous, y in (2.32) must

be zero at x = 0 and at x =/, and we get (2.23) as the wave function inside the box.

Vo=(15.0eV)(1.602 x 10"° J/eV) =2.40 x 10 J. b =2mV,)"*1/h =

[2(9.109 x 10" kg)(2.40 x 107" 1)]"?21(2.00 x 107'° m)/(6.626 x 10** J s) =3.97 and
blr=126.Then N—1<1.26<N,so N=2.

With b =3.97, use of a spreadsheet to calculate the left side of (2.35) for increments of
0.005 in ¢ shows that it changes sign between the ¢ values 0.265 and 0.270 and between
0.900 and 0.905. Linear interpolation gives ¢ = E/Vy = 0.268 and 0.903, and E =
0.268(15.0eV)=4.02 eV and 13.5 eV.

N
NV

(a) The definition (2.34) shows that » > 0; hence b/z > 0. If the number N of bound states
were 0, then we would have the impossible result that 5/7 < 0. Hence N cannot be 0 and
there is always at least one bound state.

(b) The Schrodinger equation is w" = —(2m/h*)(E —V)y. Since V is discontinuous at
x = 0, the Schrodinger equation shows that " must be discontinuous at x = 0.

e=E/V,=(3.00eV)/(20.0 eV) = 0.150. Equation (2.35) becomes

—0.700tan(0.387h) —0.714 = 0, so tan(0.387b) = —1.02. From the definition (2.34), b
cannot be negative, so 0.387b =—-0.795+ 7 =2.35 and b = 6.07. (Addition of integral
multiples of  to 2.35 gives 0.387b values that also satisfy Eq. (2.35), but these larger b
values correspond to wells with larger / values and larger values of N, the number of
bound levels; see Eq. (2.36). In these wider wells, the 3.00 eV level is not the lowest
level.) Equation (2.34) gives [ = bi/(2mV,)"? =

6.07(6.626x107>* J s)
27[2(9.109x107" kg)(20.0 eV)(1.602x 107" J/eV)]"?

=2.65%x10""m=0.265nm.
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2.28

2.29

2.30

231

2.32

Equation (2.36) gives 27 < (2mV,)"21/h <3, so [ > 2zh/2mV,)"? =

(6.626 x 1074 T 8)/[2(9.109 x 10 kg)(2.00 x 10°* 1)]"*=3.47x 10" m=3.47 A.
Also, [ < (37/27) (3.47 A)=5.20 A.

(a) From Eq. (2.36), an increase in V increases b/, which increases the number N of
bound states.

(b) An increase in / increases b/z, which increases the number N of bound states.

(@) From y;(0) =y (0), yy()) =y (), and E=0,we get C=b (Eq. 1) and
al + b= Ge™ M) N (Eq. 2). The conditions /{(0) = w{(0) and y; (/) =y, (/) give
C@m/ 12V, =a (Eq.3) and a =—(2m/ B2V, 2Ge @M (g, 4.

(b) If C> 0, then Egs. 1 and 3 give » > 0 and a > 0. Equation 4 then gives G <0 and Eq.
2 gives G > 0, which is a contradiction. If C <0, then Egs. 1 and 3 give » <0 and a < 0.
Equation 4 then gives G > 0 and Eq. 2 gives G <0, which is a contradiction. Hence C = 0.

(c) With C=0, Egs. 1 and 3 give b =0 and a = 0. Hence y; = 0.

Although essentially no molecules have enough kinetic energy to overcome the
electrostatic-repulsion barrier according to classical mechanics, quantum mechanics
allows nuclei to tunnel through the barrier, and there is a significant probability for nuclei
to come close enough to undergo fusion.

(@ F; (b) F; (c) T (Fig.2.3 shows ' is discontinuous at the ends of the box.);
(d) F; (e) T; (f) F(SeeFig.2.4.); (9) T; (h) F; (i) T.
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3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Chapter 3

Operators

(@) g=Af =(d/dx)cos(x* +1) = —2xsin(x? +1);
(b) zzlf = 5sinx = 5sinx;

() ;If =sin® x;

(d) exp(lnx) =" =x;

(e) (d*/dx*)In3x = (d/dx)3[1/(3x)] = —1/x*;

() (d*/dx* +3xd/dx)(4x>) = 24x +36x°;

(@) (@/ay)[sin(xy*)] = 2xy cos(xy?).

(a) Operator; (b) function; (c) function; (d) operator; (e) operator; (f) function.
A=3x%+ 2x(d/dx).
1, (d/dx), (d?/dx*).

(a) Some possibilities are (4/x) x and d/dx.
(b) (x/2) x, (1/4)( )
(©) (1) x, (4x)" didx, (1/12) d*/dx’.

To prove that two operators are equal, we must show that they give the same result when
they operate on an arbitrary function. In this case, we must show that (4 + B) f equals

(Z§ + /]) f. Using the definition (3.2) of addition of operators, we have
(A+B)f = Af + Bf and (B+ A)f = Bf + Af = Af + Bf, which completes the proof.

We have (,:1+l§)f = é‘f for all functions f, so ,21f+l§f = é‘f and /]f = éf—l?f Hence
A=C-B

@) (d*/dx*)x*x® = (d /dx)5x* =20x°;
(b) x*(d?/dx*)x® = x*(6x) = 6x°;
(€) (d* /D)X f(x)] = (d/dx)2xf + x> ) =2 f +4xf" + x> "
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(d) xX*(d*/dx*)f=x>f"

3.9  ABf =x*(didx)f =x*f",s0 AB = x>d/dx. Also BAf = (dldx)(x* ) =3x>f +x>f", so
BA=3x? -+ x*d/dx

3.10 [(ﬁé)é’]f = (/All})(CA'f) = /Al[l}(CA'f)], where (3.3) was used twice; first with A and B in
(3.3) replaced by AB and C, respectively, and then with fin (3.3) replaced with the
function Cf. Also, [A(BC)]f = A[(BC) f]= A[B(Cf)], which equals [(4B)C]f .

311 (a) (A+B)*f=(A+B)A+B)f =(A+B)Af + Bf) = ACAf + Bf) + B(Af + Bf)
(Eq. 1), where the definitions of the product and the sum of operators were used. If we
interchange A and B in this result, we get (é + 121)2f = é(éf + Izlf) + ﬁ(éf + Izlf). Since
Af + Bf = Bf + Af, we see that (4 + B)> f =(B+ A)* f.
(b) If A and B are linear, Eq. 1 becomes (21+l§)2f = 1212f+21l§f+l§121f+§2f. If
AB = BA, then (A+ B)> f = A>f +2A4Bf + B[ .

312 [A, Blf =(AB—BA)f = ABf — BAf and [B, A|f =(BA— AB)f = BAf — ABf =
4, Blf.

3.13 (@) [sinz, d/dz]f(z)=(sinz)d/dz) f(z)—(d/dz)[(sinz) f(z)] =
(sinz) f"—(cosz)f —(sinz)f" =—(cosz)f, so [sinz, d/dz]=—cosz.

(b) [d*/dx?, ax* +bx+clf = (d*/dxH)[(ax® +bx+c¢) f1—(ax* + bx +c)(d* /dx*) f
= (d/d0)[Qax +b) f + (ax* +bx +¢) f']—(ax* +bx +¢) "

=2af +2Qax+b) f'+(ax> +bx+¢) f"—(ax* + bx +¢) f" = 2af + (4ax+2b) f",

8o [d?/dx?, ax* +bx +c] = 2a + (4ax + 2b)(d /dx).

(€) [d/dx, d*/dx*1f = (d/dx)(d*/dx*) f —(d*/dx*)d/dx)f = "= f"=0-f so
[d/dx, d*/dx*]=0.

3.14 (a) Linear; (b) nonlinear; (c) linear; (d) nonlinear; (e) linear.

315 [4,(x)d/dx"™ + A4, (x)d" V/dx" D -+ 4, (x)dldx + Ay (x)]y(x) = g(x)
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3.16 Given: A(f +g)=Af + Ag, A(cf)=cAf, B(f +g)=Bf + Bg, B(cf) = c(Bf).
Prove: AB(f + g) = ABf + ABg, AB(cf)=cABf.
Use of the given equations gives ﬁl}(f +g)= ﬁ(éf + ég) = zzl(l}f) + /](l?g) =
/Aléf + ﬁég, since éf and Z}g are functions; also, gll%(cf )= /Al(céf )= cﬁ(f}f )= cﬁf?f .

3.17 We have
ﬁ(é + é)f = /Al(l?f + éf) (defn. of sum of ops. B and é)
= A(Bf)+ A(Cf) (linearity of A)
= ,Zléf + IZICA'f (defn. of op. prod.)
= (,le} + zglé)f (defn. of sum of ops. AB and flé)
Hence zzl(é + é) = AB+ AC.

3.18 (a) Using first (3.9) and then (3.10), we have A(bf +cg) = A(bf) + A(cg) = bAf + cAg.
(b) Setting b=1 and ¢ =1 in (3.94), we get (3.9). Setting ¢ = 0 in (3.94), we get (3.10).

3.19 (a) Complex conjugation, since (f + g)*= f*+g* but (¢f)* = c*f* = cf*

(b) ( Y'(didx)( ), since ()Y (dldx)( )Y 'ef=( ) dldo)c =
( V' T ==cf2f and e ) (dldx)( Y f=c( ) (didof ' =
—c( ) = =¢f*1f", but
( ) 'ddx)( Y'(fre=( Y@a)f+g ' = Y+ (/' +g)]=
(e’ (f'+g) " £ ) daxy( Y+ ) dax Y'g=-ff-g%lg .

3.20 (a) This is always true since it is the definition of the sum of operators.
(b) Only true if A is linear.
(c) Not generally true; for example, it is false for differentiation and integration. It is true
if 4 is multiplication by a function.
(d) Not generally true. Only true if the operators commute.
(e) Not generally true.
(f) Not generally true.
(9) True, since fg = gf.

(h) True, since Bg is a function.

321 (a) TLf(x)+g(@)]=f(x+h)+g(x+h) =T,f(x)+T,g(x).
Also, T,[cf (x)] = ¢f (x +h) = ¢T, f(x). So T, is linear.
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3.22

3.23

3.24

3.25

(b) (7,7, -3T, +2)x* = (x +2)* =3(x +1)? +2x> = 2x +1.

P F(x) =+ D+ D214 D131+ f(x) = f(x) + f1(xX) + f"(x)/ 20+ f7(x)/3 4.

f] f(x)= f(x+1). The Taylor series (4.85) in Prob. 4.1 with x changed to z gives

f(2)= f(a)+ f'(a)(z—a)/ 11+ f"(a)(z —a)?/2) +---. Letting h = z —a, the Taylor series
becomes f(a+h) = f(a)+ f'(a)h/ 1+ f"(a)h*/2!+---. Changing a to x and letting
h=1, weget f(x+1)=f(x)+ f'(x)/ 1!+ f"(x)/2!+---, which shows that ef)f :f]f.

(@) (d*/dx*)e* =e* and the eigenvalue is 1.

(b) (d*/dx*)x* =2 and x* is not an eigenfunction of d*/dx” .

(c) (d*/dx*)sinx = (d/dx)cosx = —sinx and the eigenvalue is —1.
(d) (d*/dx*)3cosx =—3cosx and the eigenvalue is —1.

(e) (d?/dx*)(sinx + cosx) = —(sin x + cos x) so the eigenvalue is —1.

(@) (8%/ox? + 0% /9y )(e**e®) = 4e** e +9e**e*” =13e*"e”. The eigenvalue is 13.
(b) (&*/ox* + 8% 10y*)(x*y*) = 6x1° + 6x°y. Not an eigenfunction.

(c)

(62 /ox? +0° /8y2)(sin 2xcos4y) =—4sin2xcos4y —16sin2xcos4y = —20sin2xcos4y.
The eigenvalue is —20.

(d) (8%/6x* + &% /6y*)(sin 2x + cos 3y) = —4sin 2x —9 cos3y. Not an eigenfunction,

—(h?*2m)(d* ldx*)g(x) = kg(x) and g"(x)+ (2m/h*)kg(x) = 0. This is a linear
homogenous differential equation with constant coefficients. The auxiliary equation is

s> +(2m/h*)k =0 and s = £i(2mk)"?/h. The general solution is

. 1/2 . 1/2 . .
e’ Fm T o em1@mR) X 1f the eigenvalue k were a negative number, then &2

g =
would be a pure imaginary number; that is, k"% = ib, where b is real and positive. This

would make ik"? a real negative number and the first exponential in g would go to o« as
x — —oo and the second exponential would go to co as x — . Likewise, if k£ were an
imaginary number (k = a +bi = re'?, where a and b are real and b is nonzero), then K2
would have the form ¢ +id, and ik"? would have the form —d + ic, where ¢ and d are

real. This would make the exponentials go to infinity as x goes to plus or minus infinity.
Hence to keep g finite as x — +oo, the eigenvalue k£ must be real and nonnegative, and the

allowed eigenvalues are all nonnegative numbers.
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3.26

3.27

3.28

3.29

3.30

([ dx)f = f dx = kf. Differentiation of both sides of this equation gives

(d/dx)[ f dx = f =kf'. So dfldx =k f and (1/f)df = k™'dx. Integration gives
Inf=k'x+c and f =e‘"* = 4", where 4 is a constant and & is the eigenvalue. To
prevent the eigenfunctions from becoming infinite as x — too, k must be a pure
imaginary number. (Strictly speaking, Ae™ is an eigenfunction of [ dx only if we omit

the arbitrary constant of integration.)

d? fldx* +2df ldx = kf and f"+2f'—kf = 0. The auxiliary equation is s> +2s —k =0

1/2 1/2
and s = —1+(1+k)"?. So f = AR 4 Bl - where A and B are arbitrary

constants. To prevent the eigenfunctions from becoming infinite as x — oo, the factors

2 = ¢i, where ¢ is an arbitrary

=1+ci and 1+k:(1+ci)2 =1+ 2ic—c* and k = 2ic—c>.

multiplying x must be pure imaginary numbers: —1+ (1+ k)

real number. So £(1 +k)1/ 2

@ p) =iy (©@loy) =i’ /ey’ ;
(b) b, — 3p, = x(1/i)o/dy — y(h/i)o! éx;

(€) [x(h/D)o/dv] f(x, ¥) =—h*(x8/dy)(xdf 1dy) = —h*(x* & f 1oy?).
Hence (£p,)° = —h*(x* 8°/8y?).

(h/i)(dg/dx) = kg and dg/g = (ik/h) dx. Integration gives In g = (ik/h)x + C and

g =™ = 4™/ where C and 4 are constants. If k were imaginary (k = a + bi,

where a and b are real and b is nonzero), then ik =ia —b, and the e P factor in g makes

g go to infinity as x goes to minus infinity if b is positive or as x goes to infinity if b is
negative. Hence » must be zero and & = a, where a is a real number.

@) [%, p.1f = (/i) xdlox —(d/ax)x]f = (h/i)[xOf /ox — (d1ax)(xf)] =
(h/D)[xdf lox — f —x8f lox] = —(hli) f, so [%, p,.]1=—(Rli).

(b) [%, p21f = (W/i)*[x0*/ox* — (8% /ax)x]f = —h*[x > f/ox* — (8 /ox*)(xf )] =

—1*[x 8% f/ox* —x O flox* —28f 1ox] = 2h* Of /ox. Hence [%, pi]=2h*0/ox.

©) [x, p,1f =W/i)[xo/dy —(d/oy)x]f = (A/D)[xof [oy — x(df /oy)] =0, s0 [X, p,]=0.
d) [%, V(x,y,2)]f =V -Vx)f =0.

(e) Let A=—h>/2m. Then [%, H]f =

{x[A(a2/ax2 +0%y? +0%1020) + V] - [A(@%/ox® + 32 Ioy* + ¥z + V]x} f=
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A[x > flox* + x> f10y* + x0* f 102> — x> flox? = 20f |ox — x> f1oy* —x 0% f 1622 ]+
XAV — AVxf = —2A0f 1ox = (h* Im)of /ox, so [£, H]= (h>/m)d/ox.

(f) [&5%, pi1f =

1P [xyz & f10x% = (0% 1ox*)(xyzf )] = —h*[xyz & f10x% — xyz & f/0x* = 2yz 8f 1x] =
2h*yz Of ox, so [%9%, p21=2h*yzdlox.

2 2 2 2 2 2 2 2
3.31 f=—h [82+82+62J—h (82+82+82J
2m1 a.xl 6)/1 aZl 2m2 a.X2 ayz aZZ

3.32 H=—(112m)V?* +c(x* + y* + %), where V2 = 8% /ox* + 0 10y* + 6% /62>,

333 (a) [:|¥(x,0) P dx;
() 7 17 12 1% (x, .z, 0) P dxdydz ;

© (o0 o0 (o0 oo (2
(O S 1 O 1 IO|‘I’(X1,J/1,21,X2, V25 Z35 s dx, dy, dz, dx, dy, dz, .

3.34 (a) |w |2 dx 1is a probability and probabilities have no units. Since dx has SI units of m,
the SI units of y are m "%

(b) To make |y |* dxdydz dimensionless, the SI units of y are m >,

(¢) To make |y |* dx, dy, dz, ---dx, dy, dz, dimensionless, the SI units of y are m "

3.35 Letthex, y, and z directions correspond to the order used in the problem to state the edge
lengths. The ground state has n, n, n, quantum numbers of 111. The first excited state
has one quantum number equal to 2. The quantum-mechanical energy decreases as the
length of a side of the box increases. Hence in the first excited state, the quantum-number
value 2 is for the direction of the longest edge, the z direction. Then

(12 12 22 B2 1P 1P
Ww=s— | —+—+—|——| =+—=+—
Sm[az b’ ch Sm(az b’ czj

3h 3(6.626x 107 Js)

14 -1
5 = = ——— = 7-58x10" s
8mc”  8(9.109x107" kg)(6.00x107"" m)

3.36 (a) Use of Egs. (3.74) and (A.2) gives [500 ™™ [T:00 M [0400™ |y, |2 dx dy dz =
[040mm 2/ a)sin® (zx/a)dx [F3 "™ (2/b)sin’ (zy/b)dy [300™™ (2/c)sin®(zz/c)dz =
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3.37

3.38

3.39

3.40

X sin(27rx/a)} 300 mm

a 27 c 27

040 mm [ v sin(27ry/b)}
0 b 2z 2.00 nm

(040 sin(27 - 0.40/1.00)}{2.00 —1.50 sin(27-2.00/2.00) —sin(27 -1.50/2.00)} y
1 1.00 2 2.00 2r

3.00-2.00 sin(27-3.00/5.00) —sin(27z - 2.00/5.00) |

500 2z } -
(0.3065)(0.09085)(0.3871) = 0.0108.

(b) The y and z ranges of the region include the full range of y and z, and the y and z

200 mm [5 ) sin(Zﬂz/c)}
1.50 nm

factors in y are normalized. Hence the y and z integrals each equal 1. The x integral is the
same as in part (a), so the probability is 0.3065.

(c) The same as (b), namely, 0.3065.

p, =—ih0d/ox. (a) O(sinkx)/Ox = kcoskx, so y is not an eigenfunction of p ..
Eq. (3.73). The eigenvalue is hzni /4a*, which is the value observed if pﬁ is measured.
(c) ﬁzzt//(&m = —1* (0% /02 W3 = W (1) (n,z/ c)zt//(3.73) and the observed value is
h*n?/4c?,

(d) Xy 373 = XW(3.73) # (COnst.)y 3 73y, SO y is not an eigenfunction of x.

Since n, =2, the plane y =5b/2 is a nodal plane within the box; this plane is parallel to

the xz plane and bisects the box. With n, =3, the function sin(37z/c) is zero on the nodal
planes z = ¢/3 and z = 2¢/3; these planes are parallel to the xy plane.

(@) |w [ is a maximum where || is a maximum. We have |1//| = |f(x)||g(y)||h(z)|. For

n, =1,

f(x)| = (2/a)"? |sin(7rx/a)| is a maximum at x = a/2. Also, g(y)| is a maximum

at y=>5/2 and |h(z)| is a maximum at z = ¢/2. Therefore |1//| is a maximum at the point
(a/2, b/2, c¢/2), which is the center of the box.

(b)

maximum at y =b/2 and |h(z)| is a maximum at z = ¢/2. Therefore |w| is @ maximum at
the points (a/4, b/2, ¢/2) and (3a/4, b/2, c/2),

f(x)| = (2/a)"? |sin(27zx/a)| is a maximum at x = a/4 and at x =3a/4. |g(y)| isa

When integrating over one variable, we treat the other two variables as constant; hence
I1IF)G()H(2)dxdydz = [[[ [ F()G()H () dx |dy dz = ] |Gy H(2)[ [ F(x)dx | dy dz
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341

3.42

3.43

3.44

3.45

=[1F@axI[JG()H (2 dy Jd= = [F(x)dx[H () [ G(y)dy ] dz =
[F(x)dx]G(y)dy[H(z)dz.

If the ratio of two edge lengths is exactly an integer, we have degeneracy. For example, if
b = ka, where £ is an integer, then ni la* + ni /b? = (nf + nﬁ/kz)/az. The (n,, n,, n,)

states (1, 2k, n,) and (2, k, n,) have the same energy.

O’y a%// . O’y
ox? ay2 oz
v(x, y, z) = F(x)G(y)H(z). Substitution into the Schrodinger equation followed by

2 2
division by FGH, gives —h— ld—F id—f + Ld_]j
2m G dy H dz

With V=0, we have —;—( 5 ]= Ey . Assume

F dx?

2 2 2 2 2
h ld]; =E+h ldG—i-LdIz_I (Eq. 1). LetE——h—idF
Zm F dx 2m\ G dy H dz 2m| F dx?

Then, since F is a function of x only, E is independent of y and z. But Eq. 1 shows E, is

J:E and

equal to the right side of Eq. 1, which is independent of x, so E is independent of x.
Hence E, is a constant and —(7*12m)(d*Fdx*) = E_F. This is the same as the one-
dimensional free-particle Schrodinger equation (2.29), so F(x) and E, are given by (2.30)

and (2.31). By symmetry, G and H are given by (2.30) with x replaced by y and by z,
respectively.

For a linear combination of eigenfunctions of H to be an eigenfunction of H , the
eigenfunctions must have the same eigenvalue. In this case, they must have the same
value of ni + ni + nz2 The functions (a) and (c) are eigenfunctions of H and (b) is not.

In addition to the 11 states shown in the table after Eq. (3.75), the following 6 states have
E@ma*/h*)<15:

123 132 213 231 312 321
E8ma*/h*) 14 14 14 14 14 14

These 6 states and the 11 listed in the textbook give a total of 17 states. These 17 states
have 6 different values of E(8ma®/h*), and there are 6 energy levels.

(a) From the table after Eq. (3.75), there is only one state with this value, so the degree of
degeneracy is 1, meaning this level is nondegenerate.
(b) From the table in the Prob. 3.44 solution, the degree of degeneracy is 6.
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(¢) The following n,n,n, values have E(8ma®/h*) =27; 115,151, 511, 333. The degree
of degeneracy is 4.

3.46 (a) These are linearly independent since none of them can be written as a linear
combination of the others.

(b) Since 3x* —1=3(x?)— %(8), these are not linearly independent.
(c) Linearly independent.

(d) Linearly independent.

(e) Since €™ = cosx +isin x, these are linearly dependent.

(f) Since 1=sin’x +cos’x, these are linearly dependent.

(9) Linearly independent.

3.47 See the beginning of Sec. 3.6 for the proof.

348 (@) (0 =[o00ox| /()P g P h(z) P dxdydz =
[8x] £ Pdx ]l | g(v) Pdy [§ | h(z) P dz, where £, g, and h are given preceding Eq.
(3.72). Since g and & are normalized, (x) = J§ x| £ (x) |* dx = (2/a) [y xsin*(n zx/a)dx =

a

2 2
_{x_ — - sin@nzxla) - a—zcos(2nx7zx/a)} - % where Eq. (A.3) was used.

2
4 4n.r n;

0
(b) By symmetry, {y) =5/2 and (z) = c¢/2.
(c) The derivation of Eq. (3.92) for the ground state applies to any state, and (p,) = 0.

(d) Since g and 4 are normalized,
(x*) =Jg x* | f(x)]F dx = (2/a) ] x* sin®(n 7x/a)dx =

20 X° ax® a a’x
= ———— sin(2n. 7wt x/a)————cos(2n. 7w x/a
a{ 6 (4@” 8n)3c7r3j Gl a) = gz oS x/a)

“ 2 2
a

)

= T Ty 5
2n’r?

=N

X 0

where Eq. (A.4) was used. We have (x)? = a*/4 = (x*). Also,
oy =[50 x| o) Pl g () PLA(z) P dxdy dz =
[ox fo) Paxly v g Pdyly | hz) P dz = (x)p).

349 (A+B)= j\P*(/i + B)W dr =[WHAY + BY) d7 =j\11*21tp dr+ [W*BY dr =

(A)+(B). Also (cB) = j W(cB)Y dr = ¢ j W BY dr = (B).
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3.50 (a) Not acceptable, since it is not quadratically integrable. This is obvious from a graph or
from |*_ e™** dx = —(1/2a)e " |°, = .

(b) This is acceptable, since it is single-valued, continuous, and quadratically integrable
when multiplied by a normalization constant. See Egs. (4.49) and (A.9).

(c) This is acceptable, since it is single-valued, continuous, and quadratically integrable
when multiplied by a normalization constant. See Egs. (4.49) and (A.10) with n = 1.

(d) Acceptable for the same reasons as in (b).

(e) Not acceptable since it is not continuous at x = 0.

3.51 Given: ihd¥,/dt = H'Y, and ih0¥,/0t = HY, . Prove that
ihd(e, ¥, +c,¥,) /6t = H(c,¥, +¢,¥,). We have ihd(c,¥, +¢c,¥,) /ot =
iH[O(c,'¥,)/ ot +0(c, ¥, )/ dt] = c,ihd¥,/ Ot + ,ihd¥, /ot = ¢, HY | + ¢, HY , =

H(c¥Y, +c,¥,),since H is linear.

3.52 (a) An inefficient C++ program is

#include <iostream>
using namespace std;
int main() {
int m, i, j, k, nx, ny, nz, L[400], N[400], R[400], S[400];
i=0;
for (nx=1; nx<8; nx=nx+1) {
for (ny=1; ny<8; ny=ny+1) {
for (nz=1; nz<8; nz=nz+1) {
m=nx*nx+ny*ny+nz*nz,
if (m>60)
continue;
i=i+1;
L[i]=m;
N[i]=nx;
R[i]=ny;
S[il=nz;
}
}
}
for (k=3; k<61; k=k+1) {
for (j=1; j<=i; j=j+1) {

if (L[j]==k)
cout<<N[jl<< " "<<R[jlx< " "<<S[j]<< " "<<L[j]<<end]I;
}
}
return O;
3-10
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3.53

A free integrated development environment (IDE) to debug and run C++ programs is
Code::Blocks, available at www.codeblocks.org. For a Windows computer, downloading
the file with mingw-setup.exe as part of the name will include the MinGW (GCC) compiler
for C++. Free user guides and manuals for Code::Blocks can be found by searching the
Internet.

Alternatively, you can run the program at ideone.com.

(b) One finds 12 states.

(@) T. (b) F. See the paragraph preceding the example at the end of Sec. 3.3.

(c) F. This is only true if f; and f; have the same eigenvalue.

(d) F. (e) F. This is only true if the two solutions have the same energy eigenvalue.
(f) F. This is only true for stationary states.

(@) F. (h) F. x(5x) # (const.)(5x).

(i) T. I:I‘I’ — I:I(e_iEt/hl//) — e—iEt/h]:Il// — Ee—iEt/hl// - EY.

T (kT (IF

(M) T. A>f = A(Af) = A(af) = aAf = a*f, provided A is linear. Note that the
definition of eigenfunction and eigenvalue in Sec. 3.2 specified that A is linear.

(n) F. (o) F.

3-11
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4.1

4.2

4.3

4.4

4.5

Chapter 4

The Harmonic Oscillator

Taking (d/dx)" of (4.84) gives [ (x)=D"" c,n(n—=1)(n-2)---(n—m+1)(x—a)"™" .
The factors n, (n—1),... make the terms with n =0, n=1,..., n =m—1 vanish, so

7 (x) = Z::m c,n(n—=1)(n=2)---(n—m+1)(x—a)"™ (Eq. 1). (If this is too abstract
for you, write the expansion as f(x) = ¢, +¢;x + c2x2 et ckxk +--- and do the

differentiation.) With x = a in Eq. 1, the (x —a)"™ factor makes all terms equal to zero
except the term with » = m, which is a constant. Equation (1) with x = a gives

" a)=c,m(m=1)(m=2)---(m—m+1)=c,m! and ¢, = "™ (a)/m!.

(@) f(x)=sinx, f'(x)=cosx, f"(x)=—sinx, f"(x)=—-cosx, /™ (x)=sinx,...;
a=0and f(0)=sin0=0, f'(0)=cos0=1, f"(0)=0, f"(0)=-1, f(0)=0,.... The

Taylor series is sinx =0+x/11+0—x"/314+0+x>/ 5+ = > " (=D x**1/ 2k + 1)1

(b) cosx=1/11=3x%/31+5x%/51-=1—-x*/ 21+ x*/ 41— = 3" (=D 5/ (2k)!.

a) We use (4.85) with @ =0. We have f(x)=¢* and f™P(x)=¢*. F™0)=¢" =1.
(a) (4.85) f(x) S(x) S(0)

So e =1+x/ 1427/ 21427/ 3l = 3" X" /nl.
(b) € =1+(i0)/1!1+(i0)/ 2!+ (i6)’/ 31+ (i0)*/ 41+ (i0)/ 51+ - =

1-60%/21460%/ 41— +i(0/ 11— 6/ 31+ 6°/ 51 —--) =cos@+isinb.

From (4.22) and (4.28), dx/dt = 2zvAcos2zvt +b) and T = 2mr*v? A* cos* (2zvit + b).
From (4.22) and (4.27), V = 272V mA? sin® (2zvt+b). Then T+V = 27°v*mA?, since

sin?@+cos* O =1.

(@) Let y=Y ¢x".Then y'=>  nex" and y"=Y n(n—1)c,x"* . Since
y n=0 "1 y n=0 "N y n=0 n
the first two terms in the y" sum are zero, we have " = z:;z n(n—1)c,x""*. Let
i=n—2.Then "= . (j+2)j+Dc.,x' =37 (n+2)(n+1)c, ,x" . Substitution
J y 20U+ +Deji o 42

in the differential equation gives
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4.6

4.7

4.8

4.9

4.10

Z:):o (n+2)(n+1ec,,,x" — Z;O:o n(n—1)c,x" — 22:;0 ne,x" + 32:;0 ¢, x" =0.
We have z:=o[(” +2)(n+1)c,,, +(3—n—n*)c,]x" =0. Setting the coefficient of x”
equal to zero, we have ¢, , = (n* +n-— 3)c,/[(n+2)(n+1)].

(b) The recursion relation of (a) with n =0 gives ¢, = —3¢,/2 and with n =2 gives
¢, =3¢, /12=c,/4=(-3¢c,/2)/4=-3c,/8. With n =1 and n =3 in the recursion
relation, we get ¢; = —¢;/6 and ¢s = 9¢3/20 = 9(—¢,/6)/20 = =3¢, /40.

(a) Odd; (b) even; (c) odd; (d) neither; (e) even; (f) odd; (g) neither; (h) even.

Given: f(-x) = f(x), g(=x) = g(x), h(-=x) = —h(x), k(=x) = —k(x).

Let p(x)= f(x)g(x). Wehave p(—x) = f(-x)g(—x) = f(x)g(x) = p(x), so the product
of two even functions is an even function. Let g(x) = A(x)k(x). Then

q(—x) = h(=x)k(—x) = —h(x)[—k(x)] = h(x)k(x) = g(x), so the product of two odd
functions is an even function. Let 7(x) = f(x)A(x). Then

r(=x) = f(=0)h(=x) = f()[-h(x)] = = f(D)h(x) = =r(x).

(a) Given: f(x)= f(—x). Differentiation of this equation gives
f'(x)=df (=x)/dx = f'(=x)[d(—x)/dx] =—f"(-x), so f" is an odd function.

(b) Differentiation of f(x)=—f(—x) gives f'(x)=—(-1)f"(-x) = f'(—x).
(c) Differentiation of f(x) = f(-x) gives f'(x) =—f"'(—x), asin (a). Putting x =0 in
this equation, we get f”(0) =—/"(0), so 2/'(0)=0 and f'(0)=0.

(TY = [w*Tw dr = —(1212m) " (a/7)"2e ™ 2 (d* 1dx?)e ™ 2 dx =
2 2m) el )2 7 e (PN — a)e ™ 2 dx =

—(W212m)al )220 (@PxF - a)e ™ dx =

R Im)(al 7)) (x P - a(12) (7)) ? ] = WP a/dm =

n? (2zvm/h)/4m = hv/4, where (A.9) and (A.10) were used.

Wy =lw*Vyde =(aln) [, e 2 Qr*vim?)e ™ dx =

(/)2 2[7 v mxt)e ™ dx = 426 2V mU4) (7" 1a*?) = 22vimla =

7vimlQrvmi™) = hv/4 = (T).

2 2
From (4.54), 1=|¢, [ [, X’ * dx=2]|¢ [ [{ X’ ® dx=2]|c [ +7"*/a’?, where

4.49) and (A.10) with n = 1 were used. We get | ¢, |= 212034271 From (4.56),
1
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I=¢ ‘2 Jo—ooo (1-4ax® +4a’x* e g = 2l ¢ |2 ﬁ)o (1-4ax® +4a’x* ¢ dx
=2l¢, P 27 (x/)"? = 4a(1/4)7"? 10** + 4a* (31 8) 2 1?1 = 2 | ¢y | (m/x)"?

where (A.9) and (A.10) were used. Hence | ¢, |= 27" (a/7)"*.

411 From (4.47), s = (cx +c3x°)e ™ 2. From (4.46), ¢y = [2a(1-3)/6]c, = —2ac,/3. So
ws = ¢ [x—(2/3)ax’ ]e_“XQ/ 2 We have
L=|c P2J7 [x% = (4/3)ax* +(4/9)a’x®Je ™ dx =
21 ¢, F112) 72 1 = (413)a(3/2°) 7 10 + (4192 (1521 7" o' ? ] =
le, P 722 /3 and | ¢; | =3"*a”*727"*. Then

Wy = 31/2a3/47z_1/4[x _ (2/3)ax3]e—ax2/2‘

412  From (4.47), v, = ™ (cy +cyx” +cyx*). From (4.46) with v = 4,
¢, =2a(-4)cy/2 = -4ac, and
¢, =20(2-4)c,/(3-4) =-ac,/3 =—-a(-4acy)/3 = 4a2c0/3. Then

W, = coe_o”(2 (1—4ax® +4a’x*/3).
413 At the maxima in the probability density |y |*, we have 8 |y [*/0x = 0. From (4.54),

2 2 —ax*y 2 3\ —ax? _ 3 2 .
0=c;(0/0x)(xe ™ )=c (2x-2ax")e ™" , so 0=x—ax” =x(1-ax”). The solutions

are x=0 and x =+ /2. From Fig. 4.4b, x = 0 is a minimum in probability density, so

the maxima are at x = +a 2.

4.14  The wave function is an odd function with five nodes, one of which is at the origin.

Y

f\ .
U *

Alternatively, one could take —1 times the y function graphed above.
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4.15

4.16

4.17

4.18

(xy=[p*ipdr=] iow x|y, * dx. The wave function v, 1s either even or odd, so |y, ?
is an even function. Hence x |y, > is an odd function and | Ofoo x|y, * dx = 0. The result

(x) =0 is obvious from the graphs of |y |* that correspond to Fig. 4.4.

(@ T. (b) T. (c) F (since i can be multiplied by —1 and remain a valid wave
function). (d) T. (e) T.

Similarities: The number of nodes between the boundary points is zero for the ground
state and increases by one for each increase in the quantum number. The quantum
numbers are integers. There is a zero-point energy. The shapes of corresponding wave
functions are similar. If the origin is placed at the center of the box, the wave functions
alternate between being even or odd as the quantum number increases. The energy levels
are nondegenerate. There are an infinite number of bound-state energy levels
Differences: The energy levels are equally spaced for the harmonic oscillator (ho) but
unequally spaced for the particle in a box (pib). For the ho, there is some probability for
the particle to be found in the classically forbidden region, but this probability is zero for
the pib.

(@) 1=Q2xv) '[sin”'(x/4)-b] and dt/dx = 2zv) A7 [1-(x/4)* T, so

dt = 2zvA) 1 - (x/A)*T"? dx. The period is 1/v, so the probability that the particle is
found between x and x + dx is 2v dt = (7 A)"'[1 - (x/4)* 1" dx.

(b) At x =+A, the classical probability density is infinite.

(©)

2.5 ~

1.5 -

0.5 A

D
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4.19

4.20

For high values of the quantum number Vv, the outer peaks in |1//|2 are much higher than

the inner peaks, and the highest probability density is near the classical turning points of
the motion, as is true for the classical probability density graphed above. This is in accord
with the correspondence principle.

For x > 0, the Hamiltonian operator is the same as that of the harmonic oscillator. Hence
the solutions of the Schrodinger equation for x > 0 are the functions (4.42), where the

coefficients obey the recursion relation (4.39). To make y quadratically integrable, v
must go to zero as x — oo. This boundary condition then restricts the solutions to the
harmonic-oscillator functions (4.47). Since V' is infinite for x <0,  must be zero for

x < 0 (as for the particle in a box). The condition that ¥ be continuous then requires that
w =0 at x =0. The even harmonic-oscillator functions in (4.47) are not zero at the
origin, so these are eliminated. Hence the well-behaved solutions are the harmonic
oscillator wave functions with v =1, 3, 5,..., and E = (v +%)hv with v=1, 3, 5,.... If

we define n=(v—1)/2, then E = (2n+3)hv,with n=0, 1, 2,....

(a) The time-independent Schrodinger equation (3.47) is

—(1* 12m)( @y 10x* + 0%y [dy® + 0Py loz?) + (S kx? + 1k, y? + Lk.2* )y = Ey.

The Hamiltonian operator is the sum of terms that each involve only one coordinate, so
we try a separation of variables, taking v = f(x)g(y)h(z). Substitution of this y into the
Schrédinger equation followed by division by fgh gives

——( df+fh >+ fg }r(kx2+%kyy2+%kzzz)fgh=Efgh

2m

(ldf 1d2g+ld2h +lkx2+lky2+lk22:E (qu)
medx gdy2 hd22 27 27y 27z

2 2
B A e e
m X m\ g ay

Since f'is a function of x only, the defined quantity £ is independent of y and z. Since

E . equals the right side of the last equation and x does not appear on this side, £ is
independent of x. Therefore E . is a constant. Multiplication of the £ definition by f
gives —(h*/2m)(d* f/dx*) + %kxx2 f =E_f, which is the same as the one-dimensional
harmonic-oscillator (ho) Schrédinger equation (4.32) [see also (4.26)] with y replaced
by f, k replaced by k,, and E replaced by E, . Hence f(x) is the one-dimensional ho wave
function (4.47) with v replaced by v, and E. is given by (4.45) and (4.23) as

E.=(v, +%)hvx, v, =127)(k,/ m)"2. Since x, y, and z occur symmetrically, g(v) and

h(z) are ho functions with y and z as the variable. Equations 1 and 2 give,
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421

4.22

4.23

_ _ 1 1 1
E=E +E +E =V, +3)hv, +(V, +3)hv, +(V, +3)hv,, where
v,=0,1,2,..,v,=0,12,..v,=0,12,..

(b) When the k’s are equal, we have v, =v, =v, =v and E=(V, +V +V, + %)hv. The
lowest energy level is 000 and is nondegenerate, where the numbers give the values of
the quantum numbers v,, Vv, V.. The next-lowest level is threefold degenerate,

consisting of the states 100, 010, and 001. The next level is sixfold degenerate and has
the states 200, 020, 200, 110, 101, 011. The next level is tenfold degenerate and has the
states 300, 030, 003, 111, 210, 201, 012, 021, 102, 120.

@) Hy=(-)"¢" e =1. H, =(-1)e* (dldz)e® =—¢" (-2z¢™" )=2z.

H, = e (—Ze_z2 + 4226_22) =4z% -2,

Hy=—¢" (dze" +8z¢™" —82% 7 )=82" —12z.

(b) Forn=0, zHy=z and T H, = z.

Forn=1, zH; =2z" and Hy+1H, =1+2z° -1=22".

Forn=2, zH, =4z -2z and 2H, + 1 Hy =4z +4z° -6z =42 - 2z.

(c) For v =0, (4.86)is y, = (a/7)" e %, asin (4.53). For v =1, (4.86) is

v, =2 1) (aln) e 220 2x) = 22 4 xe™ @2 as in (4.55). Finally,
l//z — (22 . 2!)—1/2(a/ﬂ_)l/4e—aX2/2[4(a1/2x)2 _ 2] — 2—1/2(a/7z_)1/4(2ax2 _ 1)8—0{)62/2 as 11’1

(4.57).

For very large | x |, the first term in parentheses in (4.32) can be neglected compared with

—ax?/2

the second term, and (4.32) becomes " — a*x*y = 0. With y =e , we have
_ 2 _ 2 _ 2 _ 2
w' —a’xty = —ae ™ P o xPe T —oPx?e ™ 2 = —ge * 2. For very large | x|,
—ax*/2 . —ax*/2 . . .
-ae is extremely close to zero, so ¥ =e is an approximate solution for very
large | x|.

(@) Let x, = a"?x. Then Eq. (4.40) becomes

2 4 6
2 CHrX CyX CeX
W/cozex’/z(H 2 g Ay 6 +)

2 3

Let £, = mEh /o = E/hv . Then Eq. (4.39) becomes
¢ olac, =2n+1-2E.)/[(n+1)(n+2)]= f,, where f, was defined as shown. We
Cy Cy Ce Co Cy4

© & S
have —— = f, 5= =Nty —5—= = fufs /o, -.. - Hence
CZCO Coa 0(6'2 aCO a C‘O aC4 0{6‘2 CZCO
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wicg=e " (14 fox? + fofox} + fofofuxt +++).
We have f,, , = (4n—4+1-2E,)/[(2n-2+1)(2n—2+2) = (4n -3 —2E,)/(4n* = 2n).

A C++ program is
#include <iostream>
#include <cmath>
using namespace std;
int main () {
int n;
double er, xr, fac, sum, term, psi;
label2: cout << "Enter Er (enter 1000 to quit)";
cin >>er;
if (er >999) {
return O;
}
for (xr=0; xr<=6; xr=xr+0.5) {
fac=exp(-xr*xr/2);
sum=1;
term=1,
for (n=1; n<=9500; n=n+1) {
term=term*(4*n-3-2*er)*xr*xr/(4*n*n-2*n);
if (fabs(fac*term) < 1e-15) {
goto label1;
}

sum=sum-+term;
cout << "Did not converge";
return O;
labell: psi=fac*sum;
cout << "xr=" <<xr <<" Psi= " <<psi <<" n= "<< n<<endl

}
goto label2;

4-7
Copyright © 2014 Pearson Education, Inc.



4.24

4.25

4.26

(b) For E, =0.499, 0.500, 0.501, the values of y/c, at x, =4 are 0.684869,
0.000335463, and —0.68198.

(a) With the harmonic-oscillator approximation for the molecular vibration, Eq. (4.61)
gives the molecular vibration frequency as v =8.65x10" s™'. From (4.59), k = 47%v? Y7,
and y = mym,/(m, + m,). From Table A.3 in the Appendix,

~1.008(34.97) g 1
M= 1.008+34.97) 6.022x 107

So k = 4x*v? i1 = 4n*(8.65 x10" s)2(1.627 x 10" kg) = 481 N/m.
(b) 1hv=0.56.626 x 107" I 5)(8.65 x 10" s7')=2.87 x 10" I.

=1.627x10%* ¢

(c) From the last equation in (4.59), the force constant k£ of a molecule is found from the
U(R) function. The electronic energy function U is found by repeatedly solving the
electronic Schrédinger equation at fixed nuclear locations. The nuclear masses do not
occur in the electronic Schrédinger equation, so the function U is independent of the
nuclear masses and is the same for H*’Cl as for 'H*’Cl. Hence £ is the same for these

1/2
)

two molecules. From the first equation in (4.59), v, /v, = (14/1,)" ', where 2 and 1 refer

to “H*Cl and '"H*Cl, respectively. From Table A.3,

_2.014(34.97) g 1 _3.162x10 ¢
(2.014+34.97) 6.022x10%

So vy= (1, /11,)" v, = (1.627/3.162)"*(8.65 10" ) = 6.20 x10" s,

H

(@) Putting v, =1 and Vv, =2 in the result of Prob. 4.27b, we have

2885.98 cm™' =V, —27,x, and 5667.98 cm™' =27, — 6V x,. Subtracting twice the first

"= 20 x, and V,x, =51.99 cm™". The

equation from the second, we get —103.98 cm™
first equation then gives v, = 2885.98 cm™ +2(51.99 cm™') = 2989.96 cm™'. Also,
v, =v,c= (2989.96 cm ')(2.99792 x10'" cm/s) = 8.96366 x 10" s and v,x, = V,x,c =

(51.99 cm™")(2.99792 x10" cm/s) = 1.559 x 10" 57"
(b) With v, =3, the result of Prob. 4.27b becomes vy, =3v, —12v,x, =

3(2989.96 cm ™) — 12(51.99 cm ') = 8346.00 cm ™.

(a) Using the harmonic-oscillator approximation, the energy difference between these
two vibrational levels is Av = hve = (6.626 x 107* T's)(1359 cm ')(2.998 x 10'° cm/s) =
2.70 x 10*° J. The Boltzmann distribution law (4.63) for these nondegenerate levels
gives N;/N, = exp[(-2.70x1072 J)/(1.381x107> J/K)(298 K)] = 0.0014 at 25°C and

N,/N,y = exp[(=2.70x1072° 1)/(1.381x 107 J/K)(473 K)] = 0.016 at 200°C.
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4.27

4.28

4.29

4.30

(b) hv =hve = (6.626 x 10°* T $)(381 cm 1)(2.998 x 10" cm/s) = 7.57 x 102" J.
N,/N, = exp[(=7.57x1072" 1)/(1.381x107% J/K)(298 K)] = 0.16 at 25°C and
N,/N, = exp[(~7.57 107" 1)/(1.381x107> J/K)(473 K)] = 0.31 at 200°C.

(@)

Vi = (By = BV =W (v + D, = (v + 2 v, = 4+ v, = (v + D hvx, | =
(V) —V))V, +V,x,[(Vi =V3)+(V; =V,)] (Eq. 1). Use of the selection rule v, —v, =1
IVES Vijgp =V, + VX Vi — (v, + 1) =1]=v, = 2v,x, (v, +1).

(b) Putting v, =0 in Eq. 1 of part (a), we get Vi = VoV, —V,X, (V3 +V,).

The Taylor series (4.85) of Prob. 4.1 with x =R, f(x)=U(R), and a = R, gives
UR)=U(R,)/0'+U'(R,)YR—-R,)/ 11+ U"(R,)R—-R,)*/2!+U"(R)R—R,) /31 +---.
Since R, occurs at the minimum in the U(R) curve, we have U'(R,) = 0. From (4.59),

U"(R,) = k. The zero of potential energy can be chosen wherever we please, so we can
take U(R,) =0, as in Fig. 4.6. Neglecting the (R — Re)3 term and higher terms, we thus
have U(R) = 1 k(R - R)* = %kxz, where x=R-R,.

(@) Putting R =0 and then R = R, in the Morse function, we get U() = D, and
U(R,)=0. So U(0)-U(R,)=D,.

(b) From (4.59), k, =U"(R,). For the Morse function,

U'=2D,[1-e R e "R = gD [e7FR) — o72#(RRI] and

U" =2aD,[-ae “® %) 4 242 R®R) Then k, =U"(R,) = 2aD,(~a + 2a) = 2a*D,, so
a=(k,/2D,)"*.

We begin by finding combinations of m, [, and % that have dimensions of energy and of
length. The reduced energy and x coordinate are E, = £/4 and x, = x/B.

Let A =m“I°k°. Using (4.71) and (4.70), we have

[A]= ML2T 2 = [ m®*h¢ ] = ML (MI2T™)¢ = M@ L22T¢ so

a+c=1, b+2c=2 —c=-2.Hence c=2, a=-1, b=-2 and E, = E/ (h*/ml?).
Let B=m“I°s’ . We have [B]=L = ML*(ML*T") =ML 1777 50
d+f=0,e+2f =1 —f=0.Hence, f=0, d=0, e=1, and x, = x/I, as is obvious
without doing the detailed analysis. From (4.78) and (4.79), v, = 1,//Bl/ 2= wl” % and

w" =y'B>? =[%y" The Schrédinger equation —(h*/2m)y" = Ey becomes
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431

—(W*12m)~*y" = (W* ImI*)E,1""*y. or w" = 2E,y .. To put this equation in the form
of Eq. (4.66) and the first equation in (4.82), we define G, = -2F, to give v/, = G,y,.
The formula in cell B7 and the cells below it in Fig. 4.9 becomes =-2*$B$3. There is no

penetration into the classically forbidden region, so we omit steps (c) and (d) at the end of
Sec. 4.4. The variable x, = x/I runs from 0 to 1. We take the interval s, as 0.01. We

enter 0.0001 in C8. The y, formulas in column C are the same as in Fig. 4.9. The Solver
is set to make C107 equal to zero by varying B3. The lowest three E, = 47°E/ (h* Iml*)
eigenvalues are found to be 4.9348021805, 19.7392075201, and 44.41320519866. (For

maximum accuracy, use the Options button in the Solver to reduce the Precision to
107'.) These E, values correspond to £ values of h?/ml? times 0.12499999949,
0.4999999675, and 1.124999630, as compared with the true values of h?/ml? times

n*/8 = 0.125, 0.500, and 1.125.

(2) As in Prob. 4.30, we take combinations of m, /, and 7% that have dimensions of
energy and of length; the reduced energy and x coordinate are E, = E/4 = E/ (h2 /ml 2)
and x, = x/B = x/I. The Schrédinger equation is —(h*/2m)y" + K(h* /ml*)y = Ey
where K = 20 in regions I and III of Fig. 2.5, and K = 0 in region II. From (4.78) and
(4.79), ., =wB"* = wi"? and y" = g//;'B_S/ 2= 2w" . The Schrodinger equation
becomes —(i%/2m)l >y " + K(W* /mI*) ™y, = (h* /mI*)E,1""?y. or

v, =(2K - 2E )y,. The bound-state reduced energies are less than 20, so the maximum
reduced energy we are interested in is 20. For reduced energies less than 20, the
classically forbidden regions are regions I and III in Fig. 2.5. Reasonable starting and

ending points are 1.5 units into each of the classically forbidden regions, so we shall take
x, to run from —1.5 to 2.5. A reasonable interval is s, = 0.02 or 0.01. For greater

accuracy, we shall use 0.01. The K value for regions I and III is entered into cell B2 of
Fig. 4.9. In column B, x, values in regions I (from —1.5 to 0) and III (from 1 to 2.5)
contain the formula 2*$B$2-2*$B$3 and x, values in region II (from 0 to 1) contain the
formula -2*$B$3. The y, formulas in column C are the same as in Fig. 4.9. The Solver
is set to make C407 equal to zero by varying B3. The Options button in the Solver is used
to set the Precision at 10~%. The bound-state E = Az*E/ (h* Iml*) eigenvalues are found
to be 2.772515720011 and 10.6051190761. (A value of 20.213299 is also obtained, but

the graph shows that the solution for this energy does not go to zero asymptotically in the
forbidden region.)

(b) The spreadsheet of part (a) is modified by changing cell B2 from 20 to 50. The
Solver gives the E, values 3.3568218287, 13.256836483275, 29.003101429782, and

47.66519784181.
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4.32

4.33

(c) Substitution of ¥, = 204 /ml* in (2.34) for b gives b = 6.3245553203 and
b/ =2.0132, so there are three bound states. The Solver shows the roots of Eq. (2.35) to
be &£=0.1407215, 0.5375806, 0.9995981. From (2.34), E, = ¢V}, =20¢ =

2.814429, 10.75161, 19.99196. The eigenvalues found in (a) are rather inaccurate,
indicating that we need to go further into the classically forbidden regions and decrease
the interval. For V, = 50h° /ml? , one finds b= 10;

£ =0.06827142, 0.26951445, 0.58904615, 0.9628693;

E,. =506 =3.413571, 13.47572, 29.452308, 48.143464.

The eigenvalues in (b) are rather inaccurate.

We begin by finding combinations of m, ¢, and % that have dimensions of energy and of
length. ¢ has dimensions of energy divided by length?, so [¢] = ML’T /L' =MT L.
The reduced energy and x coordinate are E, = E/A4 and x, = x/B.

Let 4 =m"nc? . Using (4.71) and (4.70), we have

[A] = ML2T2 = [m“Ac? ] = MOMIAT ) (MT2L2)¢ = Mavb+d2b-2dp=b-2d o,
a+b+d=1, 2b-2d =2, —b—2d =-2. Adding twice the third equation to the second,
we get —6d =—2 and d =1 . Then b=4% and a=-2.80 E, = E/A=E/m™"1**c"".
Let B = m°h/ ¢® . We have

[B]=L=M*MLT )/ (MT2L?)8 = M/ +812/28T77/728 o

e+ f+g=0,2f-2g=1 — f—-2g=0. Subtracting the third equation from the
second, we get f =+ .Then g=—¢ and e=—%.So x, =x/B= x/m n3¢7Ve  The
Schrédinger equation is —(A?/2m)y" + ex*y = Ey . From (4.78) and (4.79), v, = wB"?
and y" = ;y;’B_l/ 2B = B2 B2 3%’ . The Schrédinger equation becomes
—(h2/2m)B_1/2m1/3h_2/3c1/31//;’ +cx;‘m_2/3h4/3c_2/33_”2% _ m—2/3h4/3c1/3ErB—1/2% and

w'=Qx)-2E)w, =G

7

w,,where G, =2x! —2E, . Let us find eigenvalues with

E, <10. Setting this maximum E, equal to ¥,, we have 10 = x? and the classically
allowed region is bounded by x, = £1.78 . We shall start well into the classically
forbidden region at x, = -3.5 and go to x, = +3.5 in steps of 0.05. Cell B7 of Fig. 4.9

contains the formula 2*A774-2*$B$3 and this is copied to other column B cells. With
0.001 in cell C8, a suitable Precision (set by clicking the Solver Options button) is 0.1.
The Solver gives the lowest three eigenvalues as

E, =E/m ™ n*3c"3 = 0.667986133, 2.39364258, 4.69678795.

Proceeding similarly as in Prob. 4.32, we have [a] = ML*T 2/ 1® = MT 2L °.
E =E/A and x, = x/B. Let A=m"ha® . Then [A] = ML*T > =[m’h‘a’ ] =
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4.34

Mb(ML2T—1)c(MT—2L—6)d — Mb+c+szc_6dT_c_2d, S0
b+c+d=1,20-6d=2, —c-2d=-2. d=1%, c=% b=-%

E =E/A=E/m*"1®4d". Let B=mh’a®. We have
[B]=L=M‘ML*T ™)/ (MT 2L %)% = M/ +e12/76877/728 o

e+ f+g=0,2f-6g=1-f-2¢=0. g=—%, f=1 e=-71F.

V0547110 - The Schradinger equation is —(A/2m)y" + ax*y = Ey .

X, =x/B=x/m
From (4.78) and (4.79), v, = wB"and y" = W;’B_I/ZB_2 = B_l/zml/sh_Z/Sal/sy/;'. The
Schrédinger equation becomes

(12 12m)B 2 m 50 By + adm R B 2y = m S50 VSE B2y and
w!=2x®—2E )y, =Gy, where G, =2x* —2E. . Let us find eigenvalues with

E, <10. Setting this maximum E, equal to ¥,, we have 10 = x* and the classically
allowed region is bounded by x, = £1.33. We shall start well into the classically
forbidden region at x, = -3 and go to x, = +3 in steps of 0.02. Cell B7 of Fig. 4.9

contains the formula 2*A7/8-2*$B$3 and this is copied to other column B cells. With

0.001 in cell C8, a suitable Precision (set by clicking the Solver Options button) is 0.1.

The Solver gives the lowest three eigenvalues as E, = E/4 = E/ m 81 =

0.70404876, 2.731532, 5.884176.

Proceeding similarly as in Prob. 4.32, we have [b] = ML*T2/L =MT L.

E . =E/A and x. = x/B. Let A=m"hb? . Then [4] = ML*T > = [ m“h‘b? | =

MY (ML*T ¢ (MT2L)? = Mererd2erd=e2d g6 g+ c+d =1, 2c+d =2,
—c-2d=-2.d=2,c=2 a=-1.80 E, =E/A=E/m "n*’b*”. Let B=mn'b*.
We have [B] =L = M(ML*T™")/ (MT2L)¢ = M/ *812/+8T77/728 5o

e+ f+g=0,2f+g=1, —-f-2¢g=0and g=-1, =32, e=-1.

“B3p283p7Y3  The Schrédinger equation is —(h2/2m)y" + bxy = Ey .

X, =x/B=x/m
From (4.78) and (4.79), v, = z//Bl/2 and y" = W;’B_I/ZB_2 = B_1/2m2/3h_4/3b2/3y/;'. The
Schrédinger equation becomes

—(h2/2m)B_1/2m2/3h_4/3b2/31//;' + bx,m_1/3h2/3b_l/3B_l/2l//r _ m_1/3h2/3b2/3ErB_1/2y/r and

W}Y = (2xr - 2Er)lr//r =G

r

v, ,where G, =2x, —2E, . Let us find eigenvalues with
E, <8. Setting this maximum E, equal to V,, we have 8 = x, and the classically
allowed region is 0 < x, < 8. We shall go from x, =0 to 10 in steps of 0.05. Cell B7 of

Fig. 4.9 contains the formula 2*A7-2*$B$3 and this is copied to other column B cells.
The Solver gives the lowest four eigenvalues as 1.85575706, 3.24460719, 4.38167006,
5.38661153.
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4.35

(b)

4.36

(@) Let E, = E/A. ahas dimensions of length, and justas 4 = 7*/ml* in Prob. 4.30, we

have 4 =h*/ma” here. Hence, V, =V/A4 =-31.5/(e™ +e)?, where x, = x/a.

(c) For E, =-0.1, the boundaries of the classically allowed region are where

V. =E,. =-0.1. The table used to make the graph in (b) shows that V. =—-0.1 at

x, ~12.9. We shall go from x, =—7 to 7 in steps of 0.05. (Use of too small a range for x
can give erroneous results. For example going from —4 to 4 gives only 3 states instead of

4. Also, the value of the highest energy level found varies significantly with the size of
the range.) Setting E, =—0.1, we get a function with 4 nodes interior to the boundary

points, indicating that there are 4 states below £, =—0.1. These are found to be
E, = E/(h*Ima®) = —6.125000942, —3.1250035, —1.125005, and —0.1226. For the lowest

state the Solver might say that it could not find a solution, but the appearance of the wave
function shows that the Solver has found a good solution; you could improve it by
varying by hand the last digit of the Solver’s value. If we go from —8 to 8 in steps of 0.05,
the highest energy level is improved to —0.1241.

@ V. =Vid= (ibz' a V2572 — by 4 ab2mV 2 ) m V2BV 2 =
1/(4a)— B2 m" 27 + abmnx* = 1/(4a)— xr2 + axf, where we used the expression for
c given in the statement of this problem, (4.73) with & replaced by b, and x = x,B =
VA VAR2

4-13
Copyright © 2014 Pearson Education, Inc.



4.37

(b)

(c) The graph gives x, =+4.9 at £, =V, =10, and these are the boundary points of the
classically allowed region. We shall go from x, = —6.5 to 6.5 in steps of 0.05. We

modify the spreadsheet of Fig. 4.9 by changing the formulas in column B to correspond
to 2V, —2E, with a =0.05. Putting E, =10 in the spreadsheet gives a function with 12
nodes, indicating that 12 states have energies below 10. One finds the following E,
values: 0.97336479758, 0.97339493833903, 2.7958839769, 2.79920822, 4.315510072,
4.4214678772594, 5.3827766596746, 5.9746380026562, 6.8331392725971,
7.7437224213536, 8.7368315651332, 9.7948731480794, where the number of interior
nodes goes from 0 to 11.

(a) The potential-energy function is
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4.38

As in the particle in a box (Prob. 4.30) E, = E/(h*/ml?), x, =x/l. x,. goes from —0.5 to
0.5. We shall take s, = 0.01. A cell is designated to contain the value of ¥} .. The
column B cells contain the formula for 2V, —2FE,, where V, is 0 for —0.5 < x, <-0.25

and for 0.25<x, <0.5; and is V. for —0.25 < x, <0.25. One finds E, = E/(R* Iml*) =

5.7400863, 20.216046, 44.798915, 79.459117. The wave functions closely resemble

those of a particle in a box (pib). This is because the bound-state energies are all
substantially greater than V},, so V|, is only a small perturbation on the pib potential

energy.

(b) With ,, changed to 100, one finds E, = E/(i*/ml*) = 44.4763188, 44.7856494,
113.73536239, 142.13947708.

(c) With ¥, =1000, we get E, = 63.869414269, 63.869414294, 254.025267141,

254.025267989. The first two states have wave functions that look like particle-in-box

n = 0 functions in the left and right quarters of the well with y being small in the central
region, and the next two wave functions resemble n = 1 functions in these two quarters.
The energies of these states are well below V. In the limit V}; — oo, we would have two

boxes with infinitely high walls.

(@) 0.4999996, 1.4999973, 2.4999903, 3.4999765, 4.4999621, 5.5000081; 11.7121. The
range —5 to 5 was chosen as appropriate for reduced energies less than 5. For E, =11.5,

the classically allowed region is found from 0.5x* =11.5 and x, = +4.8. At x. = 5, we

are not far enough into the classically forbidden region to approximate y as zero. If we
redo things with the range taken from —6.5 to 6.5 with 5, = 0.1, we get 11.49921.

(b) 0.499747, 1.498209, 2.493505, 3.483327, 4.465124, 5.436066. The larger s, value
reduces the accuracy.
(c) 0.500391, 1.506079, 2.541116, 3.664184, 4.954083.
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4.39

4.40

441

4.42

4.43

(a) The usual mathematical convention is that —x* + x> = 0. Hence one would expect 0
as the result.

(b) Excel gives 50. Certain other spreadsheets give 0.

(b) x2 can be misinterpreted as a cell reference, so x2 is not allowed as the name of a
parameter.

Putn=11n (4.67). Since y,, =0, (4.67) shows that y, is proportional to y,. Withn =2,
(4.67) shows that y; contains only terms linear in y, and y,, and since y, is
proportional to y,, v is proportional to y,. With n =2, (4.67) shows that v, contains
only terms linear in 3 and y, and since both of these are proportional to v, y, is

proportional to ;. And so on.

For the v =0 state with £, = 0.5, the boundaries of the classically allowed region are
found from 0.5 = O.5xr2 and thus are x, = £1. The probability of being in the classically
forbidden region is 2 :é ly, 2 dx, . We square the normalized y, column E values to get
|y, > values in column F. We approximate this probability by 22 |y, > (0.1), where

the sum uses the column F values from —5 to —1. Since the value at —1 is at the boundary
of the allowed and forbidden regions, we shall include one-half the |y, > value at—1 in

the sum. We get 0.16 as the probability of being in the classically forbidden region. For
the £, = 1.5 state, the boundaries of the classically allowed region satisfy 1.5 = 0.5xr2 and
x, = *=1.73. Taking twice the sum from —5 to —1.7 for this state, we get 0.12 as the

probability of being in the classically forbidden region. This is smaller than 0.16, in
accord with the correspondence principle.

(a) With this notation, (4.85) becomes
FCo+9) = fr)+ /()5 + 5. 1(0)8% +4 17(0)s” + 9 £ 005" + 385 1 (3,57 4+
(b) Replacement of s by —s gives
Fo =)= ()= f'Gi)s +5 £ (o)™ =4 £ 00)s™ 455 10 ()s™ =55 70 () 41
Addition of these two equations and neglect of s® and higher powers gives
S, +9)+ [ (6, =) = 2f (1) + f"(x,)s” +35 /™ (x,)s"

Use of the notation of (4.65) with w replaced by f followed by the replacement of f by
gives
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Fon ==y +2f, + f15% + 5 Vg (4.87)

Vot = Vs + 20, +s” + 5y st (4.88)

(c) Replacement of /" in (4.87) with " and multiplication by s° gives

" 2 4 6
l//n+1S l//n IS +2V/ns +!//r(zw)s +75 12 Wr(zw)

Neglecting the s° term, we get

wiVst = st wns® =2

Use of " = Gy in this last equation gives

" 2

Wr(th) ! Gn+ll//n+1S2 + (;n—ll//n—ls2 - "Zc;nlr//ns2 (489)

Substitution of (4.89) and " = Gy into (4.88) gives

Vied =V + 20, + G,5” + 25| Goatr8” + G, 8” = 2G,,5” |
Solving this last equation for v, , we get Eq. (4.67).
4.44  Let B=m"k°n’. Then (4.70) and (4.71) give
[B]=[mkn" | =M (MT2)" (MLT"! )f = Mt TS o
d+e+ =0, 2f =1, —2e—f=0

1 —__1 __1
f_j’ e——I, d——I

B= m_1/4k_1/4h1/2

445 (a) From —(h*/2myy" +V (x)y = Ey , we get y"(a) =0 if w(a) =0 and V(a) is finite.
(b) Differentiation of the Schrddinger equation gives —(72/2m)y" + V' +V'y = Ey'.
Then if both y and w' are zero at a and V' is finite at a, we get " (a) = 0. Further

differentiation of the Schrodinger equation then shows all higher derivatives are zero at a.

446 (a) Visthe same as in Prob. 4.33, except that ¢ replaces a. From the Prob. 4.33 solution,
v = x/m VORS00 B g g YSESIS S g A = VYIS S =

xS I8P = cxf (m_mOhl/sc_mo)8 Im™ PR = xf. The classically allowed
region has E, >V,, thatis, 10 > x*, which gives |xr| <10"® =1.33 and

~133<x, <1.33.
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(b) With these values of x,, x and s,, one finds that y oscillates between

7,max ?
positive and negative values from one point to the next between —3 and —2.65 and
between 2.65 and 3.

(€) 1-G,.s2/12=1—(2V, —=2E,)s>/12. We have V, = x° = (¢2.65)® = 2432 ; this is much
greater than E,, which is less than 10, s0 1—G,s2/12 ~1-2V,s7/12 =
1-2(2430)(0.05)*/12 = ~0.01. So for |x,| > 2.65, the denominator in (4.67) is negative
and y oscillates in sign from point to point.

(d) The spurious oscillations are eliminated with both of these choices.
447 Replace the last statement goto labell; with

z=0;

for (i=1; i<=m; i=i+1) {
z=z+p[i[*p[i]*s;

}

n=1/sqrt(z);

for (i=1; i <=m; i=i+1) {

p[il=n*plil;

cout << "xr= "<< x[i] << " psir=" << p[i] << endl;
}
goto labell;

Also add z and n to the list of double-precision variables in the sixth line of the program.

448 A C++ program is
include <iostream>
using namespace std;

int main() {
int m, nn, i;
double x, s, E, p,qQ,Y,0, h,ss, z,j, 1;
cout << " Enter initial xr ";
cin >> X;
cout << " Enterinterval sr ";
cin >> s;
cout << " Enter number of intervals m ";
cin >> m;
labell:
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4.49

cout << " Enter Er (enter 1e10 to quit) *;
cin >> E;
if (E > 1e9) {
cout << "quitting ";
return O;
}
nn=0; p=0; q=0.0001;
y = X+S;
g = X*X - 2*E;
h = y*y - 2*E;
Ss = s*s/12;
for (i=1; i <= m-1; i=i+1) {
Z=y+s;
j=z*z - 2*E;
r=(-p+2*q+10*h*g*ss+g*p*ss)/(1-j*ss);
if(r*q < 0)
nn = nn+1;
p I X=y; y=z
g=n; n=j;
}
cout <<"Er= "<<E <<" nodes = "<<nn<<" Psir(xm) =" << g <<endl
X =1Z-m*s;
goto labell;

}

(a) From Prob. 2.23, b =3.97. Use of the Solver to make the left side of (2.35) equal to

zero subject to the constraints that £ <1 and £ >107° gives & = 0.2677 and 0.9035.
Then E =£(15.0eV)= 4.02eV and 13.6 eV.

(b) When E, >V, , we have (¥, — E,)"* =i(E, —¥,,)"*. Also, use of (2.14) gives

.. " —e™ cosx+isinx—(cosx—isinx) 2isinx
tanh(ix) = ———— = =
e +e

Thus we enter four formulas into the spreadsheet, corresponding to whether E, is less or

=jtanx

X cosx+isinx+(cosx—isinx) 2cosx

greater than V), and whether p is 1 or —1. We use the constraints in the Solver either that
E. >V, or10° < E <V, . The values found in Prob. 4.37 can be used as initial values
for the Solver. For ¥}, =1, the Solver gives 5.7503448, 20.23604266, 44.808373,
79.45920976, where the first and third numbers are for p =—1. For V;,, =100, we get

E,, =45.80216565, 46.10722291, 113.9380765, 143.353994. For ¥, =1000, we get

66.399924233, 66.399924251, 263.9170623, 263.9170630. To get accurate values when
two states lie very close together, use Options to change the Solver precision to a much
smaller value than the default value. (Although E, =V, satisfies the equation, it is not a

valid energy level.)
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4.50

451

4.52

(a) Given: Af, =k, f;. Prove: A(cf;) = k.(cf,). We have A(cf;) = cAf; = ck, f; = k.(cf)),
where we assumed that 4 is linear, as is true for quantum-mechanical operators
corresponding to physical properties.

(b) The operator () 'H ho » Where H ho 1 the harmonic-oscillator Hamiltonian operator
(4.30), has eigenvalues (4.45) divided by Av and has the required eigenvalues.

(c) If we add a constant a to a linear operator, we add « to each of its eigenvalues. (See
Prob. 4.52.) Hence the operator () 'H, ho +% has the desired eigenvalues.

(&) The wave function depends on one coordinate and is for a one-particle,
one-dimensional system. The time-independent Schrodinger equation is

—(H* 12m)d*(Ne™ )/ dx* + VNe ™™ = ENe ™", so

—(h?2m)(—12ax e 1160 x5e ™ )+ Ve ™ = e , and

V(x) = E +(h*/12m)(-12ax* +16a*x°) . If we choose ¥ (0) =0, then we get 0=F and
V(x) = (h*/m)(8a*x® — 6ax?).

(b) To aid in sketching ¥, we find its maxima and minima. We have

V' =(h*/m)(48a*x’ —12ax) =0 and x = 0 and x = +(4a)""'*. Clearly a is positive
(otherwise y would not be quadratically integrable). Evaluating V", we find that it is
negative at x = 0 and positive at x = i(4a)71/ 4. Hence, V is a local maximum at x = 0
and a local minimum at x = i(4a)_1/ 4 For very large x, the x> term in V is negligible
compared with the x® term and V =~ (hz/ m)8azx6 . Thus V' is positive for very large x and

goes to oo as x — too. Also, V'is an even function and is zero at x = 0. Combining this
information, we have

V

/X

(c) Because y has no nodes, it is the ground state. See the paragraph after Eq. (4.57).

Given: I:[l// = Ey. Prove: (I:I +C)y =(E+C)y. We have (1:1 +C)y = I:Il// +Cy =
Ey+Cy =(E+C)y.
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453 (a) F.
(b) T.
(c) T, since the integrand is an odd function.
(d) T. This follows from the one-particle, one-dimensional Schrédinger equation.
(e) F.
(f) T, since w is an odd function and, as noted near the end of Sec. 4.2, v does not

oscillate in the classically forbidden region).

(9) T.
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5.1

5.2

5.3

5.4

5.5

Chapter 5

Angular Momentum

(@ No; (b) yes; (c) yes; (d) yes; (e) yes.

[4, Blf = (AB—- BA) f = ABf — BAf = —(BAf — ABf) =B, Alf.

[A, A" =(AA" - A"A) f = A" f - 4" F=0=0-f

[kA, B]f = (kAB — BkA) f = kABf — kBAf = k[ A4, B]f, since B is linear.

[4, B+Clf = AB+C)f —(B+C)Af = ABf — BAf + ACf — CAf =[4, Blf +[A4, CIf .
[4, BC1f = ABCf — BCAf. Also,

[4, BIC + B[4, C1f = (4B — BA)Cf + B(AC — CA) f = ABCf — BACf + BACf — BCAf
= ABCf — BCAf = [A4, BC]f.

The second identities in (5.3), (5.4), and (5.5) are proved similarly.

[%, pA1=[% p,p51= p.[%, pi1+[% p.1p7 = —in(0lox)(2h*0lox) + in(~h*0% [ox?) =
—3in(6%/x?) where (5.6) and (5.7) were used.

From (5.11), (Ax)* =(x*)—(x)*. From Prob. 4.9, (V') = (:kx*) =1 hv s0
(x*y=3nvk™ =1 hvi4x*v?m = hi8x°vm . Figure 4.4a shows (x) = 0. Equation (5.11)
then gives Ax = (h/8zvm)"?. From Prob. 4.9, (T) = ((2m) ™" pZ) =1 hv and

<p§> = hvm/2 . Essentially the same reasoning that gave Eq. (3.92) gives (p,) =0. Then
Ap, = (hvmlI2)V? and AxAp, = (hI8z°vm)"? (hvmi2)V? = hildr = hi2.

From (3.88),
(x2) = (105/17) [ (x1% — 21" + x®) dx = (L05/17)(1° 17 - 114+ 1°1 9) = 5/%/12 and
(x) = (L05/17) [t (x31% — 21 + x" ) dx = (105/17)(116 — 21817 + 181 8) = 51/8 . Also,
P =—ihdwlox = —ih(105/1")*?(21x —3x?) and p2y = —h*(105/1" )2 (21 - 6x). So
(p,)y =—ih(105/1") [} (Ix? = x*)(2Ix — 3x?) dx = —in(105/17) [ (21%x* - 5Ix* +3x°) dx =
. 7\ 76 _ . .
—ih(105/1")I° (3 —1+%) =0, which also follows by the reasoning used to get Eq. (3.92).
Then (p2) = —r*(105/1") [} (Ix? — x*)(21 - 6x) dx = —h*(105/1") [§ (21°x? — 81x® + 6x*) dx
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= —(1057%/17)1°(2 -2+ 8) =14n°/1% . So (Ax)* = (x*) —(x)* =21* - &]* =5/ and

(Ap,)? =14n*/1°. We have AxAp, = (5/192)"21(14"*1i1) = (35/96)"* 1 = 0.6038% > L 1.

56 If AY =a¥, then A2Y = AAY = Aa¥ = ad¥ = a*¥ and
(A3 = [W* AW dr = ® [P*¥ dr = a® . Also
2 - 2 2 _ 9 . 2
(A) :(I\P*A‘Pdr) =(al¥*Wdr) =a” Then (5.11) gives (A4)* =0 and A4 =0.

57  Wehave (4—(A4)*W¥ = (4— (D)) (A— (D)) = A2¥ — 2(4) A + (A)>¥, where Egs.
(3.11), (3.12), (3.10), and (3.2) were used. Then Eq. (5.10) becomes
(AD)? = [(P*APY — 2 AHP*AY + PXA V) dr
= [W* APV dr —2(A) [P*AY dr + (A [P*P dr =
(A7) = 2(A)( Ay +(A)? -1=(4%) - (4)°.

5.8  The possible outcomes are HH, HT, TH, TT, where HT means the first coin showed
heads and the second showed tails. The w values are 2, 1, 1, 0. We have
(w)=(2+1+1+0)/4 =1. Alternatively, the probabilities for 2, 1, and 0 heads are

1,1, and 1, respectively, and (3.81) gives (w) =1(2)+1 (1) +1(0) =1. The w® values
are4,1,1,0and (w?) = (4+1+1+0)/4=1.5. We have

o2 =(w?)—(w?=15-1>=05and o, =272 = 0.707.
5.9 (@) Vector; (b) vector; (c) scalar; (d) scalar; (e) vector; (f) scalar.

510 |A|=[3%+(-2)2+6°"2 =7, |B|=[(-1) + 4% + 42]V2 =33Y2
A+B=3-Di+(-2+4)j+(6+4)k =2i+2j+10k,
A-B=B+Di+(-2-4)j+(6-4)k =4i—6j+2k, A-B=3(-1)+(-2)4+6(4) =13,

i K
AxB=|3 -2 6|=(-8-24)i-(12+6)j+(12-2)k = —32i —18j+10k..
1 4 4

A-B=|A||B|cosd =13 = 7(33)1’2 cos#; cosd =0.3232887; #=1.2416rad =71.14°.

5.11 Let the sides of the cube be 1 unit long and let the cube be placed with one corner at the
origin and three of its edges lying on the positive x, y, and z axes, respectively. Then the
center of the cube has (x, y, z) coordinates (3, %,3). If we imagine Hs in the middle
drawing of Fig. 12.5 to lie at the origin, then H; and H, have coordinates (0, 0, 0) and
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5.12

5.13

5.14

5.15

(1, 1, 0), respectively. If we draw a vector from C at the center of the cube to Hz and slide
this vector so its tail is at the origin, this vector’s tip has the coordinates
(0-1,0-1,0-3)=(-3,-1,-2). The vector from C to H, has coordinates
@-3%,1-%, 0-3) = (5.5, —%) When moved to bring its tail to the origin while
preserving its direction. Calling these two vectors A and B, we have

|Al=[-5)7+ (-9 +(-3)°12 =37/2, |B|=[(3)* + (3)° + (-9)*}* =3"12,

AB =D+ +(-D(2)=-1=|A||B|cosd =2cosd, so cosd = -+ and
6 = arccos(—0.3333333) =1.91063 rad = 109.47°. This is the tetrahedral bond angle.

(a) Letthe labels 1, 2, 3 distinguish the three Br atoms. Let the C atom lie at the origin,
the C—H bond lie on the positive z axis, and the Br; atom lie in the xz plane with a
positive x coordinate. Let « denote the HCBr angle and g denote the BrCBr angle. The
angle made by the C—Br; bond and the negative z axis is 7 — « . Let b denote the

C—Br; bond length. A little trigonometry shows that the x, y, z coordinates of Br; are
bsin(z —a), 0, —bcos(z — &), respectively, and the x, y, z coordinates of Br, are

—3bsin(z - a), %\/éb sin(z — a), —bcos(x — ) . (The x and y coordinates of Br; are
more easily found if the molecule is raised in the z direction to make the Br atoms lie in
the xy plane; the line from the origin to atom Br, will then make a 30° angle with the y
axis.) The dot product of the vectors that go from the origin at C to Br; and to Br; is
[Egs. (5.20) and (5.23)]: b° cos B = —1b°sin’(z — &) + 0+ b* cos* (7 — ) . Hence

cos B =—1sin®(z —a) +cos’ (r — ar) =1-1.5sin (7 — &) where cos” # +sin* =1 was
used. We have sin(z —«) =sin zcosa — cos zsina =sine, 5o cos 8 =1-1.5sin o .

(b) cos(£BrCBr) =1-1.5sin%(107.2°) = —0.36884 and ~BrCBr =111.6°.

V2f = (02f1ax? + 0% floy? + 82 f1022) =4 +0+2 =6,

2 2 2
(@) div[gradg(x,y,z):(i§+ji+k§j.(iﬁ_g+j8g+k8gj:8 g+8 g+8 g
X V4

oy ox "oy oz) a? ot o
(b) V-r = iiJrji+kE -(ix+jy+kz)=§+a—y+@=3.
ox "0y 0z ox 0oy Oz

(a) Let B denote the vector. We have |B|=[3% +(-2)* +0° +1°]'? =14"2

(b) Let a, B, 7, 6 be the direction angles. Then

cosa = Bee,/|Bl[ey] = (3,-2,0,1)+ (L 0,0,0) / (14)? (1) = 3/14" = 0.80178 and

a = 0.6405 rad = 36.7°. Next cos B = (3,- 2, 0,1)+(0,1,0, 0)/14Y? = —2/14Y? = _0.53452
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5.16

5.17

5.18

5.19

and £ =2.1347 rad =122.3°. Then cosy =0 and y = z/2 rad = 90°.

coss =1/14Y2 =0.26726 and & =1.300 rad = 74.5°.
(@ No; (b) yes; (c) yes; (d) yes; see Egs. (5.5) and (5.49).

[2f =—n? sin¢i+cot¢9cos¢i Sln¢i+COtHCOS¢ Zh
00 Y 00 o4
2 2

sin%%—sin¢cos¢csczé’g+sin¢cos¢cot6 of +cot6cosz¢z
izf_ 42 06 o¢p 000¢ 00
x) T 2 2

+Cot §cos ¢sin ¢ of —cotzecos¢sin¢i+cot29cosz¢%

0400 2 Y

2 . 42 0 .0 f o
L.f=-h cos¢ae cot<95|n¢a¢J(cos¢ae cotésing ¢j

o2 2
cos ¢ f+cos¢sm¢csc Haf cos¢sin¢cot9ﬂ+cotesin2¢1
2f=—n? 0 000¢ 00
y) T 2 )
—cotHsin¢cos¢£+cot2¢93in¢cos¢i+cotzesinz(;ﬁ%
0900 o0¢ Gl
f _ _hZ a f
o

N N . 2 2
(L2 + L5+ L2) f =1 (%+cot6%+ (cot26+1)%), where sin® 8+ cos® g =1

2 2 a2
was used. Use of cot?6 +1= 0932 0 +1= cos 9_+25|n 0 =— 12 completes the proof.
sin“é sin“é sin“é

[2,L1=LJL, L [ L, =Lahl_ +ihl L. =it(L L. +L.L)=

X1y

L+[L,. L

X!y

in(L L, + L L. +ihL,) =ih(2L,L, +ihL,), where (5.48) was used.

@ r=2+12+29)Y2 =1+4+0)Y2=5"2; cos@=z/r=0 and 6 =90°;
tang = y/x =2 and ¢ =arctan 2 =1.10715 rad = 63.435°.

(b) r=(@1+0+9)Y? =10"2; cosd = 3/10"? = 0.948683 and & = 0.32175 rad =18.435°;
tang =0 and ¢ =180° (the projection of r in the xy plane lies on the negative x axis).

() r=(9+1+4)Y%2 =14Y2; coso = —2/14Y? = —0.534522 and
0 =2.13474 rad =122.31°; tang =1/ 3 and ¢ =0.321751 rad =18.435°.

(d) r=@1+1+1)Y%2=3"2; cos§ =-1/3"? =—-0.57735 and O = 2.18628 rad =125.26°;
tang=(-1)/(-1) =1 and ¢ = 225°.
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5.20

5.21

5.22

5.23

5.24

5.25

5.26

(@) x=rsindcos¢ =sin(z/2)cosz =-1; y=rsindsing =sin(z/2)sinz =0;
z=rcos@ =cos(x/2)=0.

(b) x=2sin(z/4)cos0 =22 =1.414; y = 2sin(z/4)sin0=0; z = 2cos(x/4) =1.414.
(&) A sphere with center at the origin.

(b) A cone whose axis is the z axis.

(c) A half-plane perpendicular to the xy plane with edge being the z axis.

For points in the sphere, the angular coordinates go over their full ranges and » goes from
0toR. So

V=127 171y 2 sin0drdodg = [ v dr [} sin0d0]5" dp = 1 R¥(~cosO); (27) = 47R°.

From Fig. 5.6, cos@ = mh/[1(l + "% h = m/[1(1 +1)]Y? . For I = 2, the possible m values

are -2, -1, 0, 1, 2 corresponding to cos@ =-2/6Y2, —1/6Y2, 0, 1/6Y2, 2/6"2,
respectively. Hence the possibilities are € = 2.5261 rad =144.74°,
6 =1.9913 rad =114.09°, # =90°, € =1.1503 rad = 65.91°, # = 0.61548 rad = 35.26°.

(a) When the angle & between the z axis and the L vector is smallest, then L, has its
largest possible value, which is /4. We then have (Fig. 5.6)

cos@ =L, /|L|=In/[I( +1)]"*h = 1/[1(I +1)]"* and cos?0 =1/(1 +1).

(b) Asincreases, //(/+1) increases, coming closer and closer to 1, and & decreases
towards zero.

We have

d*s d ds d dG
— == -1- W2)1/2 = -a- W2)1/2

dog° dodo dw

de dG
1 2 1 2\l2 1 2\-1/2 2
—(—W)v-l-( —w) 5(1—W) (— W)_7W

G dG
- W
2 dw

d
=1-wH)—
( )dw

(a) From (5.146), S, = (3 2)Y2P)(cos6).

1"
8 dw?
Sp0 = ()"?[2(cos?0) - 11 =1 (10)'* (3cos’ 0 -1).

From (5.145), P (w) = (W' —2w?+1)=3n? -1, So

2
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5.27

5.28

(b) Equations (5.97) and (5.98) with j =0, m =0, /=2give S,, =(aq +a, cos® #) and
a, ==Lay, 50 S, = ap(1—3cos” §). We have

1=[518,0 7 sin@dd =] aqy [ [ (sin@—6cos?Gsin 6 +9cos* @sin ) d@. Let w=rcosd.
Then dw =—sin0d6 and 1=| o [, (~1+6w? —9w*)dw=|ao  (2—4+2) =& a, [,
s0 | aq | = (5/8)% = (10/16)"? =10"?/4 and S, =110Y%(1—3cos® 0).

(@) From (5.99), Y3 = S;,(27) 2. From (5.97), S3, = @ €080 + a5 cos>@ . From (5.98)
withj=1,m=0,/=3, we have a; =[(2-12)/6]a; = -3 @, SO S35 = al(COSH—%COSSG) :
Then 1=[7 S, sin@d6 =|a, | [ (sin cos® @ — L2 cos* Osin 6 + 23 cos® Asin 0) dO .
Let w=cosé@.Then dw=-sinfdf and 1=|q, 2 fl_l (—w? +%w4 —%WG)dw:

lay P (2-2+2) = &g and | a; | = (63/8)"% = (126)"%/4 = 3(14)?/4. Then

Ss,0 = [3(14)?14](cos @ — S cos® @) , which differs by a factor —1 from Table 5.1.

Finally, Y3 =[3(14)"?/4](cos @ - S cos*0)(2z) 2.

(b) From (5.99), Y3 = S5, (27) Y€ . From (5.97), Sy =sin8(a, + a, cos*6) . Eq.
(5.98) withj =0, m =1, /=3 gives a, =[(2-12)/2]a, = -5a, SO

Ss1 = ag(L—5¢c0s*@)sin §. Then

1=[518s; [ sin@d6 =| ay P[5 sin? O(L—10cos?@ + 25cos* H)sin 0 dé . Let w=cos b .
Then dw=—-sin@d@ and 1=|aq [ I;" (1— w?)(~1+10w? — 25w*) dw =

| ag P I, (250" —35w* +110% —T)dw = |ap [2 (-2 +14-2 +2) = Z|q, [* and

| ag |= (21/32)"% = (42/64)"% = (42)/8 . Then Sy, = (42)*87}(1-5cos?@)sin @ and
Y3 = (42)V287(1—5c0s%0)sin (2z) V2 e .

2y :_hz( 622 L0800 | 12 522
00- sin@ 00 sin“ @ 0¢

where b =1(5/7)"?, and we used Table 5.1 and Eq. 5.99. Then

(0106)(cos? 8) =[2cos (-sin §)] = —2sin & cos ;

(62106%)(cos? 8) = —2(8/66)[sin &(cos 8)] = —2[—sin H(sin &) + cos B(cos §)] =

—2[c0s?8 + cos?0 —1] = 2 — 4cos? 6.

]b(Scosz 0-1),

2Y0 = —hzb(G _12¢0s20+ 522 (L6sinocos ) + oj — _h%b(6—-18c0s2 6) =

sin@
67°h(3cos? O —1) = 2(3)n?Y,.
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5.29

5.30

531

5.32

5.33

5.34

5.35

LY" = LL (mh)Y," = m*n®y,".

1212 72
From (5.43), Ly + L, = L" - L7,

(L2 +L2)Y" = (2 - LL)Y," =10 + DY, = m*h°Y," =[1(1 + ))i* — m*K*]Y;" .

SO

(&) For /=2, the possible eigenvalues of iz are —2h, —h, 0, f, 2k, and since only

eigenvalues can be found as the results of measurements, these are the possible outcomes
of a measurement of L..

(b) 12h% =1(I +1)Ah? so [ = 3. The possible outcomes are —3#, — 2h, —h, 0, h, 2h, 3h.

Since the three directions of space are equivlent to one another and it is arbitrary as to
whether we label a particular direction x, y, or z, the L, eigenvalues are the same as the

iz eigenvalues, So the I:y eigenvalues for / =1 are —#, 0, and %, and these are the

possible outcomes of the measurement.

Since the state function is an eigenfunction of Z? with eigenvalue 2(2+1)42 and of L,
with eigenvalue 17, measurement of L_ must give the result 7 = (6.626 x 104 Js)/2z =

1.055 x 107* J s and measurement of 2 must give 642 = 6(1.055 x 107 Js)? =
6.68 x 107°8 J2 &%,

BY(w) = (w? —=1)° =1, since the zeroth derivative of fis . B (w) _E_(W ~1) =w.

11 2 d° vz 1 d? 3,2 _1

Bl =2(1-w)? = w* -1) = 1-w’)"% P )———(W —2w?+) =3w" -1,
2 dw 8 dw?®

le(w):%a- )”de (w* = 2w? +1) = 3wl - w?)Y2.

1 d* 4 2 2
Pz(w)—§(1 w) ( — 2w +1) =3(1-w").

From (5.107), (5.65), (5.66), and (1.28): L_ =L, —iL, =

[(zsmgzﬁ cos¢)—+cot9(z)(cos¢—zsm¢)%}: (—e""’ja—%ﬂcotee‘wa—iﬁj.

_i4 O cos@d _,, O
Wy —

From (5.99) and Table 5.1, L Y} = | —e :
00 sing o¢p

)%(3/2@“%"”5 sing =
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5.36

5.37

1n(3/127)"%(~cos @ - cos 0) = —h(3/27)"* cos @, which Eq. (5.99) and Table 5.1 show is
proportional to Yl0 . Applying L again, we have

Al =2 L icotoe® 2 [-7(3/27)Y% cos 0] =
06 Y

—n?(3127)"2 (e sin @ + 0) = -1 (3/27)Y?e " sin @, which is proportional to ¥ .
000 0

06 sind o¢
—1n2(3127)Y% (~e %% cos O + ¢ 2% cos ) = 0.

A third application of Z_ gives h(—e_ j[—h2 (3/127) 2 sing] =

Use of (3.11) and (3.12) gives A, A= (2m) (p, + 2zivm%)(p, — 2zivmz) =

(2m) [ p? + 2zwivm(~p X + %p.) + 4x*vPm?x?] . But (—p,x +xp,.) =[X, p,] =ik

[Eqg. (5.6)], so A A = p212m —hav + 27°vPmR? = 7 H —%hv . Similarly,

A7A+ =(2m)” (px = 2zivmx)(p, + 2xivimx) =

m) P2 + 2zivm(p, X — 5p,) + Ar2vPm?5%] = p212m + hav + 2722v2mi% = H +1 Shy.
Then [4,, A1=A,A4 - A A, =H —lhv—(fl+lhv):—hv Next,

[H, A1=[H, 2m) Y2 (p, + 2zivm®)] = 2m) Y?[H, p,]1+ (2m)™Y?2zivm[H, Z]. Use of
Eqs. (5.8) and (5.9) gives [H, 4,1=(2m) Y2in(dV ldx) + (2m) Y2 2zivm(~inim)p, .
From (4.27), dVidx = 4 z%v2mx , 50 [H, 4,1 = hv(2m) ™Y2(p, + 2zivmx) = hv A, . Also,
[H, A1=@m) ™ Y?[H, p.1- (@m) Y2 2zivm[H, 3] = hv(2m) Y2 Qrivmi—p.)=—hvA_.
Operating on Hy = Ey with 21+ gives 21+f11// = E21+1//. But we showed
HA, —A.H=hvA,, 50 (HA, —hvA,)y = EA,y and H(A,y) = (E +hv)(4,y) . Hence
A Ly is an eigenfunction of H with eigenvalue E + hv . Operating on Hz// Ey with
_gives A_Hy/ = EA_;// .Butwe showed HA — A H =-hvA_,s
(I—AL:L +hvA )y =EAy and H(Ay) = (E — hv)(A_y). Hence ;LW is an eigenfunction
of H with eigenvalue £ —hv . Let Wmin D€ the minimum energy state. We showed that
A_y is an eigenfunction of A with eigenvalue £ — hv . But since Wmin Nas the lowest
possible eigenvalue of A , Izlft//min cannot be a valid wave function and so must be zero:
le-V/min = 0. Operating on this equation with 21+ and using the result 21+21_ -H —Shv
derived above, we have A, 4y, =0=(H — S )y i and Hy i = 1 vy i, SO the
lowest eigenvalue is %hv . Since we showed the eigenvalues to be spaced by Av, the
allowed eigenvalues are (n +%)hv, wheren=0,1, 2,... .

(@) True. (b) False. (c) True. (d) True. (e) True. (f) False.
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6.1

6.2

6.3

Chapter 6

The Hydrogen Atom

(@ T; (b) F.

(a) Visindependent of & and ¢, so this is a central-force problem and Eq. (6.16) shows
that /' =Y" (0, ¢).

(b) For »> b, Vis infinite and y must be zero. For » <b and / =0, Eq. (6.17) is
—1*(2m) ™ (R"+2R'Ir) = ER . Let g(r) = rR(r). Then R = gr* and the radial
differential equation becomes

1 2m) (g —2r %y + 2gr 2 - 2gr 2 + 2r?g") = Egr * and —(h?12m)g"(r) = Eg
s0 g"(r)+2mEn%g(r) = 0. This is the same as Eq. (2.10) with v, replaced by g and x
replaced by r, so Eq. (2.15) gives g = rR = Acos[i *(2mE)Y?r]+ Bsin[n *(2mE)Y?r] .
Since Y/" is a constant for / =0 and w is finite at » =0, R(r) must be finiteat » =0.
Hence at » =0, the equation for g becomes g=0=4-1+B-0. Thus 4=0 and

g =rR = Bsin[hi (2mE)Y?r]. Since y =0 for r > b, continuity of y requires that
w=0atr=>b.Thus R=0 at » =b. We have 0= Bsin[a (2mE)"?b]. B cannot be
zero since this would make y equal to zero. Hence h’l(ZmE)llzb = nrx , Where
n=12,3,.. .(n=0would make y zero and negative n values give essentially the same
wave functions as positive n values.) Solving for £, we get E = n?h?/8mb? . Substitution
of this £ expression in 7R = Bsin[a 2(2mE)?r] gives R(r) = (B/r)sin[r (2mE)Y?r] =
(B/r)sin(nzr/b). The [ =0 wave functions are found by multiplying this R(r) by YOO,
which is a constant.

(a) and (b) We have ¥ = 1k(x* + y* + z*) = 1 kr®, which is a function of r only. Thus

this is a central-force problem and Eq. (6.16) shows that = ()" (€, ¢) .

2 2
(c) Equation (6.17) with R = £ gives —g—( el f’j-i—l(l;—l)h felk?f = Ef.
m r m

(d) Problem 4.20 showed that y is the product of three one-dimensional harmonic-
oscillator wave functions. Because the three force constants are equal in Prob. 6.3, we
have v, =v, =v, and a, = a, = a,. Use of (4.53) gives the ground-state y as

w = (alx)¥h e 12 120212 _ (51 1)304 o=erI2 _ £(,9G(8, 4) , where G is
constant. With f = e @12 gnd | = 0, the left side of the differential equation in (c)
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6.4

2

h P _ 2 2 2

becomes _2_ —qe 12 +a2r2€ ar?l2 —Lare 12 +%k7”2€ arl2 _
m r

[-h*(2m) (=3 + &*r?) + 2 kr®] f
Using Eqgs. (4.31) and (4.23) for « and &, we have
1?2 (2m) Y (-3a + a?r?) +%kr2 = —n2(2m) H(~6avmlh + Ax>v?m? 2 Ih?) + 272 P mr?

= %hv . The ground-state energy is %hv (Prob. 4.20), so the equation in (c) is satisfied.

From (5.62), 6%f/0x? =

[Sinecos¢§+cosecos¢ & sing 0 J[smecosqﬁaf , Cosdcosp of  sing QJ
v

r 00 rsindog r 00 rsindog

=Sin29COSZ¢aZ{ _sin Hcoszﬁcos $of  sin @cosdcos’g o%f , sin 9co_s¢sin¢g
or r 060 r orof r’sing  0¢
_singcosgsing o°f +c0329c052¢@+cos¢95in gcos’ ¢ 0°f singcosfcos’p of
rsiné@ orog r or r ofor r? 00
cos 20cos? ¢ 0° f C0S 0¢0S ¢sin ¢(sin ) 2 cosd of cos@cosgsing o f
r? 007 r? o r’sing 0004
+sin2¢sin0g_sin¢sin0cos¢ o f , Singcos@sing of _singcosfcosg % f
rsind  or rsin@  ogor r?sing 06 r?singd 0400

S|n¢cos¢ o, sin’g °f
r?sin@ 8¢ r?sin0 o¢°

From (5.63), 6% f/10y% =
(sin@sin¢§+cosgsm¢i+ cos ¢ ij(smt%lwﬁ of , cosOsing of | cosg 1]
s

r 060 rsin@ o¢ or r 060 rsiné o¢
:Sinzesin2¢62];_sianoszesinzqﬁngsinecosesin2¢ *f _sinesin_¢cos¢z
or r 00 r orof r’sing  0¢
, sindsingcos¢ o f +coszesin2¢@+cosHsianin2¢ 0°f sin@cosdsin’g of
rsin@  orog r or r o00r 72 o0
cos 2@sin’¢ o* S oS @sin ¢ cos ¢(sin 6) cosH@Jrcosesinqﬁcos(zﬁ 0 f
o 86° r? o r’sing 0004
+coszqﬁsineg+ cosgsin@sing 8% f .\ cos¢cos€cos¢ o, cosgcosdsing o’ f
rsin@  or rsin@  d¢or ¥2sing 20 " r2sing  0¢o0

cos¢3|n¢ o, cos’p O°f
r?sin?@ 8¢ r?sin?0 o¢°
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6.5

6.6

6.7

6.8

6.9

From (5.64), &° f16z* = (cose 0 Smgij(coseg— sm@gj _

o r 00 or  r 00
o, 02f cos@sin@ of cos@sing °f sin*0df sindcosd &f
cos“ 60—+ o~ + = —
or r 060 r or 06 r or r 00 or

sindcosd of sin’0 8% f
t— ot
2 00 2 00
2 2 2 2 2 2
wotng ©L P EL P w0 o 200 1 4 _dif
ox® 0y° 0z° or® r°sin@ofd ror r°060° r°sin“0 o¢
identities such as sin?6 +cos?d =1, sin®¢+cos’¢ =1, 6%f/0ro0 =o6°f1000r were
used.

where

@ F. (b) T.

Equations (6.23) and (2.20) give
2 2 2 -34 2 2 2
E:E1+E2:h—2 moon | (6.626;010 2\137)29 mo m |
8a“\m m,) 8(1.00x107" m)-(10™“ kg)| 9.0 5.0

5.49x107 J(ﬁ+ . ) _5.49x107% J(S.Onf
5 9.0

9.0 5.0
Trial and error gives the quantum numbers (n;,n,) and energies of the six lowest states

as (1,1), (2,1), (1,2), (3,1), (2,2), (3,2) and 1.71 x 107 J,3.54 x 107 J,5.01 x 107%J,
6.60 x 107°J, 6.84 x 107° J,9.90 x 107° J.

+ ngJ = (1.10x107*° J)(0.556n7 + n3)

(@) True, since = mymy,l(my +my) = myl(1+ mylmy) < m,; similarly g <m.
(b) True.

@ T, (b) F; (c) T; (d) T; (e) T.

(a) The lowest absorption frequency corresponds to the J =0 to 1 transition. We have

Eqppor = Etower =12)1h°12p1d* =0 =hv s0 d = (h/47° uv)”?. The reduced mass is

= mym, | (my +m,) ={12(15.9949)/[27.9949(6.02214 x10%%)]} g = 1.13850 x 107%° kg.

34
Sod:( 6.62607 x10°* Js

1/2
2 T —— | =1.13089x 10°m =1.13089 A.
47%(1.13850 x 1072 kg)(115271x10° s7)

(b) The next two frequencies are for the J =1 to 2 and 2 to 3 transitions and as found in
Eqg. (6.54) and Fig. 6.4 are twice and three times the 0 to 1 frequency. So
Vo =2(115271 MHz) = 230542 MHz and v,_,; = 345813 MHz.
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6.10

6.11

6.12

6.13

(c) From part (a), v = hl4z*ud?. dis the bond length averaged over the zero-point
vibrations, which differ for *2C'°0 and *C*°0, so 4 will differ very slightly for these two
species. We shall neglect this difference. We have for **C*°0,
1 ={13.0034(15.9949)/[28.9983(6.02214 x10%*)]} g = 1.19101 x 10*® kg and
6.62607x107%* J s
V="" 26 10 2
47%(1.19101x10% kg)(1.13089x10 m)

(d) The Boltzmann distribution law (4.63) gives N;/N, = (g,/g,)e A5V The
degeneracy of each rotational level is 27+ 1,s0 g, =3 and g, =1. Also,

E,—Ey = hv, ,; =(6.62607 x107** Js)(115271x10° s™') = 7.63794 x 1072* J. Then
NyINy = 3(~763794x 1072% J)/[(1.38065 x 10723 J/K)(298.15 K)] _ 2 944
A = =2. .

=1.102 x 10" Hz

We have E, — E, = E, = J(J +1)li*/121 =6K%/2] and E; - E, = E, = 2h?/21 , 50
E, - Ey = 3(E, — Ey) = 3(7.63794 x 107 J) = 2.29138 x 107%* J. Hence
N,INy = 56(-2.29138x10*22 J)/[(1.38065x 10> J/K)(298.15 K)] _ 4.729

hvs o = Eg — Eg = 6(7)h%/21 —=5(6)1* /21 =12k*/21 and
hv, .3 = E3 — E, = 3(8)h? 21 — 2(3)h? 121 = 61:° /21 . We have vy /v, .5 =12/6 =2 and
vs s = 2(126.4 GHz) = 252.8 GHz.

Eg — E; =8(9)h/21 — 7(8)h?121 =1672121 = 2h*Ix° ud? = hv, s0 d = (2hlx*uv)Y2.
_ (34.96885)22.98977 g
= 92.08977 + 34.96885 6.022142 x 102 mol -

=2.303281x107% kg

a 1/2
- 2(6.626069x1073 1 5) 93654110 m

| 22(2.303281x107%° kg)(104189.7 x10° s71)

Let v; and v, be the lower and higher of the two frequencies, respectively. Let J' be the
rotational quantum number of the lower level of the v, transition. Then, since there are
no lines between these two lines, Eq. (6.54) gives v; =2(J'+1)B and v, =2(J'+1+1)B.
So v, —v; =2B =115.19 GHz and B =57.60 GHz.

(a) From (6.54) and the formula for the centrifugal-distortion energy correction, we get
AE; ;. =2(J +1)Bh—hD[(J +1)*(J +2)* = J*(J +1)?]

=2(J +1)Bh— hD[(J +)?(J2 +4J +4) — J2*(J +1)?]

=2(J +1)Bh — hD[(J +1)*(4J + 4)]

=2(J +1)Bh — 4hD(J +1)°
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6.14

6.15

6.16

So vy, =2B-4D and v, s =10B—4(4 +1)*D =10B —500D. Then

V45 —5Vy_,; =—480D =[576267.92 —5(115271.20)] MHz = —88.08 MHz and

D =0.183 MHz.

(b) From (6.54) and the formula for B, the 0 to 1 rotational absorption frequency is
Vo1 = 2B, =2[B, —a,(v+3)]. Forthe v=0 and v =1 levels, we then have

Vo1 (V=0)=2(B, -1a,) and vy_;(v=1) =2(B, -3¢«,). So

Vo (V =0) = vy 1 (v =1) = 2a, = (115271.20 ~114221.74) MHz and a, = 524.7 MHz.

(This answer is somewhat inaccurate because of additional anharmonicity correction
terms that are being neglected.)

Equation (6.50) gives
mymy_mytmy P mymap; +mgmpy £y e o

1= (mp{ +myp5)

my +my nym, mn,

(6.49) gives

2 2 2
My Py + mMymy pf +m +m my, (o, +

I:lumﬂ?l 2P T, Py + Mol P 202”71P1:ﬂ”71 2(p1+ py) - ud?.
mnt, mnt,

Lol ¢’ r? _

Fyray 4resgr? Gm,m,

(1.602x107%° C)?

47:(8.854x1072 C2/N-m?)(6.674x107"! m®/kg-52)(9.109x 10~ kg)(L.6726x10%" kg)
= 2.27 x 10%. This is so large that the gravitational force can be ignored.

(2) The H-atom energies depend on » only, so all the various / and m possibilities for
each n give different states that have the same energy. For each / value, there are 2/ + 1
allowed values of m, and / goes from 0 to » — 1. Hence the number of states for a given n

is Y (21+1).
(b) 27:_;(21 +1) = 27:_;21 - zgl We have
7:_321 = 22;:111 = 2[4 (n—1)n] = n® —n, where we used the sum in the text with

replaced by / and % replaced by n — 1. Also z;:;l =1(n) = n, since this sum has » terms

each equal to 1. Hence 27;;(21 +)=n’-n+n=n°.

(c) Let .S denote the desired sum. S is the sum of the first &£ positive integers, so

25 =[14+2+3+---+k]+[k+(k=2)+ (k—2)+---+1]. The sum of any two
corresponding terms of the two series in brackets is £ + 1, and there are & terms in each
series in brackets. Hence 2S5 = k(k +1) and S = %k(k +1).
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6.17

6.18

6.19

(a) From Eq. (6.108), the equation preceding (6.108), and Eq. (6.94), the H-atom
energies are E = —(2.17868x107*8 J)/n?. So

1
3

hv = Eqpper — Elower = —(2.17868x107° J) (6% - j =1.81557x107*

v = (1.81557 x107%° 3)/(6.62607 x107>* J ) = 2.74004 x10'* 571

A =clv =(2.997925x10° m/s)/(2.74004 x10"* s71) =1.09412x10° m =1094.12 nm

(b) He" is a hydrogenlike ion with Z = 2. From (6.94), E and AE are proportional to Z?2,
so v is proportional to Z? if the slight change in x is neglected. Hence

v =4(2.740x10" s71) =1.096 x 10" Hz and A = (1094.12 nm)/4 = 273.5 nm .

From Eq. (6.108), the equation preceding (6.108), and Eq. (6.94), the H-atom energies
are E =—(2.17868x107*8 J)/n?. So

1=<- ch _ (2.99792x10° m/s)(6.62607 x10~** J s)
Eypper = Elower (2.17868 x 10718 J)(nl_2 - n;z)
1 1 911764x10°m
2 ol A
l u

-8
For the first line, iz—iz _ 9117610 " m _ 0.138889. The value n, =1 when

nf n2  6564.7x107° m

combined with n, =2 or more gives values much larger than 0.139, so »; # 1. With
n, = 2, the value n, =3 gives 1/n? —1/n? =1/4—1/9 = 0.138889, so these are the
quantum numbers for the first line. For the remaining lines, we find 1/n? —1/n? =
0.18750, 0.21000, and 0.22222. With n, = 2, the n, values 4, 5, and 6 fit the data for
these three lines. With n, =2 and n, =7, 8 and oo, we get 1 =3971.2, 3890.2, and
3647.1 A,

A small fraction of hydrogen atoms in nature are the isotope deuterium, *H or D. From
(6.94), the energy is proportional to the reduced mass u, so the transition frequency is
proportional to x and 4 is inversely proportional to x. Thus

/I_DZ/J_H_ mym, m,+my =&me+md

, Where m, is the mass of a deuterium

A Hp m,tm, mmy, my m,+m,

nucleus. From Appendix Table A.1, m,/m, =1836.15. From Table A.3,

m(*H)  2.014102
m(*H)  1.0078250

m, +m, _ m; " m,
m,+m, m,(1+1836.15") 1837.15m,
= 0.9994557(m, /m,,) +0.0005443

=1.998464 =
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6.20

6.21

6.22

6.23

6.24

which gives m, /m, =1.999008. Hence 22 = ## — L1 998464 - 0.099728
Ay mp 1999008

Multiplication of the wavelengths in Prob. 6.18 by 0.999728 gives 656.29, 486.14,
434.05, and 410.18 nm.

For € =14 2Cr +---+(2Cr)’1j1 + (2Cr)" ™ (j +1)! +--- , the ratio of successive
powers of » for large j is
(2c)y’t i 2C  2C
G+ @c)y  j+1 j
The ratio of successive powers of r in (6.88) for large j is
b; ) 2

For the H atom (and for the particle in a rectangular well), there is a maximum value
Vinax Of the potential-energy function, and the energy levels above V., are continuous.

For the particle in a box and the harmonic oscillator, the potential-energy function goes to
infinity at each end of the allowed region of the x axis, and all the energy levels are
discrete.

Positronium is a hydrogenlike atom with reduced mass u =m,m,l(m, + m,)=m,/2,

which is about half the reduced mass (6.105) of the H atom. Since E in (6.94) is

proportional to u, the positronium ground-state energy is about half the energy in (6.108),
namely, —(13.6 eV)/2 =-6.8 eV .

We have, (r) = [|y Prdzr = (Z312a®) [5 15 s e 2112 sin 0 dr dO dp =
(Z312a®) 15 dply sin0dof; e 2213 ar = (2812a%)27))[3Y (2Z1a)*] = 3al2Z ,
where (3.88), (5.77), (5.78), (6.104), and (A.8) were used. Alternatively, (6.101) (6.103),
and (6.117) give () = [lwPrdz =3 r IR, (NP r2drle” o 16, H)Esin0d0dp =
(4231a%) [, rPe ??adr = (4231a%)[3Y (2Z/a)*] = 3al2Z .

We have, (r) = [|y [Brdr = (2°1327a%) 15" I3 [5 r2e #*rcos?0 v sin 0dr d0d g =
(251327a%) 127 d g [y cos20sin0dO[; e 215 dr = (2°1327a®)(27)(213)[5Y (Z1a)®] =
5a/Z , where (5.77), (5.78), (6.113), (A.8), and [ cos?@ sin & d6 = —(cos®d)/3 were used.
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6.25

6.26

6.27

6.28

6.29

6.30

2y =[lwPridr = (Z5/647m5)f§” fg OOO r2e?125in20 e e 1% sin O dr d0d ¢ =
(Z251647a%) 157 d gy sin®0da s 28 dr = (2°16474°)(27)(413)[6Y (Z1a) ] =
30a%/Z?, where Egs. (5.77), (5.78), (6.113), (A.8), and the integral-table result
[sin®0 d6 = —1cos6(sin®6 + 2) were used.

(ry=lwlrde =155 15 r IR, (R1%"(0, ) rsin6 drdodg =
[2F IR (DB 2 dr I 1o 16, )R sin0dOdp = 7+ |R,, ()2 dr , where (6.117) was
used.

From (6.100) and (6.99), R, = 1% #"24 (b, + byr) and

b, = (Z1a)[-1/1- 2)]b, = —(Z/2a)b, . Hence R,, = by(1— Zr/2a)e "> . Normalization
gives 1=|b, IBO A-Zrla+Z%4?14a%)e 2192 dr =

| by P [21al Z)® = (Z1a)3Yal Z)* + (Z°%14a®)4)(al 2)°1 = 2| by [* (alZ)®, where Eq. (A.8)
was used. Hence | by | = (Z/a)¥?27V2 and R, = (Z1a)*?27V2(1- ZrI2a)e #"? .

From (6.100) and (6.99), R,, = re 2! 2ap . Normalization gives

1=|by? [y r2e %1% dr = |by|* 4W(al Z)°, 50 | by |= (24)Y2(Z/a)®"? and

Ry, = (24)—1/2 (Z/a)5/2re—Zr/2a _

At the nucleus, =0 and the »' factor in (6.100) and (6.101) shows that v is zero at the
nucleus unless / =0 (s states).

From (6.110) we have

leter s p d f g h i kK | m n o q r t
/0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

If we ignore the interelectronic-repulsion term (and neglect the difference between the
reduced mass and the electron mass), the Hamiltonian operator (3.50) for internal motion
in the He-atom becomes —(#?/2m,)VZ — (h%12m,)V5 — Ze® | Ameyr; — Ze* | Ameyr, , Where
Zequals 2 and 7 and r, are the distances of electrons 1 and 2 from the nucleus. This H
is the sum of H’s (ILAI1 and ﬁz)for two noninteracting electrons. Hence the results of
Sec. 6.2 tell us that E = E; + E,, where Hyy, = Ey, and Hoy, = Eqwr,. We recognize
191 and ﬁz as hydrogenlike Hamiltonians with Z = 2. Since the hydrogenlike energies

(6.94) are proportional to Z?, Eqs. (6.94) and (6.108) give
E, =2%(-13.6 V) =-54.4 eV = E, . Hence E =-108.8 eV. From Eq. (6.25),
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6.31

6.32

6.33

6.34

6.35

6.36

v =y,(n, 6 ¢)w,(r,, 65, ¢,), Where y; and y, are hydrogenlike wave functions with

Z =2 . 0Of course, these results are very approximate, since the interelectronic repulsion
was ignored. The percent error in £ is 100%[-108.8 — (—79.0)]/(-79.0) = 38%.

The probability that the electron is between » and r + dr is proportional to the radial
distribution function, so we look for the maximum in R2r? = 4(Z%a®)r?e 2% | At the

maximum, the derivative is zero and 0 = (423/a®)[2re 24" — (2Zr?1a)e™?%"*], s0
r(1—Zrla) =0. The root » = 0 is a minimum in Fig. 6.9, and the maximum is at
r=alZ.

The probability density is |y, = (Z3/7a)e %" . The exponential function is a
maximum at » = 0, the nucleus.

(a) Similar to the example after Eq. (6.117), the probability is

f;oa REr? dr = (4/a3)fzoa e 2142 gr = (41a%)e? (—%rza —%mz —%as) o, =
4e7*(2+1+1) =0.2381.

(b) The classically forbidden region is where E <V . From (6.94) and (6.60), this
condition is —ue*12(475,)? h? < —e? 14 zeyr , which simplifies to 1/r < pe?/8zeyh? or
r > 8rmeyh®lue? = 2a , where a is defined by (6.63). The probability of finding » > 2a
was found in part (a) to be 0.2381.

From (6.104), v = ce "', where ¢ = 77Y227%¥2 . From (6.60),
Vi = —(el4zrsyr) .ce”"* = const.-y . From (6.6),

Ty = —(R2121)V2y = —(212,0)[0%10r% + (217)(010r)]ce™* =
—(R2124)(Ua® - 21ra)ce™™" = const.-y . Use of a = 4rs h?l pe® gives
Ty = (—e*8rsya + e*l4nsyr)ce ™. So

7

(f’ + 17);,/ - f‘l// + I}l/l = (—e2/87zgoa)ce_ la — (—62/87Z80a)§// .

(HY=[w*Hydr=E[y*ydr=E.Also (H)=(T +V)=(T)+(V). Hence
E=(T)+ ().

@) (V) =[w*(—e*l4neyr)y dr = —(e*ldnsy)nta® f:,o e 2y dr fg sinddo IS” dog =
—(e?14rmey)mta3(al2)?(2)(27) = —e* 1A neqa.

(b) (TY=E—-({)= —e? 18meya + 62/472'8061 = e2/87r80a . Then

(TY 1V = (e*I8rqa) | (—e*lAmeqa) = —1/2.
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(c) (T)= (meVZ/Z) = (me/Z)(VZ) = 62/872'8061 so (v3)V2 = (62/47Z'80mea)1/2 =
1/2

-19 2
(1.6022x107* C) =2.19x10° m/s

47(8.854x107* C? N™' m™2)(9.109x107*! kg)(0.529x107° m)
(vHY21e = (2.19x10°%) / (2.998 x10%) = 0.00730 = 1/137.

6.37 (a)
3d,, = (3d, —3d_,)/2"%i = (4/81)(30) V*(Zla)""*r?e #"3* 1 (15) sin® 9(e** — e 2¥)I(27)"?
We have % —¢™2% = cos 24 + isin 2¢ — (C0S 2¢ — isin 2¢) = 2isin 2¢ = 4isin ¢cos g,
since sin2x = 2sinxcosx. S0 3d,, contains the factor rsin@sing rsin & cos¢ = xy.
(b) As noted near the end of Sec. 6.6, , the real functions are formed by adding and
subtracting the complex functions having the same | m | values: 3d\g, = N(3d,,, £3d_,),
where N is a normalization constant. We have
1=|NP [[13d) * + (3dd))*3d_yy + (3d_, ) * 3+ 13d_, Fldz = | N F (1£0+0+1),
since the 3d AOs are orthonormal. So |N|= 27Y2 To ensure that
3d\eq = N(3d),; £3d_,) is real, we may need to include a factor of 1/i in N. From Eq.
(5.99), the ¢ function in 3d, +3d_, is
¢'?? + 7% = c0s2¢ +iSin 2¢ + €05 2¢ — i sin 2¢ = 2¢0s 2¢ , which is real and so does not
need the 1/i factor; also, Table 6.2 shows that this ¢ function occurs in Salxz_y2 . So

{m| ~|m|

3dxz_yz = 27Y2(3d, +3d_,) . Similarly the 34, +3d_, function contains the ¢ function

2cos ¢, which Table 6.2 shows is in the 34 function. So 34, =27Y?(3d,+3d_,) . The
gfunction in 3d, —3d_, is €'*’ —e 7% = c0s2¢ +isin 2¢ — (COS2¢ — i Sin 2¢) = 2isin 2¢ ;
3d, —3d_, needs the 1/i factor and Table 6.2 tells us that 34, = (27?/i)(3d, —3d_,) , as
in part (a). Similarly the 3d; —3d_, function contains 2isin¢, which Table 6.2 shows is
in the 3d,, function. So 3d,, = (27Y21i)(3d, —3d_,) . The 3d, function is independent of
¢and Table 6.2 gives 3d _, =3d,.

(c) From Table 6.2, Salxz_y2 contains the factor

% sin6cos 2¢ = r* sin®0(cos’p — sin’g) = (rsin @cos ) — (rsin Osin g)* = x> — 2.

6.38 Since 2p, isthe sameas 2p,, the 2p, function is an eigenfunction of iz with

eigenvalue zero. Since the x, y, and z directions of space are equivalent to one another in
the central field of the H atom (it is arbitrary whether we call a particular direction x, y, or
z), it follows by symmetry that the 2p, function is an eigenfunction of L. with

eigenvalue zero and the 2p, function is an eigenfunction of iy with eigenvalue zero.

6-10
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6.39

6.40

6.41

6.42

6.43

6.44

Since 4 is linear, zzl(clf +c,8) = Clz"if + czz?lg =qaf +c,bg = a[c f + (bla)c,g] . If and
only if a =5, do we have ,Zl(clf +c,8) = a(ef +c,g) and the linear combination is an
eigenfunction of A.

(a) Since 2p, is the same function as 2p,, it is an eigenfunction of H, I?, and L. .

(b) 2p, isan eigenfunction of H and of I? but not of iz, as is evident from
Eqg. (6.118) and Prob. 6.39.
(c) H,I? and L..

(a) The radial function is zero for particular values of ». The points where r has a
particular value lie on the surface of a sphere centered at the nucleus.

(b) The real ¢ functions contain the factor sin|m|¢ or cos|m|¢. The functions sin ¢
and cos¢ vanish for two values of ¢ in the range 0 < ¢ < 27 . These two value differ by

7, SO they correspond to the same nodal plane, and there is one node in the ¢ factor for
|m|=1. The functions sin|m | ¢ and cos|m | ¢ vary | m| times as rapidly as sin¢g and

cos ¢, so these functions contain | m | nodal planes.

(c) These nodal surfaces have a fixed value of 8 and so they are cones whose axis is the z
axis. An exception is a node with 8 = z/2 , which is the xy plane. [The problem in the

text should say there are /—|m | surfaces for which the @ factor vanishes. Note from
(5.97) that S(@) depends on | m | and not on m.]

(d) There are n—1[-1 radial nodes, /—|m| @ nodes, and | m | ¢ nodes, for a total of
n—1 nodes.

The integral [(2p,)*2p, dr contains the factor [ cos gsin pdg = Lsin®p[57=0. The
integral [(2p,)*2p. dr contains the factor |5 cos¢dg =sin¢ "= 0. The integral
I(Zpy)*ZpZ dr contains the factor Iéﬂsin $dp=—cosgli"=0.

We want 0.95 = [, |y P dr = Urza®)[g e 22 dr [ sin0do [3" dg , where b is the
orbital radius. Use of Eq. (A.7) gives
0.95 = (U za®)[e ¥ (~ar?12 - 2ra®14 - 24°18)] |} 2(27) = 1— e ?"'“[2(bla)* + 2(bla) +1]

. We have 0.05—¢2"(2w? + 2w+1) =0, where w = b/a. Use of the Solver gives
w=23.148 and b = 3.148a = 3.148(0.529 A) = 1.665 A.

The maximum value of |sin @] is 1. To find the maximum of re™*", we have
0=d(re ™) ldr =™ —kre ™ = e @1 —kr), which gives » =1/k . With |sin@|=1 and
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r =1k, Eq. (6.123) gives (2, Jmax = K¥277Y2e71 Hence (6.123) gives

W | W x| = kere™ |sin @] = 0.316 . Putting & =1/2a and e =2.71828, we have

0.2325 = (r/a)e™®>'* |sin 6] and |sin 8] = 0.2325¢"°7) /(+ [ a) (Eq. 1). We plot points
on the orbital by taking values of »/a and calculating | sin&| from Eq. 1. Then we find &,
the angle with the z axis. y and z values can be found from z =r»cosé@ and y =rsiné.

Some values are

rla 024 02655 028 030 036 045 0.6 0.8 1 1.5
sind 109 100 0.955 0.900 0.773 0.647 0.523 0.434 0.383 0.328

Olrad 1570 1270 1.121 0.884 0.704 0.550 0.448 0.393 0.334
v 0.265 0.267 0.270 0.278 0.291 0.314 0.347 0.383 0.492
z 0 0.083 0.130 0.228 0.343 0.511 0.721 0.924 1.417
rla 2.1 2.7 3.5 4.5 9.5 6 6.3 6.6 6.7312

sind 0316 0332 0.382 0490 0661 0.778 0.861 0.955 1.00
Olrad 0322 0339 0.392 0512 0.722 0.892 1038 1270 1.557
y 0.664 0.897 1.338 2206 3.637 4.700 5.426 6.304 6.730
z 1.992 2547 3.234 3922 4.126 3.767 3.202 1.955 0

By taking the four combinations (y, z), (y, —z), (-, z), (-y, —z) of points in the table,
we get the complete orbital cross-section, which looks like

s zla

yla

6.45 The probability density is proportional to sinz(nxfzx/a)sin2(ny7zy/a) . For the 11 state,

there are no interior nodes and the maximum in | |* is at the center of the box. For the
12 state, there is nodal line (the dashed line) at y = /2. The 21 state has a nodal line at
x=al2.The 22 state has nodal lines at x =a/2 and y = a/2. The rough sketches of the

12 and 21 states resemble p orbitals, and the 22 sketch resembles a 4 orbital.
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y
— \ Y,
(n.n,)=(11) (n.n,)=(21)
> ] OO

— Sle

(n.n,)=(12) (n.n,) =(22)

6.46 From (6.135), each different value of the quantum number m gives a different energy, so

6.47

the 2s and 2p, states have the same energy, and there are three energy levels, the
nondegenerate 2p; level, the nondegenerate 2p_; level, and a doubly degenerate level that
consists of the two states 2s and 2po.

(@) Let E.=E/A, r.=rlB, A= u°(e)’1°, B= (')’ h® . We have

A — MLZT—Z :[ ]a [e!]b[h]c — Ma(L3/2M1/2T—1)b(M L2T—1)C — Ma+b/2+CL3b/2+2(:T—b—c’ so
[4] H

2a+b+2c=2,3b+4c=4, -b—-c=-2.Wefindb=4,c=-2,a=1,50

A= ue'4/h2. AISO, [B] L= Md(L3/2M1/2T71)f(ML2Tfl)g — Md+f/2+gL3f/2+2gT7ffg ’
S0 2d+ f+2g=0,3f+4g=2, f+g=0.Weget f=-2,¢g=2,d=-1,50

B =h?lpe'.
(b) R*r?dr = F?dr is a probability and so is dimensionless. So F has dimensions of

L Y2, Hence, as in (4.78), F. = F/B™Y2. Eq. (4.79) with y replaced by F and x replaced
by r gives d>Fldr® = B>? d?F.ldr? = BY?B2 d%F.ldr? = h* 2 * B2 d*F.ldr? .
Equation (6.137) (with m replaced by u) becomes

—(R2 12 12 B Y2 G2 F 1 dr? + [ 10 17t 2 + 1L+ DA% 12 un® i 2e 42 1B V2F, =

lLl lll r r ILl r lll r r

e n?E BY2F or F" —[I(l+1)/r? - 2Ir,]F, = 2E,F,, which is (6.140).

rer?
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6.48

6.49

6.50

6.51

() V. =VIA=(—e?Ir)] pe'*n™* = —h?/ ue'*r = —1r., where (6.139) was used.

(@) Cell B7 contains the formula =-$D$3*($D$3+1)/A772-2/A7-2*$B$3, where D3
and B3 contain /and E,, respectively.

(b) If we extend the integration interval to ». =30, the Solver gives this energy as
—0.055416, which is considerably more accurate.

A and B are given by (4.73) and (4.74). The E, and r. equations are (4.75) with x
replaced by . As in (4.78) and Prob. 6.47b, F, = FIB™Y2 Eq. (4.79) with y replaced by
Fand x replaced by r gives d°Fldr? = B2 d*F.ldr? = BY*B™? d?F | dr? =

B Y2221 42 F Jdr? . Eq. (6.137) becomes —(7%/2m)B V2 mY? kM 2n 7t dF 1dr? +
[k Y2k 02 + 210+ DR m ™ V22 1B F, = m™2 kY hE, B7VPF, or

E" =[r? +1(1+1)/r? —2E,]F. = G.F, . Suppose we want eigenvalues up to £, =10. The
classically forbidden region begins at the 7. value that satisfies V. = %rf =10, whichis
r.=4.47. We shall goto . =6, starting at », = 107*2 to avoid the infinity at the origin,
and taking s, = 0.05. With these choices, the Solver gives the lowest / =0

dimensionless eigenvalues as 1.49999984, 3.4999985, 5.4999944, 7.499987 and gives the
lowest / =1 eigenvalues as 2.499986, 4.499964, 6.499933, 8.499902. The Prob. 4.20
resultis £= (v, +v, +Vv,+3)hv and E, =v, +Vv, +Vv_+15. (The wave function is an

even function if the sum v, +v, +v, is an even number and is odd if this sum is odd.

Since Yy is an even function and %" are odd functions, the / = 0 eigenvalues have
Vv, +V, +V, evenand the /=1 functions have v, +v, +Vv, odd.)

We use the spreadsheet prepared for Prob. 6.48. Column C contains the F. values. We
set up column D as R, = F./r, and graph column D versus .. At . =107, F. is
extremely small but nonzero. However, we took F. as 0 at ». =107, which erroneously
makes R, = F./r. equal to zero at r. =107*°. The graph of R, indicates that it is
somewhat greater than 0.4 at . =107*°.

The dimensionless variables are E, = E/ 4, r. =r/B, where 4 and B are given by the
particle-in-a-box 4 and B (Prob. 4.30) with / replaced by b; thus, E, = E/ (h?/mb®) and
r.=rlb. Asin (4.78) and Prob. 6.47b, F, = FIB~Y2 Equation (4.79) with y replaced by
Fand x replaced by r gives d°Fldr? = B2 d*F.ldr? = BY*B™? d?F | dr? =

B Y22 4F |dr? and (6.137) becomes

—(n?12m)B ™22 A F.1dr? +[I( +D)h? 12mbr?1BY?F, = (h*Imb*)E,B™?F, or
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6.52

6.53

6.54

6.55

6.56

E" =[I(l +1)/r* = 2E,]F, = G.F, . The variable . goes from 0 to 1. To avoid the infinity
at the origin, we shall start at . =107'°. We shall take the interval as s, = 0.01. For

[ =0 the lowest three E, values are 4.934803, 19.739208, 44.413205 and for / =1 the
lowest energies are 10.095357, 29.839696, 59.449675. The exact / =0 E, values are

E, = El (W*Imb®) = (n®h? 18mb?) | (h*Imb?®) = n*z*12 = 4.934802, 19.739209,
44.413220.

(@) dx,0and/; (b) dx, —o to w; (C) dxdydz, —o to o for each variable;
(d) r*sin@drdfdg,0to « for r, 0to x for 6, 0 to 2z for ¢.
~(E~E)KT 1o

degeneracy of the H-atom levels is given near the end of Sec. 6.5 as »n? . (When spin is
included, this becomes 2x?, but the factor 2 cancels when taking a population ratio.) We
have N,/N; = (22/1%) exp[—(2.1787 x107*® J)(1/1-1/4)/(1.3807 x 10 % J/K)(298.15 K)]

= 1.63x1071"2 at 25°C, where (6.94) and the equation before (6.108) were used.
(b) Replacement of 298.15 with 1000 gives 1.60x107°!,
(c) Replacement of 298.15 with 10000 gives 0.0000290.

(@) The Boltzmann distribution law (4.63) gives N;/N; =(g;/g;)e

(@) The one-dimensional harmonic oscillator;
(b) the particle in a one-dimensional box; the rigid two-particle rotor;
(c) the H atom; the anharmonic oscillator with energies (4.60).

(@) The harmonic oscillator, the rigid two-particle rotor, the particle in a one-dimensional
box, the hydrogen atom.

(b) The particle in a well; the anharmonic oscillator of Fig. 4.6.
(c) The rigid two-particle rotor.

(a) False. The rigid two-particle rotor has a zero eigenvalue. (b) True.
(c) False. eis the proton charge. (d) True. (e) False. (f) False.
(g) False. (h) True. (i) False.
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7.1

7.2

7.3

7.4

7.5

7.6

Chapter 7

Theorems of Quantum Mechanics

@ T, (b) T, (c) F.

(f JAIL = [(cf, )< Af, dt = c*[ £,*Af, d and
ClAlct,) = [ f7A(cf,)dT = c| f*Af, dr if A is linear. Thus if ¢ = ¢* (that is, if ¢ is
real) and if A is linear, the integrals are equal.

(f1Blg)=]*Bg dr = [ f(Bg)dz =(f|Bg).
(cf | Blg)=[(cfyBg dz = c* [ f*Bg dz = c*(f| B| g).

(f1Bleg) =] f*Bcg)dr=c[ f*Bgdr=c(f|B|g), if B is linear.

This equation can be written as (m |i| ny=<{(n |i| m)*, so the operator “multiplication by
1” is Hermitian.

From (7.12), (/| B| g) =(g | B| f)*=(g | Bf)y*=(Bf | g), where (7.4) was used.

(a) We must prove that | £*(c4)g dr = [ g(cAf)*dr (Eq. 1). The left side of Eq. 1 is

[ £*(cA)gdr = c] f*Agdr = ¢ g(Af)*dr, since A4 is Hermitian. The right side of

Eq. 1is | g(cAf)*dr = c*[ g(Afy*dr = c[ g(Af)*dr, where (1.32) and the fact that c is

real were used. We have proved the two sides of Eq. 1 to be equal.

(b) We must show that | /*(A4+ B)gdr = [ g[(4+ B) f1*dr (Eq. 2). The left side of Eq.
21s ff*(,a+é)gdr = ff*(2g+§g)dr = f(f*;lg+f*ég)dr = ff*zzlgdr+ff*1§gdr

(EQ. 3), where the definition of the sum of two operators was used. Because A and B are
Hermitian, [ f*Agdr = | g(Af)*dr and [ f*Bg dr = [ g(Bf)*dr . Hence Eq. 3 becomes

J/*(A+B)gdr =1 g(Af y*dz +[g(Bf y*dz = [g(Af) *+g(Bf)*1dz

= g[(AF)*+ (Bf)*ldr =]g[(Af + Bf)]*dr = g[(A+ B) f]*dr , where (1.33) and the

definition of the sum of operators were used. This completes the proof.
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7.7

7.8

7.9

7.10

(@) We must show that [~ /*(d%/dx®)gdx =1"_ g[(d*/dx?) f]*dx (Eq.1). Let u= f*
and dv = (d%gldx*)dx . Then use of (7.16) gives the left side of Eq. 1 as

[, f*(d?gldx®)dx = f*(dgldx) ", — ", (dgldx)(df*Idx)dx = " (dgldx)(df*Idx)dx
(Eg. 2), since f™* must be zero at +oo for f'to be quadratically integrable. Now let
u=df*ldx and dv = (dg/dx)dx . Use of (7.16) gives the right side of Eq. 2 as

—7_(dgldx)(df*Idx)dx = —(df*Idx)g |~ + 1", g(d?f*ldx?)dx =", g(d®f*Idx?)dx,
which is the right side of Eq. 1, so we have proved that ¢2/dx? is Hermitian. fx equals a
real constant times d?/dx” , so from Prob. 7.6a, fx is Hermitian.

(b) (T.)=—(h?12m)[W* (d*¥Idx?)dx . Let u =¥* and dv = d*¥/dx*. Then Eq. (7.16)
gives (T,) = —(h212m)[¥* (dWldx) [, — |” (dPdx)(dP*]dx) dx] =

(B2 12m) [~ (AW 1dx)(d ¥ dx)*dx = (h212m) |, | d¥/dx |? dx, since ¥ is zero at +oo.

(c) From (3.45) T =T, +T,+1T,, and (3.90) gives (T) = (T,) +(T,) +(I.).

(d) Since the integrand in (7%/2m) Iio | d\WV/dx |2 dx 1S never negative, it follows from

part (a) that (7.) > 0. Similarly (T,)=0 and (7.) >0, and it follows from part c that
(Ty>0.

From Prob. 7.6a, if Ais Hermitian, then A is Hermitian if ¢ is a real number. Also, it is
clear from the proof in Prob. 7.6a that ¢4 is not Hermitian if ¢ # ¢*, that is, if ¢ is

imaginary. Since d?/dx? is Hermitian (Prob. 7.7a), it follows that 4d?/dx? is Hermitian
and id?/dx® is not Hermitian. Since p,_ = (7/i)(d/dx) = —hi(d/dx) is Hermitian, it
follows that i (d/dx) is Hermitian and d/dx = (i/h) p, is not Hermitian.

(a) This operator is not linear and cannot represent a physical quantity.

(b) d/dx is not Hermitian (Prob. 7.8) and so cannot represent a physical quantity.
(c) d?ldx? is linear and Hermitian and can represent a physical quantity.

(d) i(d/dx) is linear and Hermitian and can represent a physical quantity.

T x L gdp =1 f*(hli)dgldg)dg . Let u= f* and dv = (hli)dgldg . Then
integration by parts gives
(z)ﬁf* (hli)(dgldg)dp = (hli) f*g |§* —fgﬁ(h/i)g(df*/d¢)d¢ =

[E7 gl(nli)(df1d#))*de = 15" g(L.f)*d4, since a well-behaved function is single-valued
and so has the same value at ¢ =0 as at ¢ = 2z . [For simplicity, the proof took fand g

as functions of gonly. If fand g are taken as functions of r, 8, and ¢, the integral becomes
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7.11

7.12

7.13

7.14

7.15

fg ISO[ g”f* (nli)(0gl09) d¢] r?sin@drd0 and the same manipulations of the ¢ integral

show L_ to be Hermitian.]

(A2 = [W* A2 dr = [P*A(A¥) dr = [(AP)(A¥)*dr = [| AY |? dz . In this proof, the
Hermitian property | f*4g dr = | g(Af)*dr with =¥ and g = A¥ was used.

(a) We must show that [ 7*4Bg dr = | g(ABf)*dr (Eq. 1). Use of the Hermitian
property of A gives the left side of Eq. 1 as

| F*4(Bg) dr = [(Be)(Af)*dr = [ (Af)*Bg dr = | g(BAf)*dr (Eq. 2), where the
Hermitian property of B was used to get the last equality. If BA = 4B, then the rightmost
side of Eq. 2 equals the right side of Eq. 1, and the result is proved. If B4 = AB, the
rightmost side of Eq. 2 does not equal the right side of Eq. 1 and AB is not Hermitian.

(b) Interchange of 4 and B in Eq. 2 of part (3) gives [ f*B(Ag)dz = [ g(ABf)*dr (Eq.
3). Adding Egs. 2 and 3, we get [ *(AB + BA)gdr = | g[(AB + BA) f*dr , which
completes the proof.

(c) Both x and p, are Hermitian, but these two operators do not commute, so by the
result of part (a), xp, is not Hermitian.

(d) The results of part (b) and Prob. 7.6(a) show that £ (xp, + p,X) is Hermitian.

(@) InEq. (7.16), let u = f* and v = g. Then (7.16) becomes
(fldldxg)= [ f(dldx)g dv=f*g %, — [  g(dldx)f*dx=—~g|dldx]| f)*.

(b) Since 4 is Hermitian, | f*A4(Bg)dr = [(Bg)(Afy*dr = [(Afy*Be dr = [ g(BAf)*dx,
where the Hermitian property of B was used. Interchange of A and B gives
jf*é(Ag) dr = Ig(Aéf)*dr . Subtracting the second equation from the first, we get

[ £%(AB - BA)g)dr = | g[(BA— AB) fT<dr = —| g[(AB — BA) f*dr , so the commutator is
anti-Hermitian.

() From Eq. (6.14), L.(3p_1) = ~h(3p_y) 50 (2py | L. |3p_y) = —h(2py |3p_1) =0,
since 2p; and 3p_; are eigenfunctions of the Hermitian operator iz with different
eigenvalues and so are orthogonal.

(b) iz (Bpy) =0(3py) =0, so this integral is zero because its integrand is zero.

(@) We have Af, = (n+1)ivf,, 50 (f,, | H | £,) = (n+ D)hv( £, | £,) = (n+ DY,

7-3
Copyright © 2014 Pearson Education, Inc.



7.16

7.17

7.18

(b) Af, = (n*h*18mi®) [, , 50 (f,, | H | f,) = ("*W*8mI*) £, | £} = (n*h* 18mi?)S,,,

W2l HIf () = (S (O Hy2)* = (f O Hyo)* = (f ()| Egra)* = Exlyol £(x)) =
%hv<w2|f(x)>, since A is Hermitian and E, isreal.

@ @pl2py=Cpl272@p+2p4)y=2"22p [ 2p)+2722p | 2p ) =
27Y210=2"2 since the y,,, hydrogenlike functions are orthonormal.

(b) Let the orthogonal functions be g, =2p, and g, =2p, +c2p,. We require that
(2p|2p, +c2p)=0,50 0=(2p; |2p,) +c(2p; | 2py) = 2717

part (a) was used. Hence ¢ = 272 and g, = 2p, — 27?2 p,. The normalized function is
Ng, and 1=(Ng,|Ng,) =IN[ (2p, —222p; |2p, —27%2p)) =
INFP2p,12p,)-2"22p, [2p) - 27"22p | 2p,) +2742py | 2p)] =

INP @-27Y227Y2 2722712 1 27y = 1| NP and | N | = 2"2. So the orthonormal

functions are 2p, and 21/22px —2p, [which from (6.118) equals 2p_;]. These are

+ ¢, where the result of

eigenfunctions of the H-atom H and of I? (and also of iz). [An alternative is to take
g, = 2p, and then one finds g, = 21/22p1 —2p, (whichequals i2p,).]

(8) We have a, = (2/1)"?[/] L xsin(nzxll) dx — [ x2sin(nzxll) dx . Use of Eq. (A.1) and
[ x%sinbx dx = (2x/b%)sinbx + (2/b° — x?[b) cosbx gives
a, = ) ?[(1/nz)? sin(nzxll) — (xl/nz) cos(nzxID)] |,

— @INY2[(2x12 In?2?)sin(nzxll) + 1 In®7® - x21Inz) cos(naxl)] [} .
Use of sinnz =0 and cosnz = (-1)" gives
a, = —(21/215/2/117[)(—1)" —{(23/215/2/1’1372'3)[(—1)n _1] _ (21/215/2/1172')(—1)"} _
(23/215/2/11372_3)[1_ (_1)n] .
(b) Setting x = %l in the final equation of the example and multiplying by 473/ 1% we get
7°=16 " [1-(-1)"]n*sin(nr/2) =
32+0-32/3* +0+32/5° +0-32/7° +0+32/ 9% +--- ~ 31.0214 . The accurate value is
7> =31.0063.
(c) For x=1/4, the expansion is
217 = (4% 17%)[2sin(z14) + (2/3%)sin(3z/4) + (2/5°) sin(5/4) + (2/7°)sin(Tx14) +
(2/9%)sin(97/4) +---]. The left side is 0.18750/2. With 1, 3, and 5 nonzero terms

included, the right side equals 0.18244/%, 0.18774/%, and 0.18746/?, respectively. The
percent errors are —2.7%, 0.13%, and —0.02%.
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7.19

7.20

7.21

1.22

7.23

7.24

@ In = zn (g, | g, [Eq. (7.41)], the complete setis g, = (2/0)Y2 sin(nzx/l) . The
expansion coefficients are

(g, | [ = I 1 sin(naxi1)(=1) dx + (211)2 [}, sin(nrxl1)(1) dx =

QINY2(nz) cos(nrxll) [§ — (2112 (nx) cos(naxll) |1, =

(2IDY2 (11n7)[cos(nrl2) - 1] - (2/11)Y2 (I/nx)[cos(nr) — cos(nz/2)] =

[(2))Y2 Inz][2cos(nzl2) —1—(~1)"]. Hence

f= Zj;l (2/nm)[2cos(nzl2) —1—(-1)"]sin(nzx/) .

(b) At x=1/4, the expansion in (a) becomes
-1=(2/7)[0-4/2+0+0+0+4/6+0+0+0-4/10+0+0+0+4/14+--]=

(4/7)(-1+21/3-15+1/7-1/9+---). With 1, 3, and 5 nonzero terms, the right side is
-1.273, -1.103, and —1.063, respectively. The errors are 27%, 10%, and 6%.

@ F; (b) F; (c) T,since I:Z commutes with A and 2p, and 3p, have different
eigenvalues of H , Theorem 6 tells us the integral is zero.

If m is even, then TT” = T1%" = ([1%)" =1" =1, where  is an integer and Eq. (7.54) was
used. If m is odd, then TT” = [1%"*' = (IT%)"T1 =1"T1 =11.

(a) An s hydrogenlike function depends on r only and r = (x* + y? + z%)Y2. Hence v, is

an even function.
(b) From (6.119), Vap. equals x times a function of », and so is an odd function.

(c) This function is a linear combination of two functions with the same energy
eigenvalue, and so is an eigenfunction of 4 . This function is a linear combination of two
functions with different parity eigenvalues and so is not an eigenfunction of IT.

Since y ; is an even or odd function according to whether the vibrational quantum number

j is even or odd, respectively, we have My, = (-1)/y . and
Vi Vi

I, = (D[ vy, de = (1) 5.

(a) From Prob. 7.22, the 2s function is even and 2p, is odd. Hence the integrand in
(2s|x|2p,) isan even function and parity does not require this integral to be zero.

(b) The integrand is an odd function and the integral must be zero.
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7.25

7.26

1.27

7.28

7.29

(c) The integrand is the product of three odd functions and so is an odd function. The
integral must therefore be zero.

We have I?fl. =r.f;, where r, and f; are the eigenvalues and eigenfunctions of R.We
operate on this equation with R and use the linearity of R and the eigenvalue equation to
get R2f, = r.Rf; = rir. f; = 12 f;. Operating with R again, we get R°f, = f;. Operating
with R atotal of n—1 times, we get R"f, =" f,. But R" =1,50 f, =r/f, and r" =1.
Hence the eigenvalues are the nth roots of unity, given by (1.36).

@)

AL/ (v, v, 2) + (6 y 2 = S (3= 3, = 2) + g(=x, = 3, = 2) = T (v, y, 2) + g (x, 3, 2).
Also, T[cf (x, y, z)] = ¢f (—x, — y, — z) = cI1f (x, y, z) . Hence IT is linear.

(b) We must show that [=_[ £(x)]*T1g(x)dx=]", g(x)[I1f(x)]*dx. We have
f‘foo[f(x)]*ﬁg(x) dx =" [f(x)]*g(-x)dx (Eq. 1). Let z=—x. Then dz = —dx and the
right side of Eq. 1 becomes —I;w[f(—z)]*g(z) dz = fi) g@f(-2)dz =

IZ eI fE)*dz =17, g(x)[I1f(x)]*dx, which completes the proof.

As shown in Sec. 7.5, if two eigenfunctions fand g of I1 have different eigenvalues, then
one function must be odd and the other even. Hence the integrand in | f*g dr is an odd

function and the integral is zero.

The harmonic-oscillator wave functions are even or odd according to whether the
quantum number v is even or odd, respectively. If v, and v, are both even numbers or

both odd numbers, then the integrand in (v, | x|v;) is an odd function and the integral
must be zero. The integral might be zero in other cases also.

(@) Since r = (x2+ y? +z2)Y2 replacement of x, y, z by —x, — y, — z leaves  unchanged.
The points (x, y, z) and (—x, — y, — z) lie on opposite ends of a line that goes through the
origin, as shown in the first and last figures in Fig. 12.6 in the text. The angle & made by
the radius vector with the positive half of the z axis is the same in the second figure as in
the first, and when the radius vector is reflected in the xy plane to generate the third figure
from the second, the angle with the positive z axis becomes 7 —&. In going from the first
figure to the second, the angle made by the projection of the radius vector in the xy plane
with the positive half of the x axis increases from ¢ to ¢+ 7, and remains unchanged on

going from the second to the third figure.
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7.30

7.31

(b) From part (a), [Te™? = ™7 = ™Mo — ™% (cosmr +isinmr) = (1) ™,
since cosmz = (=1)" and sinmz =0.

(c) From (a), # goes to  —&. Use of trigonometric identities gives
cos(z — @) =coszcosd +sinzsing =—cosé and

sin(z — @) =sin zcos@ —coszsin @ =sin @ . So the parity operator does not affect the
sin™ @ factor in (5.97). The transformation of #to 7 — & changes cos’ 6 to

cos’ (7 — ) = (1)’ cos’ 8. In (5.97), the j values are all odd or are all even, depending on
whether [—| m | is odd or even, respectively. Hence if /—|m| is even, there is no effect on
S; »(0),and if [-|m| isodd, S, () is multiplied by 1. Hence

115, ,,(0) = (~1)' s, . () . 1f m >0, then | m|=m. If m <0, then | m |= —m and
(=)' = ()" = (-9 I(-1)*" = (1) Hence 115, ,,(6) = (-D)"™S, ,,(6) .

(d) ¥" =5,,(0)7,(#) . From (b), I multiplies 7,, by (-1)" and from (c) it multiplies
S, » by (1™ . Hence IT multiplies Y by (-1)',and ¥ is even if / is even and is
odd if / is odd.

The integral can be written as
J._oo"'J._wU_w'"I_wf(Q1v---’ icr Diev1r--+ qm)dql'“ququkﬂ'”de

For the multiple integral in brackets, ¢, ., through g,, are constants. By virtue of the first
equation in the problem, the contributions from f(-q¢,...,— 4%, 951,---+ 4,,) and
(@ 95 Grins---» 4,,) CaNcel so the integral in brackets equals zero and the complete
integral is zero.

(a) From (6.122), the 2p. function is the same as the 2p, function, which is an
eigenfunction of iz with eigenvalue zero, so the value 0 will be obtained with 100%
certainty when L_ is measured.

(b) From (6.120), 2p, =i2"Y*(2p_y) —i2/*(2p,). Theorem 8 of Sec. 7.6 tells us that
the probability of getting —7 is | i27% = (i27V%) * (i27V?) = (-i27"*)(i27"*) =1 and
the probability of getting 7 is | ~i27V% P = (—i2 V) *(—i2 V%) = (127 V?)(~i2 V%) = L.
(c) 2p, is an eigenfunction of iz with eigenvalue 7, so 7z will always be found.
In(a), (L,)=0andin(c) (L,)=n.

In (b), Eq. (3.81) gives (L.) =0.5(-#)+0(0) + 0.52=0.
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7.32

7.33

7.34

7.35

7.36

7.37

Theorem 8 of Sec. 7.6 tells us that the probability of getting 7 is
|67Y2 P +|-3Y2P=1+1=1 and the probability of getting 0 is | 272/ [*=1 . Use of
Eq. (3.81) gives (L.) =3 +%(0) =1in.

The first two functions in the linear combination each have 7 eigenvalue 1(2)7? = 2i?
and the third function has 72 I? eigenvalue 2(3)# = 6h2. Hence Theorem 8 of Sec. 7.6 says
that the probability of getting 24* is |67 |* +| -27V%i[’= 1 +1 = 2 and the probability
of getting 64° is | 372 [?=1. Equation (3.81) gives (L*) = 2(2h%) + 1 (6n%) =L 1’
The first two functions in the linear combination each have energy eigenvalue
—62/(47z80)8a and the third function has energy eigenvalue —e2/(47zeo)18a . The
—27"%if=1+1=2 and the
probability of getting —e®/(47&,)18a is | -3/ ’=1. From (3.81),

(Ey =2[-€’[(Aney)8al + 1[-e* I (475, )18a] = — AL (e° 4 1zy).

probability of getting —e®/(47¢,)8a is |62 | +|

The ? value of 24% means that just after the measurement the particle has angular-
momentum quantum number / =1. Since the labeling of directions in space is arbitrary,
the possible outcomes of a measurement of L are the same as the possible outcomes of a

measurement of L_, namely, —#, 0, and 7.

The first function in the linear combination is an eigenfunction of the particle-in-a-box H
with eigenvalue /#2/8mi? and the second function is an eigenfunction of # with

eigenvalue 2242/8mi?. Hence the probability of obtaining 42/8mi? is
11 o i 1i8ml® 2= @ efihzt/8m12)*(% efihzz/smzz) e eihzt/Smlz)(% efihzt/8m12) — 1 and the
probability of obtaining 22/4%/8mi? is
B 2 B 2 2
| \/7 m ih%t12mi |2 (1\/7 m ih%t12mi? ) (1\/7 me ih“tl2ml )=%

The possible outcomes are the eigenvalues n?4%/8mi? of the energy (Hamiltonian)
operator. The probabilities are given by Eq. (7.73) as

| [o (2112 sin(nx/1)105/17 Y2 x% (1 - x) dx [P = (210/18) | [ sin(nx/ 1) (%1 — x%) dx [P
Use of a table of integrals or the website integrals.wolfram.com gives

[ x%sinbx dx = (2x/b%) sin bx + (2/b° — x?/b) cosbx and

[x3sinbxdx = (3x%/b? — 6/b*)sin bx + (6x/b° — x*/b) cosbx .

Since sinnz =0 and sin0 = 0, the sine terms contribute nothing and the probability is
(220/18) | [(21* In®7® - x°1% Inz) cos(nzxll) — (6xI3In® 7° — X31Inz) cos(nzxID)] [*=
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7.38

7.39

7.40

7.41

(210128 | (214 In7® = 1* Inz)(-1)" — (61* 12— 1* Inz) (<) = 21%1n 23 P=

(210/18) | (-41* 13 22)(=1)" — 21* In® 7 |P= 210[16/n°7® + (=1)"16/n®7® + 4/n°72°] =
(840/n°7°)[5+ 4(~1)"]. (For n = 1, 2, and 3, the probabilities are 0.87374, 0.1229, and
0.0012, respectively.)

This energy is the ground-state energy and Eq. (7.73) gives the probability of getting this
energy as | [ [7 [ (Uza®) e (271 72a° )29 2 sin O dr dO d |P=
(27172%a%) | 47 [ e7*1r? dr [P= (4321a%) |2(al4)? ? = 27/64 = 0.421875.

@ ¥=¢ oiELl ei(ZmE)llzx/h +e, o iELl e—i(ZmE)llzx/h = fi ey,
(b) p.fy = (hli)of,/0x = (hIi)[i(2mE) ? Ih] f, = 2mE)“? £, and p, f, = —(2mE)Y? £, .
(c) The possible outcomes are the eigenvalues (2mE)”2 and —(2mE)1/2, whose

eigenfunctions occur in the linear combination in (a). The probabilities are proportional to
|, I? and | ¢, [*. (They are not equal to | ¢, |* and | ¢, |* because a free-particle wave

function is not normalizable.) Let the proportionality constant be k. The probabilities add
t01,50 k| |* +k|cy[P=1and k=1( ¢ * +| ¢, |*) . The probability of getting (2mE)"?

is thus | ¢, /(| ¢, | +] ¢, |) and the probability of getting —(2mE)¥? is

2 2 2
L [P/ | +1ey ).

The sum of the probabilities in (7.74) must equal 1. Also, 1—(-1)" equals 0 if  is even
and equals 2 if n is odd. Hence )" .. 2%(240/n°z°) =1. Let m=(n—1)/2. Then m

goes from 0 to oo in steps of 1, and n =2m+1. Hence ) " [960/(2m +1)°z°]=1 and
> L@2m+1)° =x°/960.

(a) From (7.76), (2.23), and (3.36) with 4 replaced by N and & by p, the desired

probability is | [ Ne /" (2/1)Y2 sin(nrxI1) dx |2 dp = (211) | N [? |[y e sin(sx) dx[? dp,
where b= p/h and s = nx/l. A table of integrals (or the website integrals.wolfram.com)
gives [e® sin(sx) dx = (a® + s2) Le™ (asin sx — s cos sx) . The probability is thus

@I | N (s =) | e ™ (=ibsinsx —scossx) o dp = A|e ™' [-s(-1)"]+s [ dp,
where 4 =(2/1)| N * (s* —b?) and we used sins/ =sinnz =0 and cosnz = (-1)".

The probability is

A [-s(-1)"1+ syfe " [=s(=1)"]+ s}dp = A [-s(-1)"]+ sHe " [-s(-1)"] + s}dp =
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7.42

7.43

7.44

7.45

Als® = s*(<1)" (" + &™) + s*]dp = 24s*[L— (-1)" cosbl]dp =

(411) | N [P [s%/(s* = b%)?][L - (-1)" cosbl]dp , where (1.28) and (2.14) were used.

(b) At p =+nh/2l,we have b= plh=+nxll =+s,s0 b = s* and the denominator in
(@) is zero; also, 1—(-1)" cosbl =1—(-1)" cos(+nz) =1-(-1)"(-1)" =1-1=0, so the
numerator is also zero. Using I’Hospital’s rule, we differentiate the numerator and the
denominator with respect to b. Thus lim,_, {[1— (~1)" cosbl]/(s* —b*)*} =

lim,_,,[1(-1)" sinb1/2(s* — b*)(=2b)] . Since bl = +nx , we again have 0/0. Differentiating
again, we get lim,_ [/?(~1)" cosbl/(12b? — 4s%)] = 1*(-1)*"/8s% = [*/8s® and the
probability at p =+nh/2l is 31| N [ dp.

() The displayed equation after Eq. (7.91) gives J'_OO o(x)dx=1.
(b) Eq. (7.83) gives 5(x) =0 for —o<x<-1,50 [ 5(x)dr =0.
© 1=[" 5(x)dx = S(x)dx+] fla(x) de+ [ 5()dr =] f15(x) dx , where the result

of (b) and J'lwé(x) dx =0 were used.

(d) Since o6(x—3) is zero except at x = 3, the integrand is zero for all points in the range
from x =1 to 2 and the integral is therefore zero.

Let z=x—a.Then [ [6(x— Q) dx = [”, 8(2)6(2) dz . Use of (7.91) with x replaced by
z, with =0, and with f =& gives |", 5(z)6(z)dz = 5(0) = o.

We use the procedure used to derive Eq. (7.91), except that we set « = 0 and take the
lower limit of the integral as 0 instead of —oo.The first term on the right side of the
equation that precedes (7.90) becomes f'(x)H (x) |y = f () —% f(0), where (7.81) was

used. The right side of the equation preceding (7.91) becomes f () —%f(O) - f(x) 5=

f () =% f(0) - f () + f(0) =3 f(0) and (7.91) becomes [o f(x)S(x)dx =2 f(0). This
result is intuitively clear from Fig. 7.5.

From (7.82), the value of the & function equals the slope of the H versus x graph.

The values of the Fig. 7.5 approximate & functions at and near the origin increase in
going from function 1 to 2 to 3 and the width of the nonzero region decreases in going
from 1 to 2 to 3. Hence the corresponding approximate H(x) graphs show an increasing
slope and a decreasing width of the nonzero-slope region as we go to more-accurate

approximations. Thus the figures are
7-10
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7-46 SUUQLILULI\JII vi P & \(1, L} - Ll (/l \“JY¥ [\ \=M* =) 11\ V1) grvew

7.47

_(h/i)zi[dci )/ dily;(q) = [:Izl-ci O);(q) = Z,-Ci (t)l:]% (9) = zl-ci (O Ew;:(q).
Multiplication by yx(¢) followed by integration over all space gives

—(nli)Y" [de,()) 1dA[yx(@)yi(q)de = Y ¢;(VE, [wi(a)y:(g)dr . Use of
orthonormality gives —(7/i))_ [dc,(¢) /d1]6,, = D .¢;(1)E;6,, , which becomes
—(nli)de,,ldt = ¢, E, . S0 ¢, dc, =—(ilh)E, dt . Integration gives

In[c,, () Ic,, (1,)] = —GE,, I1)(t — t,) and ¢, () = c,, (t5)e 7" (Eq. 2).

To find ¢, (t,) , we multiply Eq. 1 at 7 =¢, by . and integrate over all space to get
[y ¥ (g, tp)dr = Zici(fo)fl//nf(f])%(Q) dr = Zici(t0)5mi =¢, (%) -

Equation 2 becomes c,, (1) = (v, | ¥ (g, ,))e =)™ (Eq. 3). Substitution of Eq. 3 into

Eq. 1gives W(g.0) = (w,|¥(q. tp))e ™y (g), which is (7.101).

(@) T =8mi%/3h=28(9.11x10! kg)(2.00x107*° m)?/3(6.626 x1073* Js) =1.47x107*® s.

(b) Pr\y — (Z_UZeiElt/hl//l + 2—1/2eiEZt/hl/lz)(z—llze—iElt/th + 2—1/Ze—iEzt/hW2) _

1,.,2 , 1 —i(E,—E)tlh 1 i(E,—E)tlh 1,,2 _
Wi tge 7 Ty et U Lp oy, =

Lyl +1yd +cos[(E, — E)t/hlyyw, , where (1.28) and (2.14) were used.
(c) We plot /¥? =sin?(zx,) +sin?(2zx,) + 2sin(zx,)sin(27x,) cos(27 j/8) vs. x, for
each ;j value. The results are shown on the next page. The j =8 plot is the sameas j=0.

(d) A Mathcad worksheet (that can also be used for Prob. 7.48b) is shown below. In the
Animate dialog box, let FRAME go from 0 to 100 at 10 frames per second.
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Animation-Particle in box- n=1 plus n =n

_ FRAME
100

tr: xr:=0,0.01.1 n:=2

probden (xr, tr) := sin(n-xr)2 + sin(7r~n-xr)2 + 2~sin(n~xr)-sin(n-n-xr)~cos[2-n-tr-(n2 - 1)]

probden(xr,tr) 2 [~ —

Xr
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Figures for Prob. 7.47(c):
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7.48 (a) Replacement of the 2 subscript in y, and E, by = in the derivation in Prob. 7.47
gives W*¥ =1y + 1yl + cos[(E, — E)t/ My, (Eq. 7.102"). The equations
immediately after (7.102) become (E, — E;)T/h =27 and

T = 2zhl(E, — E;) = 8miI®/(n® —1)h . Using the expressions for y;, v, , and T, we get
[|W =sin?(zx,) +sin?(nzx,) + 2sin(zx, ) sin(nzx, ) cos(27t/T) (Eq. 7.102").
(b) We have ¥ = ¢, (1)p,(x) + ¢, (), (x) and

¥ =1 (0) P e ()1 + (e e, + o> ey (xw, () + | ¢, () P [y, (x)]* . With the origin at
the center of the box, y; is an even function; v, iseven for n=3,5,... and is odd for

n=24,....Therefore | ¥ |* is even for n=3,5,... and for these values of n, | ¥ | is
symmetrical about the box midpoint at all times.

(2 1}[1 —1J [ 2-1+1-4 2-(-1)+1-4 j [6 2}
749 (a) AB= = _
0 3)\4 4 0-1+(-3)-4 0-(-1)+(-3)-4) (-12 -12
b) BA:(l —1]{2 1)2(1.2+(—1)-o 1-1+(—1)~(—3)j:(2 4]
4 40 -3 4.-2+4-0  4.1+4-(-3) 8 -8
(2 1} [1 —1J [2+1 1+(—1)J [3 oj
(c) A+B= + = =
0 -3 4 4 0+4 -3+4 4 1
) 3A:3(2 1]:{32 31 j:((s 3]
0 -3) (3-:0 3-(-3)) \0 -9

2 1 1 -1\ (2-4 1+4 2 5
(€) A—4B= —4 - _
0 -3) 4 4) (0-16 -3-16) |-16 -19

750 Cisa3bylmatrixand D is1by 3,soCD isa3by3matrixand DC is a1 by 1 matrix.

5 5 5.2 51) (5 10 5
CD=| 0| 2 1)={0i 02 01 |=[{0 0 O
-1 - ()2 (-)-1) (- 2 -1

5
DC=(i 2 1)| 0 [=(i-5+2-0+1-(-1))=(-1+5/)

-1

7.51 Let {f;} denote the orthonormal basis set. The matrix representative of the unit operator

in this basis has matrix elements (/; |i| Sy ={f; | fi) = 6 . Hence the matrix
representative is a unit matrix of dimension equal to the number of basis functions in {f1;}.
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7.52

7.53

7.54

7.55

Let {/;} denote the basis set. We have
Dy =S IDIf) =(KIKCL ) =K S | CLf;) = kG

Since the set {/;} is complete, we can expand the function ,Zlfj in terms of this set. We

have ,?1fj = zkckfk (Eq. 1). To find the expansion coefficients, we multiply this

equation by £* and integrate over all space to get
Sl ALY =Xl | fi) =D kO =, - Hence ¢, =Sy, | 4] £;) = a6,
where the given expression for (f,, | A | f;» was used. Hence Eq. 1 becomes

Qlfj = Zkak5kjfk =a,f;, which shows f; is an eigenfunction of A with eigenvalue a;.

(a) Expanding u in terms of the complete orthonormal set, we have u = Zi b.f;.

Multiplication by f.*, integration over all space, and use of orthonormality gives

b =(fi |u) [Eq. (7.40)], 50 u =Y. (f;|u)f; . Application of 4 gives

Au = ﬁzi<ﬁ lu) f; =2, i |u)Af, (Eq. 1), since A is linear. Expanding Af; using the
complete set, we have flf,. = chjfj (Eq. 2). Multiplication by £* and integration over

all space gives ¢, =(f,, |21 | ;> (as in Prob. 7.53). Hence Eq. 2 becomes

Qlf,. = ZJ_(fj | A | /)f; (Eqg. 3). Substitution of Eq. 3 into Eq. 1 gives

Au=3 (G0 ST ALDL ) =2 (AL ),

(b) Multiplication of u = zi u,f; by f* integration, and use of orthonormality gives
u; =(f; |u) or u; =(f; |uy [Eq. (7.41)]. Hence the result of (a) is Au :Zj(ZiAﬁui)fj'
Comparison with Au = w = Z_; w;f; gives w, =" A;u; (Eq. 3). Since Aisan n by n

matrix (where n is the number of basis functions and may be infinite) and u isan » by 1
column matrix (whose elements are u,), Au is an » by 1 column matrix whose element

(Au); is calculated from row j of A and column 1 (the only column) of u. Hence Eq. 3
shows that each element of Au equals the corresponding element of w. Thus Au=w.

The matrix elements are (¥, | L, | ¥, ) = m (Y, | ;") = m;h3,, . (EQ. 1), where
orthogonality follows from Theorem 2 in Sec. 7.2. The quantum numbers m; and m;
each range from —2 to 2. Equation 1 gives
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-2h 0 0 0 O
0 -»n 00 O
0 0 OO0 O
0 0 0 nan O
0 0 0 0 2n

7.56 (a) From (5.11), (AL,)? =(I2)—(L.)? =(2p. | 2| 2p.) —(2p. | L. | 2p.)*. Since
2p. =2py, L.2p, =0(2p.) =0 and [22p, = L.(L.2p,)=L.(0)=0, 50
(AL.)>=0-0=0,and AL, =0, which is obvious since 2p._ is an eigenfunction of ]:Z
and only zero will be obtained when L_ is measured.

(b) (AL =(I2)—(L.)* =(2p, | 2 |2p,)=(2p, | L. |2p,)* (EQ. 1). From (6.118),
L.(2p,)=2"L.(2p+2p ) =22 (L.2p,+ L.2p 1) = 27V*(h2p, — h2p ,) and
L@p,) = LIL.(2p ) = LI2 ™V (h2py ~h2p )] = 2 V2 (L, 2py ~ hL.2p ;) =
22?2 p, + H*2p_;). We have

@p, | 212p) =2 @2p +2py) |27V (W 2p + W 2p,)) =

1nP[2p 1 2p) +(2p | 2p ) +(2p_y | 2p) +(2p_y | 2p_)] = 20> (1+0+0+1) = 1°.
Also, (2p. | L. |2p.)2 =27 V2@2p +2py) | 27 V2 (h2p, —h2p_,))? =

(lh) [(2p1|2p) —(2py | 2p_ 1) +(2p_1 | 2p) —(2p4 | 2p_ 1>] =1 h 1-0+0- 1) =
Hence (AL.)? =(L2) —(L.)* =(2p, | % |2p,)—(2p, | L. | 2p,)* = h* and AL, = 1.

757 (@) ¥ =l My + 13" My, where Ey, E,, vy, v, are particle-in-a-box
stationary-state energies and wave functions with » =1 and n=2. Then
(¥ | W) = <i —iElt/hl//l l\/_eiﬂe—iEzt/hl//z |%e—iE1t/hl//l +%\/§€m€_iE2t/hl//2> _

i lElt/h lElt/h(lﬂ1|l//1>+ 1\/’em lElt/h lEZt/h(l/ll|lp2>+%\/ée_meiEzllhe_iElﬂhQ/lz |l//1>+

3 -im 1E2t/h m —iEytIh

2e e (Wolwy)=3+0+0+3=1.

(b) (E)=(¥|H|¥)=(¥|H|Je "y + 337 My) =

(¥ | % o it I:It//l " % 37 e BN 191//2> = (¥ | % o Bt Eyy + % J3e7 e iEtIh Ew,) =

<l _iElt/hW1 l\/_eme_iEzt/hl/lz |l _iElt/hEll/ll +%\/§€m€_iE2t/hE2W2> _

411 iEin, lEll/hEl<l//1|l//1>+ 1\/’em iEeln, zEzt/hE2<l//1|l//2>_I_%\/ge—iﬁeiEzt/he—iElt/hEl<l//2 lyy) +
Serimet e N, (yy |y,) =1 By +0+0+ 3 E, =1 E + 3 E,, which makes sense in
view of the answer to Prob. 7.36. We get (E) =134%/32mi?.

(©

<x> _ (‘P | 2 | ‘P) _ <%e_iElt/hW1 +%\/§€m€_iE2t/hl//2 |x | %e—iElt/hl/jl +%\/§€m€_iE2t/hl//2> _
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iEtlh ~iEtlh [+ Eyt I h—Eytlh —i(z+Etlh-Etlh
i et <W1|)C|‘//1>+%\/§el(”+ iRt )<‘//1|x|‘//2>+%\/§€ (BTt )<l//2 | x [yy) +

Seimet e me M (y) | x| yr,) . From Fig. 2.4 (see also Prob. 3.48),

lxly) =51=(wy | x|ywa) . Also (wy | x| w,) =(w, | x| wy) . Hence,
(x)y=%1 +%\/§cos[7z +(E, — E))tInXy: | x| wy) + 21 (Eq. 1), where a result of Prob. 1.29

was used. We have (y; | x| y,) = (2/]) Ié xsin(zx/1)sin(2zx/1) dx . A table of integrals or

use of the website integrals.wolfram.com gives
cos[(a — b)x] N xsin[(a —b)x] cos[(a+b)x] xsin[(a +b)x] So
2(a—b)? 2(a—b) 2(a+b)? 2a+b)

[ xsin(ax)sin(bx) dx =

/

%fé xsin(rxll)sin(zxll) dx = g|:COS(7Z'x/l) N xsin(zx/l) cos(3zx/l) xSIn(37rx/l)}

1| 2(xl)? 2zl 2(3711)? 2(3711)
(Uz*)[-1+0+2-0- (1+0-1-0)] =-16//97° = (y; | x| y,) . Equation 1 becomes
(x) =11~ (8v/3/97%)i cos(r — 67ht/8mi”) . The cosine function ranges from —1 to 1, so

0

the minimum and maximum (x) values are %l - (8\/5/97z2)l =0.344/ and
17+ (8v/3/97%)1 = 0.6561 .

7.58 From (7.97) and its complex conjugate, 0W/ot = —(i/h)I:I‘P and oWY*/ort = (z‘/h)(fl‘P)*.
So [(@W*10t)AY dr = (ilh) [(HY)Y*AY dr =(ilh) [ (AP)(HY)*dr =
GIR[](AP) *(HY) dc]* = GIR)[] Y (HAY) *dr]* = (il h) | ¥* HAY dr , where the
Hermitian property of 2 was used. Also [W*A(8W/dt)dr = —(ilh) [¥*AHY dr .
The equation for d{A)/dt becomes
d(AYIdt = [V* (04106)Y dr + (il h) [ W* (HA - AH)Y dr =
(0Alaty + (iIh) [ P*[H, AIY dr

759 Weset 4 =3 in (7.113). Time ¢ does not occur in the operator %, s0 83/6t =0.
From_(5.8), [H, X] = —(ih/m) p, and (7.113) becomes
d{x)ldt = Um)[W*p ¥ dr ={p Ym=Um)[¥Y*(hli)(0¥/ox)dr . Differentiation of
this equation with respect to ¢ gives d*(x)/dt* = m™d{p )ldt . Setting A= p, in (7.113),

we have
d{pyldt = (iln) [Y*[H, p, 1V dr = (iln) [ W*in(dV ] ox)¥ dr = [W* F¥ dr = (F,).

760 (@) O<s(u|uy=(f—-cglf-cg)y={f11)—c(flg)—cgl|f)+c*cg|g) =
IOl X/ ele)—(fleXel Hiigle)+{gl ) feXele)/iglg)’
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7.61

0S| fY—{gl /XS g /{g|g). Multiplication by the positive quantity (g | g) gives
0<(f1/Xglg)—<gl/Xfg)

(0) (f1/) ={(A~(A)F | (A~ (A)¥) = (A~ (A)¥ | A~ (4)|'¥) (Eq. 1). Since the
sum of two Hermitian operators is Hermitian, 4 —{A4) is Hermitian, and Eq. 1 becomes
1LY = (P A=A [ (A= (A)EY* = (¥ | (A—(A))° | ¥)* =[(A4)]*, where (5.10) was
used. The complex conjugate of this equation is (1| /)* = (A4)?. Equation (7.4) with
m=ngives (| /Y*=(f]f),50 (f| f)=(A4)*. The same arguments used for (/| /)
give (g|g)=(g|g)*=(AB).

() (z—z*)12i =[(x+iy)—(x—iy)]/ 2i = y. Substitution of (/| /) = (A4)* and
(glg)= (AB)? into the Schwarz inequality and use of the inequality proved in (c) in the
text give (A4)*(AB)’ 2 [(f | ) = —4((f 1) ~(g| /)

(d) Let 4=(4) and B =(B). Then, since A— 4 is Hermitian, we have

(f12)=(g| /Y*=((B-B)¥|(A- A)¥)*=((B-B)¥ | (41— 4)| ¥)* =

(¥[(A-A) [ (B-B)¥)**=(¥|(4-A)|(B-B)¥) = -

(V| AB|W)—B(Y | A| W) — ACY | B| W)+ AB(Y | W) = (¥ | AB|¥) - 4B.
Interchanging f'and g and 4 and B in fle :<‘P|2§|T>—Z§,we get

(g| [H=(¥]| BA | W) — 4B. Substitution of the last two equations into the last equation in

(©) gives (A4)*(AB)? = ~4((¥ | 4B W)~ (¥| B4 W) =-4(CPIL4. 811 W)

(e) From Prob. 7.13(b), the commutator is anti-Hermitian, so
(W[4, B]|¥)=—Y¥|[4, B]| ¥)*, and the last equation in (d) becomes

(M) (AB)? > ~1( |4, B1| W) (-1)(¥ |[4, B]| %) *= 1w |14, B]| )|

In the following C++ program, xr is x/l and fris f/1.
#include <iostream>
#include <cmath>
using namespace std;
int main() {
double pi, xr, fr, sum;
intm, n;
pi = 3.1415926535897;
for (m=5; m<=20; m=m+5) {
cout << "Number of terms = " << m << end|;
for (xr=0; xr<=1; xr=xr+0.1) {
sum = 0;
for (n=1; n<=m; n=n+1) {
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sum=sum-+pow(-1,n+1)*sin((2*n-1)*pi*xr)/pow(2*n-1,2);
}
fr=(4/(pi*pi))*sum;
cout << "xr= "<<xr<<"fr= " << fr << endl;

}
}

return O;

}

7.62 The derivation of Eq (5.131) depends on the result of Prob. 7.11, which shows that
(v | A2 lw) = (Az// | Al//) >0 if A4 is a Hermitian operator. The Hermitian property

(v | A2 |lw) = <Aw | Al//> is valid only if y is a well-behaved function. [See the sentences
following Egs. (7.6), (7.11), and (7.17). ]

7.63 See Section 7.1.

7.64 (a) F.[See, for example, Eq. (7.101).]
(b) T. (c) F.
(d) F. (This is only true if the eigenfunctions all have the same eigenvalue.)
@F OT (@F (hF
(i) F. (They must have different eigenvalues for us to be sure this is true.)
MF (WT. F. (mF (n)T. (o) T.
(p) F. Itisvalid for all well-behaved functions.
(@) T. (r) F.(Only true for stationary states.)
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Chapter 8
The Variation Method

8.1 <-203.2¢eV.

82 (a) VIVo

0 .
0 0.25 05 . 075 1

We have (¢ | H | ¢) =(¢|T | ¢)+(¢|V | #). For the particle in a box (PIB), V' = 0 inside

the box, so the PIB Hamiltonian equals 7'; Hpp =T . Also the variation function ¢, in

(a) equals the normalized ground-state (gs) PIB wave function: ¢, = y/pjg 4. S0

@ |T|¢y) = <‘//PIB,gs | Hppg | V’PIB,gs> = EPIB,gs<‘//PIB,gs | ‘/’PIB,gs> = Eppgs = h* /8ml* =
47°h* /18mi* = 4.93480n% /ml* . Using Appendix Eq. (A.2), we have

B N4, B : 31/4 _
@1V g =] 10 Vosin® (ex/lydx = (Vo /Dl = (1/27) sin 27/ D] =

Vol2 -1 - @) " sin(37/2) + (27) ' sin(/2)] = Vo (3 + 77') = 0.818310 =
0.818310%° /mi*, since V is zero in the first and last quarter of the box. Then
(6| H | ¢,) = (4.93480 + 0.8183 1)1 /mI* = 5.75311h* /mI* . The error is 0.048%.

(b) The variation function ¢ in (b) is the same as that in Eq. (8.11) and FIPIB =T.So
($y | Hp | $o) = W1 /6m = 0.166667h°I* /m = (¢ | T | #,) . Then

V1=

/4

3 4 5
Vol? (O3 = 035 4 0 o Lo ) = 0.0264320,0° = 0.026432(7° /m)I° . So

/4
Vox* (1 —x)* dx = V,[IPx 13— 2lx* 14+ X° /5] =
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8.3

8.4

8.5

(6, | H| ¢,y = (0.166667 + 0.026432)1*I* /m = 0.193099%°1° /m . Also, Eq. (8.13) gives
j by ¢y dr =1°/30.S0 (¢, | H| $y) | {$, | #,) = 5.792971* /mI* . The error is 0.74%.

de Jad =d (—2cxe_cx2 Ydx? = 206 +4c %2 and

. W oo _ _ © 4
J. Pp*Hpdr = 1 e’ (—2ce 4 4% sz)dx + 27r2v2mj. x2e 2 gy =
m —00

—00

2
—%j;o( —ce 2y 22y te 2 )dx + 47721/2mj-(;>O x2e 2 gy =

PR T S 3 0 Vo S g eSO Vi S S 0 VR 0 1 S Vo F% 3O Vi S T 5 B
m(2c)1/2 N 4m(2c)3/2 4(20)3/2 Tl N 232, + gU2,32
A2 U2 522

+ .
81/2 m 81/2 c3/2

Hint: Read carefully the statement of the variation theorem at the beginning of Sec. 8.1.

From the last paragraph of Sec. 6.2, we know y has the form f(x)g(»)h(z), so we take
¢ =x(a—x)y(b—y)z(c—z), which satisfies the boundary conditions of being zero on the

walls of the box. Since f; g, and 4 have the form of Eq. (8.11), we use integrals evaluated
in the first example in Sec. 8.1. We have

[#rpar=[ [ [ fgIhE P dvdydz=['| f) P e[| ) Py [ (2)F dz =
(@ 130)(H° /30)(c’/30) . Also,

Hp=(H, +H, +H)f()g()h(z)] = ghH . f + fhH g + fgH h and

Joriigdr =] oo e[| g0 Pdy | h:) P e+

[ 1P ax [ 1h(2) P de g(ry () dy +

[1r P ax [ 1) P dy[ h)*H h(=z)dz
= (*a’ 16m)(H° /30)(c” /30) + (a” 130)(c> /30) (7D /6m) + (a” 130)(b° /30)(hc’ /6m) . Then
[ p=H4 dr/ [ g*pdr = @’ 16m) | (a*130)+ (Wb J6m) / (b° 130) + (W 6m) / (¢*/30) =

5h? ( 1 1 1 j hz( 1 1 1 j :
——| —+—+— [=0.12665—| — + —+ — |, compared with the true value
ar*m\a® B> m\a®> b*> c? P

2
h—(L+L+Lj The error is 1.3%.
8m\ a> b C?
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8.6

8.7

8.8

8.9

8) [g*pdr= joz”dqﬁ [Fsinoas job(b R dr = 4n(b 13— 2% 14+ b3 15) = 27b° /15 .

Since V' =0 inside the box and ¢ is independent of the angles, Eq. (6.8) gives
He=—(h*12m)(d?/dr* +2r~'d ldr)(b—r) = h*/mr . So

[ pHigdr = (hz/m)joz” dg | 0” sin@ do | (f (b—ryr PP dr = (4zh* Im)b> (L~ 1) =
b 6xm and | $*H¢ dz / [#*¢ dz = 5h> 14" mb® = 0.126651h% /mb*, compared with
the true value 0.1254%/mb>.

(b) Your function must vanish at » = b and should have no nodes for r <b .

To minimize W, we set OW /0c =0 = 12 /2m —45a/64c” , so ¢ = 4574 m"4q"4 /3214512 .
Then W = (45" m"*a"* 1324 5V Y02 12m) + (15a/64)32% * 13?1453 w4 0> =
0.7259795a"41>2 Im*'* .

(a) Since Vis infinite for x <0, y must be zero for x < 0. Since ¥ must be continuous,

1t must be zero at x = 0.

o 5 _ 2! 1
b) (4|d)=| x*e*Fdx= =——, where Eq. (A.8) was used.
(b) ($1¢)=], o 2 q. (A.8)
. o _ 3! 3b
PV |y = bxle dx=b =
Ao ‘[0 o)t 8t
A B e o d?(xe ™) IR 2 n’
Tlgy=——| xe “——dx=——| (c"x"¢"“ —2cxe “")dx=—
WITlg) 2m IO dx? 2m IO ( ) 8mc
2 A 22
<¢|]_}|¢>:£+h_ w = PLH|P) _3b I
8c¢*  8mc (@ @) 2¢c  2m
2 1/3
w =0= —3—b2 + e and ¢ = (317—”21) . Substitution of this equation for ¢ into W gives
oc 2c m 2h
PR3 (323 323 p23p3 p23pl3
W= 5| + e = g (1.3103707 + 0.6551853) =1.965556 T

The fact that (V) is twice (T) for this variation function is an example of the virial
theorem (Sec. 14.4).

Each function can be multiplied by a normalization constant and then substituted into the

form (8.1) of the variation theorem. The normalized functions (denoted by a prime) are
@5 = N,(f +cg) and ¢ = N,(af +bg) = Nya[ f + (b/a)g]. Defining Nya = N, and

b/a = ¢, we see that these two functions are really the same function.
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8.10

8.11

8.12

[#*par= joz” j(f | ;" e sin0 drd0dg =22r)| (;” e 22 dr = 4x[2/(2¢)*] = 7/,

where Eq. A.8 was used. From (6.60) and (6.6),
2( 52 2 2 2
H¢= B —i—gi e +0- ze e " = —h—(cze_cr —2er ey - Ze e,
dreyr 2u 4reyr

since the variation function ¢ is independent of the angles. So

3 o R 55 ) zet T . 2z
* _ _ cr _ cr _ = cr _
I¢ H¢dz‘-[0 { 2,u(c ree 2cre ") py re drjo s1nt9da9_[0 d¢ =

, where we used (A.8). So

2 , i X
2(2”){__2 (202 /8¢ — 26/402) _ Ze } h Ze
U

(4re, )4c2
W=[¢*Hpdr![¢p*$dr =h>c*/2u— Ze*c/dns, (Eq. 1). To minimize W, we take
OW1dc =0= h’c/u—Ze* Ane,. So ¢ = Ze* uldne,h* . Then Eq. 1 becomes

W =72 u/2(4mey) h* — Z%e* 1/ (4ney)* * = —Z%e* 1/2(4 7y )* h* . From (6.94), this is
the exact ground-state hydrogenlike energy, so there is no error. This is because the
variation function has the same form as the true ground-state wave function.

- 2uc - 4mec

A reasonable guess might be the function ¢ = e

state harmonic-oscillator wave function. Then (¢ | H | ) = (¢ | T | #) + (¢ |V | #). From
the second example in Sec. 8.1 and Prob. 8.3, (4| T | @) = (7[/8)1/2 (W* /m)b"* . Also,

@IV =c]” xte™ dv=2c] N e gy = Gel M2 1 (2b)72] = 3e(/2)" 1 16b°2

’ , which has the form of the ground-

Also [ g*gpdr =2 e 20 g = 22 1(2b)2 . So

W =(¢| H|$)/{¢|#) = h°b/2m + 3¢/16b* . To minimize W, we set
W /8b=0=h*/2m—6¢/16b> . Then b = (3/4)"* (cm)"*/h*” and
W= ("1 /m*?)(3/4)"P (L + 1) = 0.68142(c"*1*” /m*”) compared with the Numerov

value 0.66799¢31*3 /m?3 .

[Tk + DT

T(4k +2)
Hg =—(1* 2m)(d*/dx®)[x* (1 = x)} 1= =(1® ] 2m)(d /dx) k" 1 (1 = x)F = ke (1 = x)* ] =
—(R2 ) 2m)[k(k = Dx*2(1 = x)F = k2" 1= 0 = k2 = R + k(=X - x)F .
Then j ¢*Hp dr =

@ [g*pdr =] @ 10 dk =1 We have

2
_;Z_J.é[k(k—l)x%z(l—x)% C kAR (1 = ) k(=) (= x) 2 dk =
m
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R k(e =DI*TQRE-DRE+1) 2671 T (26T (2k) | K- DI*Ir 2k + )02k - 1)
2m [ (4k) ['(4k) [(4k)

When we evaluate W = (¢ | H | @)/{¢| @), we have the factor

[(4k +2) / T(4k) = (4k + )T (4k +1) / T(4k) = (4k +1)(4k)T(4k) / T(4k) = 4k(4k +1),

where ['(z+1) = z['(z) was used twice. Then
W Ak(4k+1) k(k -1k 1) _ 2K’T k)T (2k) | k(e =Dk -1)
2m P [(2k +1) T(2k + DI (2k +1) T2k +1)

W__ﬁ4k(4k+l)_ k(k=1) 2k L _k(k-1)
2m 2 | 2kQ2k-1) (2k)(2k)  2k(2k-1)
2 _ _ 20472
W=—hk(4k+1) k-l -1+ k-l = B4k + k) , Where I'(z+1) = zI'(z) was
mil* 2k -1 2k-1]  4x*ml*(2k-1)
used.

(b) To minimize W, we set
w_,_ [8k+1 (4K +k)2j _ W (Sk+DQRk-D)-8k* =2k _ n* 8k*-8k-1
ok ml*\2k-1  Qk-1% | ml? (2k -1)* ml*  (2k -1)*
0 8k* —8k —1=0 and k = (8+96"%)/16 =1.11237244 . Then W = 0.125372(h*/mi*),

compared with the exact ground-state energy 0. 125(h2 /ml 2) . The error is 0.30%.

8.13 (a)

| Vo

X = x=[+c¢

[+2¢
and

j|¢|2dT=Il+cSin2|:M:| dx=.[1+chiH2|: Tz }d2=|:£_l+zcsin 2wz j|
- [+2c¢ 0 [+2¢ 2 4r [+2c¢

0

J. |¢|2 dr = I+220 (Eq. 1), where we used the substitution z = x+ ¢ and Eq. (A.2). We
have [¢*Hg dr = [$*T¢dr + [¢*V'dr. Now
2 2 2 2 2
f¢:—h—d Siniz(x+c): h ( T j Sinﬂ(erc): h Sinﬂ(erc)
2mdx> [+2c  8x’m\Il+2c I+2c  8m(l+2c)*  1+2c
8-5
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2 2
SO j¢*T¢ dr = h—zjh sin’ {M} dx = h—zj |§Z5|2 dr =
8m(l+2c)” 7=¢ [+2c 8m(l+2c)
ooo1+2c W
8m(l+2¢)*> 2 16m(l+2c)

[prpar= Voj_oc¢2dx+ Vojll+c¢2dx _ Voj_’:";zﬁzdx— Voj:;zﬁzdx 7,

, where Eq. I was used. Also

[+2¢

~Tof

where Eq. I was used. We have

/ / I+c

.[ |¢|2dx=,[ sin” zlx+e) alxzj.+ sin?| 22| gz = i—Hzcsin 27z

0 0 [+2c¢ ¢ [+2c 2 4z [+2c¢
/ l+20{. 2z(l+c) . 27mc
—— sin —sin

2 4z [+2c [+2c
sin A —sin B = 2cos[+ (4 + B)]sin[4 (4 - B)] gives

[ =L L2 e 20200 201 el ],

l+c

c

} . Use of the identity

sin n
Arx 20+2¢)  20+2)| 2 2« l+2c
*He dr *(f+l} dr
J.¢*V¢dr:Voc—Vol+2C{sin 7 }.Then Wz'[¢ 2¢ :'[¢ > 9 =
27 [+2c j|¢| dr .[|¢| dr

2 h? 2 l+2c( ol )
+ Voc =V, sin =
[+2c 16m(l+2c) [+2c 2 [+2c

2
h =+ e Vo #L _py (Eq. I1). To minimize W, we set
8m(l+2c)” [+2¢ m [+2¢c

h? 2V, Ve 2 l

3 + — 3 5 COS
om(l+2¢)’  1+2c (I+2¢) (+2c)? I+2c
2

OW/loc=0= —

. Multiplication by

(4 20)2 —2¢(1+26) + 1(I + 2¢) cos—F— =
[+2¢

L(1+2c)’V5" gives 0=-

mVo
h? 7zl oL .
- +(+2c) +1(l+2c)cos . Division by / gives
mV, [+2c
h’ 7l : :
0=- +1+2c+ (I +2c)cos (Eq. I1). Since ¥, has not been specified, we
4mlV, [+2c

cannot go further.

2

(b) Substitution of ¥, into Eq. III gives 0 = —%l +1+2c+(l+2c)cos ; xl

. We have

+2c

two lengths, c and /. To relate c to /, we define k as k = ¢/l . Substitution of ¢ = k/ into the
2

last equation gives after division by /, 0 = —% +14 2k +(1+2k)cos

il o To solve this

equation for k, we use the Solver in a spreadsheet or a graphing calculator with equation-
solving capability. One finds that the only positive solution is &£ = 0.1920400. Substitution
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8.14

8.15

8.16

of ¢ =kl =0.1920400/ and V, = 5h*/z*mi* into Eq. II gives
2 2 2 2
W = 5 h s +— 1(2)h k - zh > sin T__ 0.0824h—2. The true result is
8ml*(1+2k)?  7°ml*(1+2k) =°ml*>  1+2k ml

(2.814/47%)(h*/mI*) =0.07128 (h*/mI*) . The percent error is 16%.

Since the ground state is nondegenerate, we have c=E, —E; >0 and E, +c=E,. Let
b=1c.Thenb>O0and E +b < E, <Ey;<E,--- (Eq. 1). Use of Eq. 1 in Eq. (8.4) gives

GIAIP =P E+Y |l B >laP B+ lag [ (B +b)=
Ey " laP+bY " lay[' . Wehave Y " |a, P =1 [Eq. (8.6)]and b) . | >0,

since b > 0 and at least one g, is nonzero (since ¢ is not the ground-state wave function).

Hence (¢ | H | ) > E, .

Hint: Consider the case where one of the parameters has a certain simple value.

(a) Letfobey the boundary conditions of being zero at x =0 and at x=/. Let u = f and
dv=f"dx.Then du= f"dx and v = f'. The integration-by-parts formula (7.16) gives

Jo " ds= gl = (P dx==[ (N dx==[ C (V=] () dx. With g= 1,
where f'is defined by (7.35), we have
1 13 3

12 l [
($|4) = jo x? dx+Il/2(l—x)2 dx =§§+12(%1)—21(5)(12 AR (A YA =

@I §) =02 12m)] | 21" dx = (02 12m)] | ()7 s =
(2 12m) :2 (/') dx+ (12 2m) | 1’/2 (f')? dx = (02 /2m) :2 12 dx + (2 /2m) Ll/z (—1)? dx =

R212m. So (p|H| @)/ {(p| @) =6R>/mI* =3h>/27*mI* = 0.152h>/ mi*, compared with
the true ground-state energy 0.1254%/mi* (a 21.6% error). Alternatively, (7.85) and
(7.86) give f'=1-2H(x —%l) ,s0 f"=-2(d/dx)H (x —%l) =-20(x —%l) . Then

(p| H| ) = —(hz/zm)jé f*f"dx = (h2/m)jéf5(x —ihax=@*/m) L) =r12m.
(b) (PIH |y =-0>/2m)[" f*f"dx =1 12m)[” (f") dx =
2 12m)[" (') dx+ (02 12m) [ ; (') dv+ (0% 2m) [ " (f') dx = 0+ (2 12m) | ; (f') dx +0

= (1*/2m) j é (I -2x)% dx = (0 12m)[I* (1) - 4l (X 1) + 4L P = 1P J6m .
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00 V4 2
817 (@) Wip=] &2 % 2 | Tsingdo [ 7 dp=47(1/2%)7" (a1 200" =
7z3/2a8 /232 ¢3% | where (A.10) was used. The variation function ¢is a function of 7 only,
so Eq. (6.8) gives:
T =—(W22m)(d>/ dr* + 27"\ d dr)(e ™ %) =

—-n* /2m)e_cr2/“g (4c*r?Jag —2claj —4clal).
GIT )=~ m)[ "% e ag ~3er? Iad)dr [ sin0.d0 | 02” dg =
—4x(h* Im)[(2c? 1ag)(318) 7" (al ] 2¢)°"* — Belad)(1/4) " (a3 12¢)** ] =
351()7127r3/2/25/2 mc'? | where (A.10) was used. From (6.43),
_ 2 © _2cr?/a} T . 2z _ 2 1 © _2ewla? _
(B|V | 4)=-Z(e /4;rgo)j0 e Ordrjo sin @ dejo dg=—-4nZ(e /4;rgo)(2)jo e 2N gy —

27 Z(e* /Aney)(~ay/ 2c)e_26W/“§ 0= —nZe*al l4me,c.
So (| H | @) =(|T|$)+{B|V |§) = 3agh*n>?/2"*mc"? — nZe*al /dne,c.
W=(¢|H|p)/{$| @)= 3h*c/ai2m — 2> Ze*"* lAneyayn'?
Then 0W /dc = 0 = 3h*/2a3m — 2% Z&? 14 e a,n'*c'* and

c=[2°Z%*m? 19nh* (4 7ey) g =[2° Z2e ' m? 197h* (4 mey)* [0 (47e,)? ImPe* 1= 822 197
Substitution in W gives W =

4n*Z° B3ragm —8Z%e* 12nsyayw = 4Z%e* 21 sya, — 8Z%e* [127° 40, = —4Z%e* 11277644,
= —0.424417%¢* /4 7s,a, , compared with the exact value —0.5Z%¢* /475y, for an
infinitely heavy nucleus. The error is 15.1%.

(b) Time can be saved by suitably modifying the equations in (a). We have
Gip=] e 27 % 2y | 02” [T100 P sing do dg =1/ 2%)7" (4] 1 2¢)2 1=
7 2ag/ 27232 since Y20 is normalized. Equations (6.8) and (6.13) give
~ _ h _H A —er?)a?
T =—(h12m)(*) or +2r~'0/0r — h2r2[P) e /YY) =
—(R212m)[AcA lad —6¢/a2 — 2223 )e G YL.
~ 0 2w o7
@IT | gy =~ m). e 214G (2e2* Jad —3er®fad - 3) dr [7[71v P sinododg=
—(1? Im)[(2¢* 1ag)(318) 7" (ak | 2¢)°* — Belad )14 " (ad 12¢)** = 32722 ay/(2¢)?]
= 2761071272'1/2/29/21’1’101/2.
© 52/l 2w o7 .
(B|V | )= —Z(e2/4;zgo)jo e Ordrjo jo 1Y) P sin0dodg =
~Z(e Amey (D) e G dw = ~Z(e* 1475, )(L)(—ad 126)e 2D |7 = —ZePal 144 )e .
Then (@ | H | #) =(|T | $) + (B |V | #) = 2Tagh*7"?12°? mc"? — Ze*al 14(47ey)c .
W=(¢|H|p)/($| )= 2Th*c/2a}m —2°*Z*c"? /A zs a,m""? . Then
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oW 19c =0=27h*2agm —2"? Ze* |4 ne apn' > and
€= [232264’%2/729”;14(4”50)2 ]a§ = [2322641712/72972?14(47[50)2][(47[80)2 n* Im*e* = 82217297

2 2 2 325 2 1/2 22 4 22
27h° me 87 27 Ze 8“7 Z%e” 4 8:_0.047157026

W= 2 - 2 5e 12
2aym dregh” 1297 Anggagm' = 277 dregay 27w 47y,

The calculation gives an upper bound to the energy of the lowest level with / =2, which
is the n =3 level. The true energy is —(1/ 3%)(Z%? 18reqay) = —0.0555555(Z%¢° l4reyag).

8.18 With the origin at the center of the box, the figure in Prob. 8.2 shows that }is an even
function. As noted in Secs. 8.2 and 7.5, the ground-state wave function in this one-
dimensional problem will be an even function and the first excited state will be an odd
function. The n =2 particle-in-a-box (PIB) wave function is an odd function (see Fig.
2.3) and so must be orthogonal to the true ground-state y, which is even. Hence using this
function as the variation function will give an upper bound to the energy of the first
excited state. Modifying the equations in the Prob. 8.2 solution, we have

$1T|¢)= (Wpip.2 | Hpp | Wes2) = Eppo(Wem2 | Ve 2) = Eppo = 22k /8ml* =
4720 12mI* =19.739211% /mi*.
34 ., . 31/4
(BIV | ) =(2/]) jm Vysin®(2zx/l)dx = (Vy/D)[x — (I/47)sindzx/D)]|1, =
Vol2 -1 —(4r) ' sin(37) + (47) ' sin 7] = 0.5V, = 0.5%° /mI”. Then
(¢ | H | ¢,) = (19.73921+0.50000)2> /mi* = 20.239214* /mI* . The error is 0.016%.

8.19 (a) We use column 3, which has a zero, to expand the determinant:

3 1 i
-2 4 3 1] )
-2 4 0|=i —0+% :z(—14—20)+%(12+2):7—341
) 5 7 -2 4
5 7 3

(b) We begin by adding column 4 to columns 2 and 3 and adding —2.5 times column 4 to
column 1. Then the fourth-row elements are used to expand the determinant:

2 5 1 3 -55 8 4 3
-55 8 4 =55 4 4

8 0 4 -1 105 -1 3 -
- =2[105 -1 3|=2[105 -4 3|=
6 6 6 1| (35 7 7
35 7 71 |35 0 7

5 2 2 2 0 0 0

55 4 4 -

25 0 7:2(—4)‘35 7‘=2(—4)[5(7)—3.5(7)]=—84.

35 0 7 '
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Copyright © 2014 Pearson Education, Inc.



In the first third-order determinant, the third column was subtracted from the second and
then the first row was added to the second row.

8.20 (a)

Jj k
+04+04+0+---=af|0 m --|=aff

O O N
O ~. 0g

h
k
m

O O O Q9
Lo o~ &
SO~ 0y o
L3 x>

etc., where each determinant was expanded using the elements of the first column.

(b) The expansion (8.22) of a second-order determinant has 2 terms. When we expand a
third-order determinant, as in (8.23), we use 3 elements from the same row (or column),
each element being multiplied by its cofactor, which is £1 times a determinant of order
3—-1=2, which has 2 terms; hence there are 3(2) = 6 terms in the expansion of a third-
order determinant. When a fourth-order determinant is expanded, we use 4 elements from
the same row (or column), each element being multiplied by its cofactor, which is +1
times a determinant of order 3, which has 3(2) terms. Hence there are 4(3)(2) terms in the
expansion of a fourth-order determinant. Continuing in this manner, we see that an
nth-order determinant has n! terms.

8.21 Expanding using the elements of the top row, we get

a b 0 0

d 0 - 0 0 0
c d 0 - 0

0 e
0 0 e

=a -b

0 < o

0 0

Expanding the two determinants on the right of this equation using the top-row elements,
we get

gl
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8.22

8.23

8.24

A similar expansion of the second determinant on the right of this last equation completes
the proof.

(&) 123—even, 132—0dd, 213—o0dd, 231—even, 321—o0dd, 312—even.

(b) The first term on the right of (8.24) corresponds to the even permutation 123 and has
a plus sign. The second term (—a,,a,3a5,) has the odd permutation 132. The third term

has the odd permutation 213. The fourth term (a,,a,3a;,) has the even permutation 231.
The fifth term has the even permutation 312. The sixth term (—a,3a,,a5,) has the odd
permutation 321.

(©) Z(il)aliazj *-a,, , where jj...p is one of the permutations of the integers 12...n, the

sum is over the n! different permutations of these integers, and the sign of each term is
positive or negative according to whether the permutation is even or odd, respectively.

2 -1 4 2 16 1 -+ 2 1 8 1 -1 2 1 38
30 -1 4 -5 3 0 -1 4 -5 0 3 -7 1 -29
- - -
2 1 1 -2 38 21 1 -2 8 0 2 -3 -4 -8
-4 6 2 1 -4 6 2 1 0 4 10 5 35
-4 2 1 8 1 -5 2 1 8 -+ 2 1 8
1 2 58 14 2 58
o 1 -8 3 -F 01 -5 5 -5 01 -5 5 -5
0 2 -3 -4 -8 o o L -1 2 o 0 1 -l 2
3 3 3 19 1
86 7 337 86 7 337
o 4 10 5 35 o0 o & I M3 o o & I 3

1 —% 2 1 8
4 2 58
o 1 -3 5 -3
16 92
0 0 1 v 1o
1509 1509
0 0 0 57 57

The bottom row is (1509/57)x, =-1509/57,s0 x, =-1.
The third row is x; —(16/19)x, =92/19 = x; +16/19 and x; =4.
The second row 1s x, —(14/3)x; +(2/3)x, = -58/3 =x, —=56/3-2/3 and x, =0.

The first row is x; =3 x, +2x; +x, =8=2x+0+8—1 and x, =1.

Division by a very small coefficient produces very large coefficients, which when added
or subtracted from coefficients that are not large can lead to large errors in the solution,
due to the fact that the computer or calculator uses a limited number of significant figures
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to represent numbers. For example, suppose the equations are 1x 10_10x1 +x, =1 and

X, —x, = 0. Further suppose that the computer is limited to 8 significant figures for each
number. The correct solution is x; = x, = 1/ (1+1x107'%) = 0.9999999999 . If we divide
the first equation by the x; coefficient we get x; + 1010)c2 =10" (Eq. 1) and subtracting

this equation from the second equation, we get —(1 + 1010)x2 =-10'" (Eq. 2). Because the

computer is limited to 8 significant figures, the coefficient of x, (whose accurate value is

—1.0000000001x10'%) is stored as —1.0000000x10'® and Eq. 2 becomes
~10"x, = -10'°, with solution x, = 1. When this slightly inaccurate value is substituted

into Eq. 1, we get x; + 10" =10", which gives the very inaccurate result x=0.

8.25
2 5 1 3 1 25 05 15 |1 25 05 15
8§ 0 4 -1 8 0 4 —1_20 20 0 -I13|
6 6 6 1| 6 6 6 1| “jo -9 3 8|
5 2 2 2 5 2 2 2 0 —145 —45 -55
1 25 05 15 1 25 05 15
0 1 0 0.65 0 1 0 065
2(=20) = 2(-20) -
0 -9 3 - 0 0 3 =215
0 —-145 -45 -55 0 0 -45 3.925
1 25 05 1.5 1 25 05 1.5
0 0 0.65 0 0 0.65
2(-20)3 =_120 =—-120(0.7) = -84
0 0 1 -0.7166... 0 0 1 -0.7166...
0 0 -45  3.925 0 0 0 0.7

8.26 (a) For a nontrivial solution to exist, the coefficient determinant must be zero. The
coefficient determinant is 8(4) — (-3)(—15) = —13, so the solution is x =0, y = 0.

(b) The coefficient determinant is —4(%) —5i(3i) =—15+15 =0, so a nontrivial solution

exists. (Note also that the second equation is the first equation multiplied by —5i/4.) Let
y = k. Then the first equation gives x = 3iy = 3 ik, so the solution is x = 2ik, y =k,
where k is any number. (Alternatively, we can take x = 3ic, y =4c, where c is an

arbitrary constant.) Use of the second equation instead of the first gives the same solution.

8.27 (a)
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8.28

230 1 2 3 0 1 2 3 0
120—)0—5—70—)01%0
310 0 -1 -5 0 0 -1 -5 0 0 0 -
0
0
1

N W —

1 0
0 1
0 0 0 0 0

The last row gives z = 0. The first two rows give x =0 and y =0. As a check one finds

— Ll »n|=
S
\
(=)

that the coefficient determinant is nonzero.

(b)
1 2 3 0 1 2 3 0 I 2 3 0 1 0 % 0
l1 -11 00 -3 -2 050 1 % 0—>0 1 % 0
7 -1 11 O 0 -15 -10 0 0 -I5 -10 0O 0 0 0 O

The last row reads 0 = 0, indicating that z can be assigned an arbitrary value. Let z =k,
where £ is an arbitrary constant. Then the first row gives x = —5k/3 and the second row

gives y =—-2k/3. As a check the coefficient determinant is zero, showing there is a

nontrivial solution.

A C++ program that avoids division by a coefficient that is zero or very small (see Prob.
8.24) is the following:

#include <iostream>
#include <cmath>
using namespace std;
inti,j,n,s,w,Kk,r;
double a[11][11], b[11], x[11], temp[11][11], tt, fac, sum, denom;
int main() {

cout << "Enter N (less than 11): *;

cin >> n;

for (i=1; i<=n; i=i+l) {

for (=1, j<=n; j=j+1) {

cout << "i= " << i << " j= " <<j << " Enter coef. a(i,)) "
cin >> afi]fj;
}
cout << "i= " <<i << " Enter b(i)";
cin >> Dbli];
}

for (i=1; i<=n-1; i=i+1) {
if (fabs(a[i][i]) < 1e-6) {
for (s=i+1; s<=n; s=s+1){
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if (fabs(a[s][i])<1e-6)
continue;
for (w=i; w<=n; w=w+1) {
templ[i]iw] = a[i][w];
ali]lw] = a[s][wI;
a[s][w] = templ[i][w];
}
tt = bJ[i];
b[i] = b[s];
b[s] = tt;
goto labell;
}
cout << "Failed; division by small number problem";
return O;
}
labell: denom=ali][i];
for (j=1; j<=n; j=j+1) {
a[i][jl=ali][j}/denom,;
}
b[i]=b[i}/denom;
for (k=1; k<= n-i; k=k+1) {
fac=a[i+k][i];
for (j=i; j<=n; j=j+1){
a[i+K][i]=ali+k][i]-fac*a[i][il;
}
b[i+Kk]=b[i+k]-fac*bli];
}
}
X[n]=b[n}/a[n][n];
for (k=1; k<=n-1; k=k+1) {
sum=0;
for (r=n-k+1; r<=n; r=r+1) {
sum=sum-+a[n-K][r]*x[r];

}
X[n-k]=b[n-k] - sum;
}
for (k=1; k<=n; k=k+1) {
cout<< "k = "<< k << " x(k) = " <<x[K] <<endl;
}
return O;
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829 (@) F; (b) T; (c) F; (d) F.

8.30 Wehave (f, | f;) =(f, | f,)*=b*=Db, since b is real. Also,
(frl H | f1) =/ | H | f,)*=a*=a, since a is real and H is Hermitian. The secular
equation (8.56) is
4a-2bW  a-bW
a—-bWw  6a-3bW

5b*W? - 22abW +23a*
W= (22ab +/484a2b? — 460b%a’ ) /10b2. W, =1.710102a/b, W, =2.689898a/b .

=0=(4a—-2bW)(6a—3bW)—(a—bW)* =

The set of equations (8.54) for W, is

(4a-2bW)c, +(a—bW)c, =0 0.579796ac, —0.710102ac, =0
(a=bW))c, +(6a—-3bW;)c, =0 —0.710102ac, +0.869694ac, =0

Either the first or the second equation gives ¢, =1.224745¢, . Normalization gives
@Bloy=1=(afi+erfslafi+efs) =c{h 1 ) +2aafi| )+ (] )=
(1.224745) ¢5(2b) + 2(1.224745)c,c,b + ¢ (3b) so 8.449491bc5 =1 and

¢, =0.344021h"% . ¢ =1.224745¢, = 0.421338h"""? . The approximation to the

ground-state wave function is ¢ = 0.4213386™"2 £, +0.3440216™ "2 f, .
The set of equations (8.54) for W, is

—-1.379796ac, —1.689898ac, =0

—1.689898ac, —2.069694ac, =0

Either the first or the second equation gives ¢, = —1.224745¢, . Normalization gives
L=l (1 i+ 2ae(h | )+ el | ) =

(—1.224745)? c3(2b) — 2(1.224745)c,c,b + c3 (3b) = 2.050510b¢3 , s0 ¢, = 0.698343h
and ¢, = ~0.8552926""% . The approximation to the first excited-state wave function is
¢ =—0.8552926""2 f, +0.698343b7"2 £, .

8.31 Wehave H,, = H5= H,,, since H is Hermitian and the basis functions are real. Also
Sy = | ) = | [205={f1 | f2) . The secular equation is
Hy =S\ W Hy = S,W
Hyy =S80 Hy = SyW
(H,, _SllW)2 =(H), _Sle)za Hy =S8W =*(H; = §,,) (Eq. 1),

= (H11 _SIIW)2 _(le _Sle)2 =0
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8.32

Hy FHy, =S FSpW, W=(H; FH,)/ (S, FS51,) (Eq.2)

The equations of (8.54) are

(Hy = SyW)ep + (Hyp = $, )¢, =0

(Hyy =SiuW)eyp + (Hyy =5, )¢, =0

The first equation gives ¢,/ ¢, = —(H,; =S \W)/(H, = S$;,W) =-1(£1) = F1 (Eq. 3),
where Eq. 1 was used. The upper sign in Eq. 3 goes with the upper sign in Eq. 2.

(a) The particle-in-a-box (PIB) wave functions f, and f, are even functions (Fig. 2.3) if

the origin is put at the center of the box. The potential energy in Prob. 8.2 is an even
function and each wave function in this one-dimensional problem will be either even or
odd (Secs. 8.2 and 7.5), with the lowest state being even, the first excited state being odd,
the second excited state being even, etc. Because f; and f, are even, we will get upper

bounds to the lowest two states of even parity, which are the states with energies E, and
E;.

(b) The (PIB) wave functions f; and f, are eigenfunctions of a Hermitian operator H
and have different eigenvalues, so they must be orthogonal.

(c) The PIB Hamiltonian has ¥ = 0 inside the box so Hpyp =T inside the box and since
f; and f, are PIB eigenfunctions with quantum numbers » =1 and 3, we have

Tf, = e.fy = (W*/8mi*) f; and Tf, = &, f,= (9h*/8ml*) f; . So

g = h*/8mi* = 4x*h* /8mi* = 4.934802h% /ml* = 4934802V, and

£, = 9h*/8mi* = (9)4r*h? 18mI* = 44.413220h% /mI* = 44.4132207, . Also
AT = e fil f)) =8 i=1,2.

(d) Because of orthonormality of the PIB functions, S =06, . Wehave

Hy; =T;+V; =6;¢,+V; (Eq. 1). The integral (f, [V'| f;) was found in Prob. 8.2 and is

1/
Ba=CA V1) = @D Vysin® (zx/l) dx = 0.8183107, = 0.8183107% /mi” .

Vy ={fo |V | f2) = (2/1)[13/:/41/0 sin®(3zx/1)dx = (V,y/1)[x — (1/67)sin 6zx/1)][31} =

Vol2 =1 = (67) ' sin(97/2) + (67) ' sin(37/2)] = Vy[1 - (37) 1= 0.393897V, =

1/
0.3938971 /mI® . Finally, Vi, =V, = (f; |V | f2) = @/0) | "V, sin(x/ D) sin(3mx/1) dx =

(Vo /D(1/27)sinQRrx/1) — (1/4x)sin(4xx/D)] [y} = ~(Vy /) = =0.3183107 /mi* .
Equation 1 gives H,, = & +V,, = 4.934802V, + 0.818310V, = 5.753112V,,

Hpy, =H, =0+V,, =—0318310V,,

H,, =&, +V,, =44.413220V, + 0.393897V,, = 44.807117V,,. The secular equation is
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8.33

= =0 an
W? —50.560229WV, +257.6790V; = 0. The roots are 44.80971V, = 44.8097 11> /ml*

and 5.750517h%/mi* . The ground-state energy error is much less than when only f; was
used. To find the ground-state ¢, , we solve (8.54) with W =5.750517V,,, which is

0.002595V,c, —0.318310¥,c, =0
~0.318310V¢; +39.056600V,c, = 0

The second equation gives ¢, = 0.0081500c¢, . The normalization condition is

@lo)=1=(af+aflafi+afy) = (il +2aalfil L +alhlfH) =d +a.
s0 1=¢ +(0.0081500)*c? and ¢, = 0.999967, ¢, =0.0081497 .
¢, = 0.999967 f; +0.0081497 1, .

To find ¢ for the E; state, we solve (8.54) with W =44.80971V,,, which is

~39.056607,c, —0.318310¥,c, =0
~0.318310V,¢; —0.00259%,c, = 0

The first equation gives ¢; = —0.00814996¢, . The normalization condition gives
1=cf +c3 =(—0.00814996)*c3 +c5, and ¢, = 0.999967, ¢, = —0.0081497 .
¢ =-0.0081497 £, + 0.999967 f, .

(e) Wecould take f;, f,, f3 asthe n=1, 2, 3 PIB wave functions.

h =x2(l—x), /o :x(l—)c)2
Sy =20 -2)| P -2) = [ (-2 + 28y de =17 (L =2+ = 171105
Sy = (x(I = x)* | x(I - x)*) =J.;(x214 —4PX +61°x" -4l +x0)dx =1 (L -4 4824 1)
=1"/105
Sy =8y, = (x* (1 —x) | x( = x)*) =J.;(l3x3 =30x 4307 X0 ax =" (L -3+3-1)=17/140
Hfy = —(h?12m)(d? 1dx*)(x*1 - x*) = (B? Im)(3x - I)
Hf, = —(h? 12m)(d* 1dx*)(xI* = 2Ix* + x*) = (h* /m)(2] — 3x)
3 2 2 2 ) 3 4
Hy ={(fi|H| f,)=®*Im)x*(I-x)|3x=1) = (h /m)jo(—z x* + 40 —3x*) dx
245 522
= (WP Im)(-++4-3=LPn’/m
Hyy ={fy | H| f,) = (W Im)(x(I - x)* | 20 = 3x) = (h*/m) j ; (Q2Px=71x* +8Ix* —3x*) dx
=W /mPE-1+8-3=LPr’/m
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Hpy, ={fi | H| f,) = (W /m)(x*( - x)| 2] = 3x) = (hz/m)jé(212x2 — 5% +3xY) dx
=W /mP(E-3+3)=LP1/m
Since H,, = H,, and S}, = §,,, the results of Prob. 8.30 apply. We have
W =(Hy, —Hy)/ (S, - Sp) = (0P /m) (& — &) /(1710517 /140) = 21(h* /mI*) and
W =(Hyy +Hypy)/ (Sy + ) = (0P Im)(k + &) / (171105 + 17 /140) = 5(1* /m1*) . The true
energies are E, = h*/8mi* = 47 h? /8ml* = 4.93480h° /mI* and
E, = 4E, =19.739214* /ml* . The errors are 1.3% and 6.4%.
From Eq. 3 of Prob. 8.30, the ground-state ¢ has c¢,/c; = F1, where the plus sign goes

with the ground state. Normalization gives

Glo) =1=(afi+erfalafi+erfs) =S +266,8, + 6385, = ¢ (S F 281, +8y) =
2¢2 (S, FS15), 50 ¢, =[2(S;; FS;5)]. For the ground state,

¢, = (fi + [-L)/[2(S,, + S;,)]"* . For the first excited state ¢, = (f; — f>)/[2(S;; = S;2)1"2.
The nodes of f, = x*(I—x) are at 0 and /. To find its extrema, we set S =0=2x]- 3x?
and we get x =0 and x =2/. Since f; is zero at the ends of the box and is positive

everywhere inside the box, x = %l must be a maximum. The nodes of f, = x(/ - x)* are

at 0 and . We set f,' =0=3x> —4/x+1* and get x=1/ and x = 11.Since f, is zero at
the ends of the box and is positive everywhere inside the box, x = %l must be a
maximum. (A little thought shows that if we flip the f; graph about the center of the box,
we get the f, graph.) The ground state is

N(f, + f,) = N[x*(I - x) + x(I — x)*] = Nx(I — x)[x + ({ - x)] = Nix(l - x) . This parabolic
function has nodes at 0 and / and by setting its derivative equal to zero, we find a
maximum at the center of the box. The first excited state is

N'(f; = f2) = NTx*(I - x) = x(1 - x)* 1= Nx(I = x)[x — (I = x)] = Nx(I - x)(2x — ) . This
function has nodes at 0, /, and //2. Its derivative is zero at x = (% +~/3/ 6)/ =0.79] and at
X = (% —3/ 6)/ = 0.21/ . Since this function is zero at x = 0 and is negative for very small

x, 0.21/ is a minimum. Sketches (not to scale) are

x(1=x) x(l-x)’

x/1
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fi+f,

x/l

8.34 x=x'+11 and the functions are f; = (x'+1N(LI-x"), f, =" +1)*EI-x),
fi =" +3DE1-x)=x), fy="+1D)*(E1-x")?(—x"). Replacing x' by —x', we see
that 7, iseven, f, is even, f; isodd, and f, is odd.

/
8.35 S, =(f|fo)=x(l-x)| x*(I - x)*) =j0(—x6 +30° =30%x* + Px)dx =
U(-1+3-2+1y=1"/140.
Sy =(fo | ) =(x* (= x)* | x* (I —x)*) = jé(xg — 47 +61°x5 — 4P + *xY)dx =
9 9
PE—2+5-2+1D=0/630.
Hf, = —(h?/2m)(d? 1dx*)(xl — x*) = h*/m. .
~ /
Hyy = Hy =Sy H L) = P =x) [0 /m) = (12 /m)[ (% = 20 + 1Px) dx =
(WP /m) (-2 +1) =11 /30m .
Hfy = —(h?12m)(d? 1dx*)(x*1* = 2x°1 + x*) = —(W* I m)(I* - 6x1 + 6x%)
Hyy ={fy | H| fo) = —(h* /m)(x* (I — x)* | I* — 6x] + 6x°) =
(2 Im)| O’ (6x° —181x° +1972x* —81°x% + 1*x?) dx =

~(1 m) (-8 + L84 Ly = 5717 /105m.

8.36
e i’
W —
0= |F3n =530 Ha =S5 | dom 840 280m 5040
Hys =SysW Hyy =Syl n*’ P n*r’° M

280m 5040  1260m 27720
We multiply row 1 by 5040m/I° and row 2 by 55440m/I” to get

8-19
Copyright © 2014 Pearson Education, Inc.



8.37

8.38

1260 —6ml*W  18K* > —ml*W |, . 4n i
0= = m*I*W* —120mI*1*W +1980%%1* (Eq. 1)
1984 —1iml*W  441*1* —2ml*W

The quadratic formula gives
W = (h*/mi*)[60 £ %\/(120)2 — 4(1980)]=19.75078%% /mi?, 100.24921* /mi*
W =0.5002930/4%/mi*, 2.5393425h% /mi*.

The percent error (PE) is PE =100(¢, —y,) /y,. Letting X = x//, we have

_ 100[4.404X (1- X) +4.990.X*(1- X)* — 2" sin(7 X)

PE
V2 sin(z X))

provided X # 0. In making the graph, we start and end at numbers like X = 0.000001 and
0.999999 to avoid the indeterminate number 0/0 at 0 and 1. We get

0.2 ~

0|0 0.2
-0.2 ~

PE

N\

0.4 0.6 0.8
X

-0.4 -

-0.6 -

-0.8 -

-1.0 -

The form of ¢, is shown in Eq. (8.69). We use the form of the coefficients given in the
determinant of Eq. 1 in Prob. 8.35. Substitution of W, = 0.50029030/% /mi* gives
0.189859h%c{® —0.044348h*1*c{?) =0
~0.487824h%c{? +0.1139471°1%c{P = 0
We get c§2) =0.233582/ 204(‘2) . The normalization condition gives
Bl =1=(afs+esfylesfs+esfy) = C32<f3 | f3) +2c3e,(f5 | f4) +C§<f4 | f4) =

. c + . c,C +c . We get
(0.233582)% ;117 /840 + 2(0.233582)c,c,I*1° /5040 + c;1'1 /27720 . We g
¢, =71.84817"2 Then ¢, = 0.233582/%c, =16.78217"* . So
¢y =16.781""x(1 = x)(31 - x) + 7184815 (1 - x)* (L 1 - x).
The form of ¢, is shown in Eq. (8.69). We use the form of the coefficients given in the
determinant that precedes Eq. (8.71). Substitution of W; = 1.293495h% /mi* gives
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8.39

~16.33581h%c®) —3.525861h%*cS) =0
~10.57758h*c —2.2830264% 1% = 0

We get 01(3) = —0.21583612053) . The normalization condition gives
@lo)y=1=(af+aflafi+af) =l M +2a0fi| LH+E(L] )=
(—0.215836)* c31*1° 130 + 2(~0.215836)c,c, 11" /140 + c31° /630 . We get ¢, =132.721772.
Then ¢, = —0.215836/%¢, = —28.646/ "> . So

¢y = —28.6461 " 2x(I — x) +132.721*x* (1 - x)*.

(@) We have ¢; = a; +ib, and c; = a, —ib,. We start with ¥ as a function of the a,’s and
b,’s, and then make the substitutions a; = (c; +¢; )/2 and b, = (¢, —c, )/2i for each a; and

b;. This converts W to a function of the ¢;’s and ¢; ’s, where we consider ¢; and ¢; as

independent of each other. The chain rule [Eq. (5.53)] gives

6W:8W8ai+6W%:lé_W+i6_W and
Oc; Oa; Oc; 0Ob; Oc; 2 Oa; 2i Ob;

oW _ oW dg; N ow ob, _1ow 10w
oc’  0a; ocf  Ob; o 2 0a; 21 O

(Terms involving 0W/0a;and OW/db; with j #i do not occur because da;/0c; =0 and

0b;/0c; =0.) Setting OW/0a; =0 and OW/0b; =0, we get OW/dc; =0 and oW /ock=0.

(b) Since the coefficients can be complex, each c; in (8.45) is changed to c;‘ to give
WX, 2 c;-kcijk =22 c;‘ckij (Eq. 1). Taking 0/0c; of Eq. 1 with the c;‘ ’s being
considered as independent of the ¢;’s and hence being held constant, we have
(OW /oc; )Z ch ckS]k +WZ 2 cj5kl = Z hI cj5kl i

% . .
0+Wx, c]Sﬂ 2 c]Hﬂ [where (8.46) was used] so X [(H; =WS ;)c;]=0, which is
the complex conjugate of (8.53). Taking 0/ 60? of Eq. 1 with the ¢,’s being considered as
independent of the ¢, ’s, we have
@W10c)) X ;2 cep Sy +W X, X4 (0C7 /8¢ )¢y Sy = X, Xy (0T 106 Yoy Hy
(oW /oc] )Z 2k c]cijk +W2, 20,08, =2, Zk S H
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8.40 (a) Use of (8.40) gives (f; | H-W,, |4,)={f; |H-W,| X, c\¥ f)=
Sl | H=Wo | fde® = el f 1H | S =Wo Sy | flei® =0 for i =1,2,.
(b) Use of (8.40) gives
(b | H =W, |40 =Ep i fi |H =W, | 8,) =2 ¢ fi |H =W, | 4,) =0, since
il H- W, |@,) was shown to be zero in (a) for all k. The labels a and g are arbitrary,
and interchange of « and S gives (¢, | H- W4 | ¢5) = 0. Taking the complex conjugate,
we get (¢, | H =W | ¢5)*=0
(c) Wehave (¢ | H -W,, |$,)={$, | H-Wy|$p)* (Eq.1). The left side of Eq. 1 is
(@5 |I:I | 4,0 =W, {@s | 9,) (Eq. 1-1s). The right side of Eq. 1 is
B | A=Wy | $5* =B | 6) =Wty | 901% = oy | F | 8) %= Wi, | 90" =
(@5 | H | $.) —Ws{ds | 4,) (Eq. l-1s). Equating the last expression in Eq. 1-rs to the last
expression in Eq. 1-Is, we have (¢ | H | 4,) = Wy(ds | 4) = (b5 | H | 4,) =W, (dp | 4
which becomes (W, =Wz )X¢; [4,) =0.Soif W, #W,, we have (¢, [4,) =0.
(d) The result (g|H | g) > E, follows from (g|g) =1 and Eq. (8.19) with k =m -1
and g=g.
(€) We showed in part (b) that (¢, | H =Wy | ¢5) = 0,50 0=, | H | #p) = Wy(d | f5)
(Eq. 2). We showed in (c) that (¢, [¢,) =0 if W, #W,, and the ¢ functions can be
chosen to be orthogonal when W, =W, . So Eq. 2 becomes 0 =(g, | H | @y for a = f.

(N (g|H|8)= (X0 bathy | H | Xy bydp) = Loy X b by(d | H | dg) - Simce
(9, | H | ¢p) =0 for a # f§, when we do the sum over 3, only the term with S =« is
nonzero, and (g | H | g) = X"_ b*b (4, | H|d,) =>"_|b, W, (Eq.3), where the

a=10¢q
first equation in (8.44) with ¢ normalized was used.

(9) Since g is normalized, we have

1=(g|g) =51 b4, |Z 1bsg) = - lb;bﬂ<¢a | 9 = a-1 z%ﬂ bibgd,p=
Yt by

(h) Since a goes from 1 to m in the sums in (f) and (g) and since the #”s are numbered in
order of increasing value, we have W, <W, and 3"_, |b, [* W, <X"_ |b, |* W, . Hence
Eq. 3 in part (f) gives (g | H | g) <5y | by [ W, =W, X0y | b, =W,

(i) From parts (h) and (d), W,, >(g|H |g) > E,, .
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8.41

8.42

8.43

8.44

8.45

7 3 0 7 2—i 1+i 7 24 1-i
A*=|24i —2i —i AT=l3 2 4 Al 23 2 4
i 4 2 0o i 2 0 —i 2

(&) Only Fisreal. (b) CandF are symmetric. (C) D and F are Hermitian.

Since UTU =1, we have , = (1), = (UTU), = £, (UT), (L), = =, ufu,, , where (8.90)

was used.

L=V V) =V fi | XV, ) = 2 X Vi IV ) = Z 2, ViV L ) = 2 25 V6
=Y.V, [*. Similarly, ¥, | w, *=1.
Also, 0=(w|V) =(Z, w fi |2,V ;) =2 2, Wi (fi | ) =2, 2, WiV, = 2, wiv, .

The characteristic equation (8.81) for A is

0-4 -1
3 2-4

The roots are A = %[2 +V4-12]=1+ V2i, 1=+/2i . The sum of the eigenvalues is 2,

which is the trace of the matrix.
For A, =1+ ﬁi, the equations (8.82) are

—ﬂcl(l) - cg) =—(1+ \/—i)c(l) - (1) =0
3c1(1) +(2- ﬂ)cgl) = 301(1) +(- \/_Z)C(l) =

det(4; — A5;) =0 =

‘ A2 -21+3

The first equation gives cg )= —(1+ \/— i)c D As a check, the second equation gives

3 3 1++20

1 _ (1) (1) 0]
c - 1++/2i)c;
: 1-~/2i 1 N2i1++/20 B )

The normalization condition (8.83) is
L=[eM P+ Pl P+ (~1-V2i)(=1+20) [e{" P= 41" . So |V |= L. If we take
e =1 then ¢§ = ~(1++2i)c{") = 1~ 1/2i . Infinitely many other choices are

possible. For example, | cl(l) = % so normalization means that | cg) = % . If we take

V) = 1\/_ then ¢V = 1= 3\/51 ) =13 +%x/gi.

For 4, =1- V2i, the equations (8.82) are
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26— = —(1-2))c? — P = 0
3¢ + (2= )P =362 +(1+J_ 20 =

The first equation gives cé )= —(1- NG i)c 2) As a check, the second equation gives

o3 o 3 1- V2i 6@ = _(1=2i)e®

K 1+\/_l 1+\/_l1 \/_l

The normalization condition (8.83) is
L=1eP P+ P=le® P+ (-1-V2i)(=1+20) [cP P=4 [P . So [P [= L. If we

take c?) = 1, then ) =—(1- V2 el = %+%\/§i . (Other choices are possible.)

The eigenvectors of A are

1 1
M _ 2 2 _ 2
c’' = c =
1 1 : 1 1. [~
[—5—5 21} L‘sz 2’]

The characteristic equation (8.81) for B is
2-4 0

det(B; ~40;)=0=|" " "

‘=z2—44+4

The roots are A = %[4 +V16-16]=2, 2. The sum of the eigenvalues is 4, which is the
trace of the matrix.
For A, =2, the equations (8.82) are
2= +0c8” = 0c” +0c” =0
9¢” + (2= 2)et =9¢V +0c8) =0
The second equation gives c(l) = 0. Normalization gives | ¢, (M |=1 and we can take
i =1. The second root equals the first root and the second eigenvector is the same as the

first eigenvector.
The characteristic equation (8.81) for C is

det(Cy; —49;) =0= =(4-4-4)

4-1
The roots are A =4, 4. The sum of the eigenvalues is 8, which is the trace of the matrix.
For A, =4, the equations (8.82) are

(4= e’ +0c5” = 0c” +0cs) =0

0c” + (4= A)cs? = 0c” +0cs) =0

These equations give no information. Normalization requires that 1 =| cl(l) P+ cg) . Any
values of ¢ and ¢{" that satisfy this condition can be used. A simple choice is

¢ =1and ¢{ = 0. A simple choice of the second eigenvector is ¢! =0 and ¢{" =1.

(Any two normalized linear combinations of these two eigenvectors can be used.)
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8.46 The characteristic equation (8.81) is

ay, —A 0 0
0 ay — A 0 |=0=(a; —A)ay —A)(az; - 4)
0 0 ayy — A

The roots are A =a,,, a,,, a33. For A =a,,, the equations (8.82) are

(a;, — all)cl(l) + Océl) + chl) =0

Ocl(l) +(ay, — all)cg) + chl) =0

Ocl(l) + chl) +(az; — all)cgl) =0

Since a;, # ay, # as3, we have i =0 and ¢{" = 0. To satisfy normalization, we take

¢V =1. Similarly, the components of the eigenvector for A = a,, are 0, 1, 0 and the

components of the A = a,; eigenvector are 0, 0, 1.

8.47 (a) The characteristic equation (8.81) is
2-4 2

2 —-1-2
The roots are 4 =3, —2. For A, =3, the equations (8.82) are

det(4; — A6;)=0=

‘:/12—/1—6

2= e +268) = ~1ef” + 2650 =0

2eN +(=1= ) =2¢M —4cf) =0

These equations give cl(l) = 2051). The normalization condition (8.83) is

1=[cV P+ =41 P+ P=5]cP P So | eV |=1/5"% . We take iV =1/5"2 .
Then cl(l) = 2c§1) =2/5"2 . For A, = =2, the equations (8.82) are

2= el +2c8? =4cP +2¢2 =0

26 4 ((1= e =262 4D = 0

@ = _%ng) . The normalization condition (8.83) is

These equations give ¢
L=[cP P 4] P=2 PP +|cP =21 P So | |=2/5". We take ¢§?) =2/5"2.
Then cl(z) = —%cgz) =—1/5"2.

(b) A s real and symmetric. It is also Hermitian.

(c) Asnoted in Sec. 8.6, the eigenvector matrix
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2 1

572 52| (089442719  —0.447213595
1 2 | (0447213595  0.89442719
P

for the real symmetric matrix A is orthogonal and is unitary. The orthogonality of the two
eigenvectors is readily verified. Also

2 1 2 1

CTC:CTC: 52 2 || g2 512 :(1 0]
1 2 1 2 0 1
_51/2 512 )\ 512 412
(d)
2 1
1 2
_517 517
(e) C'AC=
2 1 2 1 2 1 6 2
52 gl2 {2 2} g2 52 _ 52 52 || g2 512 :[3 0]
1 2 (2 -1)| 1 2 1 2 3 4 0 2
_51T 51T 51T 51T _51/2 512 )| 512 _51/2

8.48 (a) The characteristic equation (8.81) is

2-A4 =2
20 2-4

The roots are 4 =0, 4. For 4 =0, the equations (8.82) are

2= el = 2ics) =2V —2ic" =0

2ie) + (2= ) = 2ic" + 250 =0

det(4; - A5;) =0 = =241 =A(1-4)

These equations give cl(l) = icg). The normalization condition (8.83) is

1=[cV P + P P= 1PV + V=21V . So | ) |=1/2"2 . We take ¢ =1/2"%. Then
cl(l) = icg) =i/2"? For A =4, the equations (8.82) are

(2= A)e? = 2icf? = -2¢? = 2icl? =0

2ic? + (2= A)ct? =2ic® -2 =0

These equations give cl(z) = —icéz). The normalization condition (8.83) is

1=[cP P+ [P P=|P P+ =21 . So | 8P |=1/2"2 . We take ¢ =1/2"2.
Then ¢ = —ic{? = —i/2"?,
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8.49

8.50

(b) A is not real and is not symmetric. It is Hermitian.

(c) The eigenvector matrix C for the Hermitian matrix A is unitary. The orthogonality of
the eigenvectors is readily verified. Also

i 1 i i

+ - A2 A2 || 512 - S1/2 1 0
CC= _
i 1 1 1 0 1
(d)
i1
~ 2SI
cl=cl=
] 1
21T 217
(e)
C—lAC _ _Q}T 217 2 =2i 21T _217 B _21/2 21/2 2]/2 ~ 0 0
=l 1 (20 2 )1 1 || i L, 4 “lo 4
ZIT ZIT 21T 217 o2 Hli2 N
For A, = -1, the equations (8.82) are
G- +2icf? = 4¢P +2icP =0
~2ic +(0- ) = 2icP + P =0
So ¢{? =—1ic{? . Normalization gives 1=|c{” |* +|c{? P=1 (e P + [P =3[P

So |¢§”|=2/5"%. We take ¢§? =2/5"%. Then ¢{*) = —1ic{? = —i/5".

The characteristic equation (8.81) is
-1-2 0 -2
0= 0 5-4 0 =(5—/1)‘_
-2 4 2-1
One root is A =5. The other roots are found from 1> —1—6=0 and are A =3 and
A==-2.
For A, =5, the equations (8.82) are

— — 2_ —_
. 2_/1‘_(5 A)A* = 1 —6)

(1= +0c) —2¢) = 6 +0ciP — 2680 =0

0c” + (5= 2)c” +0c5” = 0cf” +0c5” +0cf” =0

2¢" +4cf) + (2= D)l = 2¢ + 48 - 3¢5 =0

We set iV =k, where the constant k will be found from normalization. The first equation

gives ¢ =—1c{ = —1k. The third equation gives
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) =1V 430 = —Lk+3k =Lk Normalization gives
2
kP +k[P=25 k[ and
| k|=12/(209)"% = 0.8300574 . We take k = 0.8300574 . So ¢V = -

V= Lk =0.4842001, Y =k =0.8300574.
For A, =3, the equations (8.82) are

1 1 1,2 _
L=[e"F + | + |V P=S1 kP +

%k =-0.2766858,

(1= )P +0c5? =268 = ~4c? +0c? - 2652 =0
001(2) +(5- /?,)cgz) + Oc§2) = Ocl(z) + 2052) + chz) =0
2¢(? +4c? + (2= )l = -2¢P + 4P P =0
The second equation gives cgz) =
gives 1=c? [P +|cV P +[c? =L P + P P=2 e and | c{?|=2/5". We take
P =2/5"% =0.8944272. So P =-1/5"* = -0.4472136..

For A5 = -2, the equations (8.82) are

2 __1

0. The first equation gives ¢, c§2) . Normalization

(~1- ) +0c§? - 26 = ¢ +0c -2 =0
0c? +(5 =) +0c? =0c +7¢5 +0c) =0
2c +4cP + (2 -2 =-2c +4cP) +4c) =0

3 _ (3) _

The second equation gives ¢y = 0. The first equation gives ¢, 2033) Normalization
gives 1:“31(3)\ +‘C§3)‘ +!C§3)’ =4,C§3), +’C§3), =5’C,33), and !c§3)\=1/51/2.We

take ¢{¥ =1/5"% =0.4472136. So ¢ =2/5"% = 0.8944272 . The eigenvectors are

~0.2766858 ~0.4472136 0.8944272

0.4842001 0 0

0.8300574 0.8944272 0.4472136

10 2100 1 02 -100 102 -100
851 |0 5 0 01 0/—>|0 50 0 1 0/—[(050 0 10|

24 2 00 1 242 0 01 046 -2 0 1

02 -100) (1L02-1 00 102 -1 0 0

0100 Lo|/=lo100 L o/=>j0100 L 0

046 201 (006 2 %1 001 -1 -2 1

Loo -4

0100 L+ o0

001 4 %

The inverse is
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W |~

Al=| 0 0
1 2 1
3 15 6
8.52 The matrix is
35 17 26 37
1 s 2.5 s
5 13 20 29
3 2 5 6 7 5
13 25 34
- 2.5 5 3 = = 5
720 25 4 4 2
5 6 7 9 10
26 29 4 4 5 6l
6 7 8 9 11
37 52 61
IR T 6

8.53

A graphing calculator with eigenvalue capability or a computer-algebra program gives the
eigenvalues as —3.3664014, 24.5567896, —0.00499050, —0.1852766, —1.0597948x107°,
—0.0001200235 and gives the eigenvector matrix as

0.6695666 —0.3237631 0.3036389 —0.5896587 0.0136789  0.0823222
0.4293335 -0.3276050 -0.6635074 0.2630438 —-0.1242886 —0.4283293
0.1791639 -0.3583884 —0.0015726 0.4983841  0.4297147  0.6375061
—0.0604158 —0.4055325 -0.4559910 0.3688083  —0.697981 —0.0277208
—0.2863645 -0.4635497 0315732  0.0260194  0.536420  —0.562548
—0.4995987 —0.5292213 -0.3999305 -0.4450026 —0.1574374 0.2959183

where the columns are in the order of the eigenvalues given above.

With 1, 1 as the initial guess for the elements of X, Excel gives 4, = -2.0000006. The

elements of the X that gives this eigenvalue are —0.4473249 and 0.8943717, and these are
the elements of the A, eigenvector. With an initial guess of 1, 1 for the elements of y, and

with the constraints that y be normalized and orthogonal to the X previously found, Excel
gives A, =2.99999998 and gives the y eigenvector elements as 0.8943716 and

0.4473248. (When entering matrix elements into Excel, hold down Control and Shift and
then press Enter.) More-accurate values can be found by using Options in the Solver
Parameters box to decrease the Precision to 10™'° affer the preceding eigenvalues and
eigenvectors have been found with the default precision of 10°°. Excel then gives

A =-1.9999999999988 with eigenvector components —0.447213850 and 0.894427064
and gives A, =2.999999999954 with eigenvector components 0.894427064 and

0.447213850.
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8.54

8.55

8.56

8.57

In Excel, after viewing the initial graphs, double-click on the y axis and set the maximum
and minimum on the y axis scale to something like 1E13 and —1E13. The graph of the
altered polynomial shows only 10 roots (as compared with 20 for the original
polynomial). The missing 10 roots are imaginary numbers (as can be verified using a
computer-algebra program or a calculator with root-finding capability).

Multiplication of B = M'AM by M on the left gives MB = MM 'AM = IAM = AM .
Multiplication of MB = AM by M~ on the right gives MBM™" = A . Substitution of
this expression for A in the eigenvalue equation Ac, = 1.c, gives MBM™'c, = A.c,.
Multiplication of this equation by M™" on the left gives B(M~'c,) = 2,(M'c;), so the
eigenvalues of B are the same as those of A and the eigenvectors of B are M_lci , where

c; are the eigenvectors of A.

We have Ac; = A,C; . Multiplication of this equation by A on the left gives
A’c; = LAC, = LAL; = Ajc

i7Vivi ivio

so the eigenvalues of A? are /11.2 and the eigenvectors are

the same as those of A.

(@) 5jm = <gj | &) = (2 aijfi | 2k G Si) = 2 zk<aijfi | G Si) = 24 a;[zk<fi | i) Wm]
(Eq. 1). We have 2, (f; | fi)%m = 2k Six@m = (SA),,, » Where the matrix-multiplication

rule (7.110) was used. From (8.90), (A-r )ji = ai’}‘-. Also (1), =9,,. Hence Eq. 1 becomes
M), =% (A1) ,(sA),, = (ATsA) . Therefore 1= ATsA.

(b) Equation (8.53) gives 2| Hyc, =W 2 Sy, (Eq. 2). By the matrix-multiplication
rule (7.110), >/_, H;.c, is the ith element of the column vector Hc and X, S;.c, is the

ith element of the column vector Sc, so Hc = WSc. Adding the index j to label the
eigenvalues and eigenvectors, we rewrite this last equation as Hc!/) = WjSC(j ) and rewrite
Eq.2as Yj_ Hycl) = W, Xia S,ct) (Eq. 3) . As in the text and equations following
Eq. (8.87), we have (HC); =X, H,c{”’ and (CW),; = c{”’W,. Then

(SCW),; = %, 84 (CW),; =X, Syct/’W; . Use of Eq. 3 shows (HC),; = (SCW),;, so
HC =SCW.

(©) We have ATHAA IC = ATSAA-ICW = IATICW = A"'CW (Eq. 4). Defining
H' = ATHA and C'= A"'C, we write Eq. 4 as H'C' = C'W .
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8.58

8.59

8.60

() Since U is unitary, U™ = UT and UTU = uuT = 1. Multiplication of s = UTSU by
U on the left and by U™ on the right gives UsuT = uuTsuuT = 1s1 =s.

(b) We have M2 = MM = Us"2UTus"2uT = us"21s"2uT = us"2s2u = usuT = s,
where the result of part (a) was used. So M = s'2,

© MN=uUs"2uTus 20T —ustis 2yt = us2sv2uT —uuT = uut = 1.

(@) (BO)),; =(BO)E = (T bye) =Ty b e and

'8, ==, "), BN, ==, ik . Since the (i, j)th elements of (BC)" and c'BT
are equal, we have (BC)! = ¢TBT (Eq. 1). Setting C = DE in (BC)T = CTBT, we have
®DE)" = (DE)TBT = E'D'BT (Eq. 2), where Eq. 1 was used. The matrix A is chosen

as A=Us"2UT so AT = us2uT)T = T Ts2)TUT (Bq. 3), where Eq. 2 was
used. The conjugate transpose is formed by taking the transpose of the matrix and

-1/2

replacing each element by its complex conjugate. The matrix S '~ is a diagonal square

2 are real

matrix, so taking its transpose does not change it; the matrix elements of S
numbers, so taking the complex conjugates of the elements does nothing. Hence

") =572 Also, taking the conjugate transpose twice takes the transpose twice and
takes the complex conjugate twice; the net effect is to bring us back to the original matrix.

Hence (UT)T =U. So Eq. 3 becomes AT = US_I/ZUT. So
ATsa = us2uTsa = us2uTsus 20T . But from part (a), UTSU =5, so

ATSA = Us 257V ZUT . The matrices 5”2 and s are diagonal square matrices of the
same order. The product C of two diagonal matrices A and B is a diagonal matrix whose

diagonal elements are the products of the corresponding elements of A and B;
¢y = 2y yby; = 2 (0y.ay )by ) ; each term in the sum is zero unless i =k = j, so ¢; is

zero unless i = j and c; = a;b;; . The matrix product ss2 is thus a diagonal matrix with

i~
-1/2 1/2 —1/2( -1/2

diagonal elements s;5; "~ =s,", so the matrix product s
1/2 1/2 -1/2

) is diagonal with

diagonal elements s; =1. Hence s "?ss7"? is the unit matrix of order n. Hence

ATsa = us2ss2ut ot =T =1

Use of the linearity of A gives A, =3, c,(c")zzl fi =a, >, ¢ f, . Multiplication by
f;* followed by integration over all space gives ¥, ¢\ (f; | A| fk =a,>, (”)<fl. | )

and 3, ¢\ 4, =Y, a,c\"5,, , which can be written as ¥, (4, —a, 5, )ci” =

(@ In Ty =(f;| T | /¢ » the kinetic-energy operator equals the particle-in-a-box (PIB)
Hamiltonian operator (7' = Hp) and the ffunctions are PIB wave functions. Hence
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Ty =(f; | Hpp | i) = Epi(f; | fi) = (k> 47°h* 18mI*)S ;. . The reduced energy and
length are E, = E/(h*/ml*) and x, = x/I . One has the program evaluate Hy =Ty +Vy.
Because the PIB basis functions are orthonormal, S;; = J; in (8.55) and (8.58), and (8.79)

applies. The eigenvalues of the H matrix give the optimized values W, of the variational

integral and the eigenvectors of H give the coefficients of the PIB basis functions. Before
graphing the variational functions, normalize them by dividing by the square root of the
sum of the squares of the coefficients. Using Mathcad with TOL set as 10~ , one finds the
following results. For 4 basis functions, the £, values in the variation function are
47.599135, 53.418896, 117.149785, 151.09691. For 8 basis functions, we get as the
lowest four energies 46.281200, 46.309366, 113.994381, 143.584363. For 16 basis
functions, we get 45.850738, 46.138686, 113.944461, 143.384175. For 32 basis functions,
45.807849, 46.111840, 113.938854, 143.358149. The coefficients for the 32-basis-
function case show that for the ground state, the coefficients are 0.64118 for the n =1 PIB
w, 0.73485 for n =3, 0.21774 for n =5 all other coefficients are less than 0.03 in
magnitude. For the first excited state, the 32 basis-function calculation has coefficients
0.88039 for the n =2 PIB y, 0.46888 for n =4, and less than 0.06 in magnitude for all
other coefficients. The figure on the next page shows a Mathcad sheet with 4 basis
functions.

(b) For 4 basis functions, one finds the following. The function corresponding to the
lowest-energy eigenvalue of 47.599 is u = 0.887y, +0.463y, (where y, is a PIB wave
function with quantum number 7) and the function corresponding to the next-lowest
eigenvalue 53.419 is w = 0.690y, + 0.723y;. With the origin at the center of the box, u is
an odd function with one interior node [see the graph of phim(1,xr) on the next page] and
w 1s an even function. (The function w dips slightly below the xr axis at the center of the
box, so w has two interior nodes, one slightly to the left of the box center, and one slightly
to the right of the center. When more basis functions are added, the function
corresponding to w remains above the xr axis at the center of the box and has no interior
nodes.) Hence w corresponds to the ground state, even though its variational energy is
larger than that of u. The linear-variation theorem (8.61) is not violated by this result. We
have E; =45.802, E, =46.107 (where the numbering on the true energies corresponds to
the true ordering of the states) and W, = 47.599, W, =53.419 (where the numbering
corresponds to the ordering of the W values, which is not necessarily the true ordering of
the states). Hence the (8.61) relations W, > E| and W, > E, are not violated, even though
the states are incorrectly ordered with this small number of basis functions. It makes the
most sense to apply the linear variation method separately to the even states and to the odd
states (as is done in Prob. 8.60).
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Double well (barrier of height VO from L/4 to 3L/4)--Linear Variation-PIB basis
ORIGIN:=1 TOL := 1~1079 VOr:=100. n:=4 j:==1,2.n k:=1,2..n

fj(j,x1) = 20'5-sin(j-7r-xr) fk(k,x1) = 20'5-sin(k-7r~xr)
3
228K E
k= VE = | VOrfi(j, xn-fk(k, xn d Hr y=Tr;  + Vr
) rj,k.—J £ £j(j, x) ,X0) dxr 1 k= Trj 5k
1
7
86.766  —2.063x 10>  —31.831 1.012x 1071
" —2.495x 1071 69.739 6.213% 1075 —42.441
r=
~31.831  6.977x 1077 83.803  —1.767x 107 °
9.793% 107 42441  —1.073x 1007 128957
47.59913500
, _ , 53.41889638
eig := sort(eigenvals (Hr)) eig =

117.14978470
151.09690901

= 0 0.69047 —-0.72336 0
m:=12..n cm eigenvec (Hr,eigm)

0.88661 0 0 —-0.46251
|0 072336 069047 0
n
— . 0.46251 0 0 0.88661
xr:=0,.01..1 Z Cj,m'ﬁ(J,XI‘)
hi = 1=
phim(m, x1) ) >
Z (Con.i) phim(2,0.5) = —0.047
j=1
2 T 2
= _
phim(1,xr) 0 _ phim(2, xr)
— — 0 )
-2 ' - |
0 0.5 1 0 0.5
Xr Xr
2 2
phim(3,xr) 0 phim(4,xr) 0
- . |
0 0.5 1 0 0.5
Xr Xr
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8.61 We modify the Mathcad sheet for Prob. 8.60 by adding the definition p:=0 if we want to

8.62

8.63

include only basis functions with PIB quantum number n = 2, 4, 6,... (the odd-function
states ) or by adding p:=1 to include only the n =1, 3, 5,... PIB states (the even-function
states). In the fj, fk, and Tr; ) definitions, j is replaced by 2j — p and k is replaced by

2k — p. With 16 even basis functions, the lowest two eigenvalues are 45.807849 and
113.938854. With 16 odd basis functions, the lowest two eigenvalues are 46.111840 and
143.358149. These numbers agree with those found in Prob. 8.59 using 32 basis functions.

The Mathcad sheet for Prob. 8.60 is modified by changing VOr to 200, by changing the
limits in the Vr;, integral to 0 and 1, and by inserting a factor of xr in the integrand of the

Vrj’k integral. With 8 basis functions, one finds the four lowest eigenvalues 63.468669,
110.971574, 150.048599, 187.092431; with 12 basis functions, one finds 63.466117,
110.966517, 150.039184, 187.068173. The lowest four approximate wave functions have

0, 1, 2, and 3 interior nodes. Graphs of the 12-basis-function four lowest variational
functions are

him(1, xr
him(xn phim(2,x) 0

Xr

him(3,xr) 0
phim( ) phim(4,xr) 0

0 0.5 1 -2 I
0.5 1

S

Xr
Xr

The plots show that as the energy of the state increases, the probability of finding the
particle in the right half of the box (where V' is greatest) increases. In the normalized
variation functions, PIB functions whose coefficient is greater than 0.1 in magnitude are
n=1,2,3, and 4 for the ground state and n = 1, 3, 4, and 5 for the first excited state.

The fj and fk definitions are revised as indicated in the text. In the Tr;, definition, the 2 in

the denominator is changed to 200. In the Vr;) definition, VOr is replaced by (xr*/2) and
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the limits are changed to —5 and 5. The xr definition becomes xr:=—5,-4.95..5. One finds
13 basis functions are needed to get three-decimal-place accuracy; the lowest 5
eigenvalues are 0.500000002, 1.50000125, 2.5000019, 3.5002147, 4.500204. In the
normalized variation functions, PIB functions whose coefficient is greater than 0.1 in
magnitude are n = 1, 3, and 5 for the ground state and n =2, 4, 6, and 8 for the first excited
state.

8.64 The fj and fk definitions are modified to resemble those in Prob. 8.63. In the Tr;

definition, the 2 in the denominator is changed to 98 or 162 for the box lengths of 7 and 9
units, respectively. In the Vr; . definition, VOr is replaced by xr" and the limits are

appropriately modified. The xr definition is suitably modified. When the number of basis
functions is increased from 9 to 10, an odd basis function is being added, and this changes
the energy of the second lowest state (which is an odd function) but has no effect
whatever on the energies of the first and third states (which are even functions). Hence, to
be sure the three lowest energies are not changing in the third decimal place, one must
check that these energies remain unchanged in the third decimal place for three successive
values of the number of basis functions. For a box length of 7 units, this first occurs for
13, 14, and 15 basis functions. With 15 basis functions, the three lowest reduced energies
are 0.6680, 2.39365, and 4.6968, in good agreement with the values in Prob. 4.32. For a
box length of 9 units, stability in the third decimal place first occurs with 16, 17, and 18
basis functions. The 18-basis-function lowest energies are 0.6680. 2.39365, and 4.6978.
The wave functions resemble those for the harmonic oscillator.

8.65 ¢=r"F(NY"(0,8)=r"[X,c¥pp (N O, 8) =X ¢ e () 1" O, $)=X ¢, f;,
so f; =wpp (r)r"'Y" (6, $) . Then
S =1 J)= lo V/PIB,j(r)WPIB,k(r)r_er dr (2)” [oY"* " sin0dOdgp = 9y » since the

spherical harmonics are normalized and the PIB functions are orthonormal.
Also, H ;. =(f; | H | f¢) - The H-atom Hamiltonian has the form (6.8) and f, has

the form (6.16), with R in (6.16) replaced by ‘//PIB,k”_l- So ﬁfk is given by the left side of
(6.17) with R in (6.17) replaced by ypys 7', with R’ replaced by (d/dr)(yp,r") =
~r Yo + 7 Wiy With R replaced by (d/dr®)ypgr ) =
2r_3z//PIB,k - 2”_2'//1'31B,k + ”_1'//1'4113,1( , with ¥ = —¢'*/r, and with [ = 0, since we consider
only the / = 0 states. With these substitutions, the left side of (6.17) becomes ﬁfk =

72
2u
P 200 — (Ze ) ] - Then Hy = (f; | H | f) =

-3 -2 1 -1 n -1 -2 -1 2 -1 -1 _
2r"weps —2r Wy +1 Wex T2 (= Wy +1 Wpx) — 2T Yoyl =
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8.66

© " ' - 27 (7 yym m s

Z ”n l ’ ]
Io YpB, ) (”)[—(h2 /zﬂ)V/PIB,k]d” - Io YpB,; (r[—(Ze z/r)‘/’PIB,k]d’” = Tjk + ij (Wpis 1s zero

for r greater than the box length).
Since —(h*/2u)(d*/dr?) in T} is the PIB Hamiltonian operator, we have

Tjk = <WPIB,/ |I:IPIB |‘//PIB,k> = EPIB<‘//PIB,j |'//PIB,k )= (k247[2h2/8/412)5jk , as in Prob. 8.5%a.
When we switch to reduced (r) units, Eq. (6.139) shows that
Tr, =Ty ue*h™> = (K 4x° 0 18ul*)S ) ue*h™ = (kK> z°h* 12¢" 1 17)5 ;. The reduced
length is given by (6.139) as . = ue'*l/h*, so
Tr,, = (KPh* wle* 12¢ 1P 1205 = (KPn? 1212)8 .

Since the reduced length is taken as 27 in this problem, the Tr;x expression in Prob.
8.59 is modified by replacing the 2 in the denominator with 2(27)% Also fj(j,xr) becomes
(2/27)°-sin(j-n-xr/27) and fk is similarly changed. In Vr;, the integration limits are 0 and
27 and VO in Vrj) in Prob. 8.59 is changed to (—1/xr). With 28 basis functions, one finds
the three lowest eigenvalues are —0.47334, —0.12143, and —0.05396, as compared with the

true values —0.5/n° = —0.50000, —0.12500, and —0.05555... . The accuracy is mediocre.
(With 40 basis functions, one finds —0.48852, —0.12351, and —0.05463.)

@T, BT T T, (T; T (@ T, () F () T; () F (k) F
(This is true only if A" exists.); (I) T; (m) T; (n) T (This was mentioned in the Sec.
8,6 example.).
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Chapter 9

Perturbation Theory

9.1 (9

to 00 to 00

0

0 /

(b) The perturbation on the particle in a box is H'=C for 0<x<![.So
EY =11 y,”) = 2w,y = C.

9.2 (@ EP =X,.,|H,, [HNEP -ED). H,, =W H y")=Cw 1y =0,

min

since the unperturbed particle-in-a-box (pib) functions are orthogonal. So E ,52) =0.
(b) We have z//(l) =2 m!//,(no), where a,, = (l//(o) | H' \z//(o)>/ (0) E(O)]. Since
(1//,,0) | H' |1,y,(,0)> C(l//,(no) | 1,//(0)> 0, it follows that a,, =0 and l,y(l) =0.

(c) From Prob. 4.52, addition of the constant C to the pib potential energy leaves the
wave functions unchanged and simply adds C to the energy eigenvalues. The results
D—p, E, M — ¢, and E(z) =0 are thus consistent with Prob. 4.52.

l//n
9.3  From (9.22) and (4.57), E = 'O | A" |yVy = (4’ /12)"* |7, x’e ~ax’ (ex® +dx*) dx =

263 1) 2 [e]?, X dx+d |2, x%e ™ dx] = 4’ I7)"2d |2 X0 dx =

403 1m)2d (2 xS dy = 4ed Im)2d (3-5/2*) (V2 1aT)? = (15/4)(d /e =

15dh* /167°v>m*, where (4.53), (4.33), and (A.10) were used.

9.4 (a) Since Vis zero inside the box for the particle in a box, we have H' = V, for

1/<x<2] and H'=0 elsewhere. So
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ED =0 B |y ©) = @) [}, Vysin(nrx/l) dx = 2V D[4 x — (1/4nz) sinnax/ D] [

=1V, = (Vy/2n7)[sin(3nz/2) —sin(nz/2)] with ¥y = h*/mI*, where (A.2) was used.

(b) EO =n?h*/8mi* = z*n*1* /2mi* . For n=1,

EN =Vy[1 = @) (sin37/2) + 27) (sin 7/2)] = (W* /mI*)(0.5+ 7" = 0.8183099(2 /m1* )
and E* + EV =5.7531121%/ml* . For n=2,

ES) =Vy[L = (47) " (sin37) + (47) " (sin 7)) = L (W*/mI*) and

Eéo) + Eél) =20.239214%/mI*. The beginning of Sec. 9.4 explains why these results are

the same as the variation results of Probs. 8.2a and 8.17.

V, is a constant and E'" equals ¥, times the area under the w> curve from /4 to 31/4.

This area in the central region of the box is greatest for the n = 1 wave function, which has
no interior nodes and has its maximum in > at the box center. Other states have interior

nodes and have maxima in y? away from the center, and will have a smaller portion of

the area under the y? curve in the central region.

From (9.27), " =% a v =@/ Zm;m a,, sin(mzx/l). To find a,,, which is
given by (9.26), we need (1//(0) | H' | t//,(lo)> =H, . Wehave

H, =281y =0, Vosm(mﬁx/l)sm(nﬂx/l) dx =
3//4

2Vy | Isin[(m —n)zx/l]  Isin[(m + n)zx/1]
/ 2(m—n)x 2(m+n)

1/4
n? | sin[3(m — n)z/4]—sin[(m — n)7z/4] _ sin[3(m + n)z/4] —sin[(m + n)7/4]
ml* (m—n)r (m+n)z

Then a, = (W'Y | A' |y NYE® — EO=8mi*H!, /(n* — m*)h*.

mn

(a) With the origin at the center of the box, the perturbation is an even function (see the
figure in Prob. 8.2). The n = 1 PIB wave function is an even function. The m =2, 4, 6,...
PIB wave functions are odd functions, and the integrand is an odd function. Hence the
integral is zero.

() E? =%, | Hyy PIE® —ED) = @mI*IR*)E, 35, | Hoy P/1=m*) =
(2ml /hzﬂz)Zm 357, Hoy | /(I—m ) where H,, is given by the expression in the Prob.

9.6 solution with n =1. If one evaluates El( ) by summing through m =1999, the last
term has the value —5.15x107"°(*/ml*) and E{* =-0.002733825(h*/mi*) . (Because

the terms decrease slowly with increasing m, one needs to continue summing until the
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9.8

9.9

terms become extremely small.) Use of E” + EV) = 5.753112h%/mi* from Prob. 9.4b
gives E + EV + E® = 5.750378%% /mi*, which is much closer to the true value
5.750345h% /mi* than the E{” + E value.

(a) Since V is zero inside the box for the particle in a box, we have H' = V, for
(0.25+¢) < x<(0.75+¢)l and H' =0 elsewhere. So EV = (y O |A' |y @) =
QD IQT34E) Vo sin® (nzx/l) dx = (2o /D[4 x = (1/4n7) sinnzx/1)] (1315 =
%Vo - (Vy/2nr){sin[(1.5 + 2c)nx] —sin[(0.5 + 2c)nr]}, where (A.2) was used.
(b) ED/V,=0.5-(0.5/7){sin[(1.5+2¢)7] - sin[(0.5 + 2¢)z]}. The graph is
0.9 -

E(l)/VO

0.8 -
0.7

0.6 -

0,5 T T T 1 T
0] 0.05 0.1 0.15 0.2 0.25
C

For ¢ =0, the high potential-energy region is in the central region of the box, where the
unperturbed probability density is greatest. As ¢ increases, the high potential-energy
region moves to where the unperturbed probability density is lower. EV decreases as ¢
increases, because an increase in ¢ decreases the probability that the particle will be found
in the high potential-energy region.

With the assumption that the charge is uniformly distributed in the nucleus, the
unpenetrated charge O equals e times the fraction of nuclear volume occupied by a sphere

of radius 7. So O = (% 7rr3/§ 7R’ )e = (r/R,)’e, where R, =107"> m. We shall use £
to estimate the energy shift. (Evaluation of higher-order corrections is much too hard to be

feasible.) The electron’s potential energy is affected by the finite nuclear size only when
the electron has penetrated the nucleus, so H' is nonzero only for 0 < » < R . We have

H® =T —e*/4zgyr,and H =T —eQ/4neyr for 0<r <107 m. So
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9.10

9.11

2 2 2
H=H-H"=- cQ +-° ¢ l_r_3 for 0<r<107"> m and
4rgyr 47zgor 47[50 r R,

EW = (1//(0)|H |y Oy = jo” e (r—r*/R3 )drfo s1n6?d9f0 d¢ . Since

7a® 4re
a=0.5%x10"" m>>R,, e dlffers negligibly from 1 in the integration range. So
EY = (Una® ) /4me))dm)E 1P =1 I5R)) | = (¢* I ma’ey)(0.3RY) =
(1.602x107" €)?(0.3)(107*° m?)/[7(0.529%x107"° m)*(8.854x107"* C* N m?)] =
1.87x107%" T=1.17x10"% eV, which is negligible compared with the —13.6 eV
ground-state energy.

The formula is E,Sz) = | H,, \2 / (E,SO) — E,(no)) for a nondegenerate level. If n is the

m;tn

(nondegenerate) ground state, then Er(lo) - E,(no) is always negative and | H,,, I is never

!
mn

negative, so E, (2) must be negative or zero. It will be zero if all the H’,  integrals are

zero, as in Prob. 9.2.

(@) E, 0 = <l//\50) lex” | l//\(,0)> = 0; the harmonic-oscillator y’s have definite parity, so

| 1//(0) |~ 1s an even function and the integrand is an odd function. Hence the integral from
—o0 t0 oo 1S Zero.

(b) From (9.35),

EP =X [0 1 H ™) PUED = ED) = () Zyy [0 e [0 P =m).
To evaluate | (W(O) | H'| Wy (D% 2 from the formula given for (1//(0) | H'| 1//\(,0)>, we use

( ij) =9, and 6,0, =0 for k # j, which follow from the Kronecker-delta definition. So

E® =
¢ Z(V+1)(V+2)(V+3) iz TOWV A8, 0 +VS, L +V(V =DV =2)5,,, 3
8’ hv &, V—m
EP = %[-%(v +D(V+2)(V+3) =9V +1)* +9v? + Lv(v - 1) (v -2)]
8a’hv
E® = ————(30v? +30v +11)
8a’hv

(c) From (9.27), 1//(1) contains a contribution from the state l//(l) if <l//(0) | ox’ | l//\(/0)> #0.

The formula given in the problem shows that this integral is nonzero when m is v +3,
V+1,v—1,or v-3.(The v -3 contribution is absent when v i1s 0, 1, or 2. The v —1
contribution is absent when Vv is 0.)
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9.12 The variational integral is given by (9.64) with Z =1, so
(B H | §) =—(1-2) (14 7eyay) = —(11/16)*2(13.60 eV) = ~12.86 eV, which is higher

than the H-atom ground-state energy —13.60 eV, so this trial function predicts H is
unstable with respect to dissociation to an H atom and an electron.

9.13 The unperturbed Hamiltonian is the sum of two hydrogenlike Hamiltonians, each with
nuclear charge Z — 5/16. Hence each unperturbed wave function has the form f(1)g(2),

where f'and g are hydrogenlike functions with nuclear charge Z — 5/16. From (9.48), the
ground-state £ © s —-(2-5/ 16)2 (1+1)(13.60 eV) =—77.46 eV . The ground-state

unperturbed wave function is 1s(1)1s(2), where the nuclear charge is 27/16; this is (9.56)
with ¢ =27/16. We have EW = (e?/47g,) (1s(1)1s(2) | 1/r, — 5/167, — 5/16r, | 1s(1)15(2)).
From (9.61), (Is(1)1s(2) |1/, | 1s(1)1s(2)) = 55 /8a, . The equations between (9.60) and
(9.61) give (I1s(1)1s(2) |1/7 | 1s(1)1s(2)) =(1s(1)1s(2) |1/ r, | 1s(1)1s(2)) = /a, . Hence
EW =[50 /8a, — (5116)({ay) - (5/16)(¢ /ay)] = 0. Note that £ + ED is more

accurate than the perturbation result (9.54) and equals the variation result (9.64).

9.14 Substitution of (9.123) into (9.52) and multiplication by YOO (YOO Y4 gives

6 2 oo [ /
16Z°¢e 1 pope _ _ r
E(]) _ z j J’ e 22”1/%6 27Zrlay < Vl rz dl’l drz
0 v

6 [+1
472'80610 1=0 m=—1 2] +170 S

<[ T (8) | * (6.0 )sin 6, d6, dh

27 o7 m )
X.[o .[0 [YOO (024, )] *Y" (65,4, )sin 6, d0, dg,
Use of the orthonormality of the spherical harmonics [Eq. (7.27)] gives

EW = ) dn dry 846,001,000

The Kronecker deltas make all terms vanish except the single term with m =0 =1, so
162°%*

4re, a

£ _

—ZZrl/a0 —ZZrz/aO 1
.[ J- —2r) di dr,

>
If we integrate first over # then in the range 0 < <r,, we have r, =r,; in the range

r, <1 <o, we have r, =r. Therefore
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6 2 2 2

1 16Z°¢ ©  27r/a, o 27Zrla, I © 27Zr/la, K
EW = I e 7 °r22(jo e ML gy +j e ! °l—dr1Jdr2

&

= 3
dreya, 7y n ]

6 6

62 62

1 1627 © 27r,/a n 27rl/a 16Z2°¢ © 927 © 27r/a,

EW = I e I e NR2dr | dr, + '[ e 2 4nlk p I e ""rdny|dr,
4mggag =0 0 drmeyay 70 r;

Using the indefinite integrals (A.6) and (A.7) in the Appendix, we do the 7 integrals to

obtain r, integrals that are evaluated using (A.8) The result is

g0 _5Z2 [ ¢
8 | drgya

9.15 From (9.64) and (6.106), the energy is proportional to m, . The E‘He nuclear mass m,, is

about 4 times the proton mass, which in turn is 1836 times the electron mass, so m,, is

about 7350 times m, . Then z = m,m_,/(m, +m,) =7350m>/7351m, = 0.999864 , and use
of x multiplies the energies by 0.999864.

9.16  (1/ny) =y |1/ ny [w) =W [ Uny |w') = (& 1arey) (W' | & lameyn, | ') =
(@ /4re)) (WO B |y = (€? 14 7e,) T (34.0 eV)(1.602x 107" T/eV) =
e (478))(5.45x107"81) = (1.602x 107" C) (47 -8.854x107"2 C*/N-m?)(5.45x107"® J)
=236x10"" m™" and (1/#5,)"" 2 0.42x107'" m. A more accurate value can be found by
replacing Z in (9.53) with Z —% =1.6875, Eq. (9.63). This gives
(1/1,) = (1.6875/2)(2.36x10" m™) = 1.99x10' m™" and (1/7,)" = 0.50x107'" m.

The value found from an accurate He ground-state wave function is
(1/71,)" = 0.56x107"° m [Pekeris, Phys. Rev., 115, 1216 (1959)].

9.17  The trial function (9.56) has the form ¢ = 1s,(1)Ls,(2), where the subscript indicates use
of ¢ in ¢. Then (r) = (Is,(DIs,(2) |1 [ Ls, (Dls(2)) =(Ls, (D) | 7 [ 15, (1)), since 1s-(2)
is normalized. The integral (s, (1) [ 7 |1s,(1)) is the same as occurs in the calculation of

(r) for the hydrogenlike atom, except that Z is replaced by ¢ . So (1) =3a/2¢ .

9.18 (a) Since Hj, = (H{,)* = (2b)* = 2b, the secular equation (9.84) is
4p-EV  2b
2p 6b—EV

' 1 ’
Hll_E() H12
' ’ 1
H21 H22_E()

= (EMY? —10bED +20p*

EY =2.7639b, 7.2361b
(b) The equations (9.82) for EV =2.7639b are
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9.19

9.20

9.21

9.22

(H|,— ED)e, + Hl,c, =0=(4b— EV)¢, + 2bc, =1.2361bc, + 2bc,

Hje, +(Hbyy — EM)e, =0 =2be, + (6b— EV)e, = 2be, +3.2361bc,

These equations give ¢; = —1.6180c, . The normalization condition (9.86) is

lcf |+]c5 |=1=]-1.6180c, |* +|c; | =3.6179]|c; | and ¢, =0.5257, ¢; = —0.8506.
The equations (9.82) for EV =7.2361b are

0= (40— EV)¢, + 2bc, = —3.2361bc, + 2bc,

0 = 2bc, +(6b — EM)e, = 2be, —1.2361bc,

These equations give ¢; = 0.6180c¢, . The normalization condition (9.86) is

lcf|+]c3 |=1=]0.6180c, | +|c; | =1.3819|c; | and ¢, =0.8507, ¢; =0.5257.
The correct zeroth-order functions are —0.8506y” +0.5257y ") for E® =2.7639b and
0.5257y " +0.8507y\” for EV =7.2361b.

Solving (9.86) for £V amounts to finding the eigenvalues of the matrix with elements
H, .. As noted in the Example in Sec. 8.6,, the sum of the eigenvalues of a matrix equals

the sum of the diagonal elements of the matrix. Since H{, + H}, =10b, this must be the

sum of the EV values.

W L 1wy = T+ 1 1y = L [w®)+ Gl T yr) =
E(O)(t//(o) |y; 0y +<l//(o) | H' ly; @y = E(O)é' +<l//(0) | H' ly; )y, since all the unperturbed
wave functions of the degenerate level have the same energy eigenvalue E,(ZO) . So
(1//(0) | H | 1,//(0)> - E(O)5 = (w(o) | H' | 1//(0)> Substitution of this expression for

(O) | H' | l//(0)> into (9. 83) converts it to the equation in the problem.

1= 47 = (L e 1T ep'®) = SL T ey 01y V) = T T e 5,
= Zi:l | c; \ , where (9.74) and (9.80) were used.

(a) Since H = H Lt H _,, the results of Sec. 6.2 give the wave function as the product
(2/1)" sin(n,zx/1) - (2/1)"? sin(n,zy/1) .

b) EL =@ 17wy =@y [y bsin® (nx/l)sin® (n,zy/l) dxdy =
Vi 1/4 3174

@I/, sin® (nzx/lydx J;,," sin®(n,zy/l)dy , which is valid for nondegenerate

unperturbed levels. In Prob. 9.4, we found that
@[3y sin? (nzx/l) dx = L —[sin(3nz/2) - sin(n/2))/ 2n7 (Eq. 1) so
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9.23

E\Y = b{L ~[sin(3n,7/2) - sin(n,7/2)] 2n 7} { —[sin(3n,7/2) - sin(n,7/2)] /20, 7}
For the ground state, n, =1, n, =1 and ED = b(%-ﬁ- 1/7)* = 0.6696b .
The unperturbed first excited level is degenerate; the states n, =2, n,, =1 (state 1) and

n, =1, n, =2 (state 2) have the same energies for a square box. We have

H{, = QIDQIDLT, sin®ax/lydx 21, sin®(zy/l)dy . Eq. | with n=2 and with n = 1

gives Hi, =b($)(5+1/7) = ;b(1+2/7) = 0.4092b . Similarly
HSy = QINQIDL, sin(zx/l)dx [, sin? 2z y/T)dy =0.4092b. Then

HY, = /DQINbL, sinQrx/lsin(zx/lydx [, sin(zy/l)sin(2zy/l)dy . Use of the

Prob. 9.6 result (2/1) [, sin(mzx/1)sin(nzx/1) dx =
sin[3(m —n)z/4] = sin[(m —n)z/4] _ sin[3(m + n)z/4] —sin[(m + n)z/4]
(m—-n)z

(m+n)x
gives H{, =0= H},, since sin(37/4) =sin(x/4) . The secular determinant in (9.84) is
diagonal and [Eq. (9.90)] E(" = H{, =0.4092b and E{" = H}, = 0.4092b . As noted in

Sec. 9.6, we already have the correct zeroth-order functions, which are given by the
expression in part (a) with n, =2, n, =1 and with n, =1, n, =2.

To achieve a block-diagonal determinant, we group the m = 0 functions together,
numbering the functions as follows: 1=2s, 2=2p,, 3=2p,, 4=2p_,. By Eq. (7.50),

functions 1, 2, 3, 4 are orthonormal. The perturbation H' is an odd function. From Prob.

7.28d, function 1 is even and functions 2, 3, and 4 are odd functions. Therefore
0=H|, = H), = H}; = H},, since these integrals have odd integrands. The only nonzero

H' integrals are H, = H}, =
e6(2s | rcosf|2p,) = e6(327) 'a [T (2r* =P la)e " dr [} cos® Osin0 dO [}T dp =
e6(327) 'a(2-41d° —a7'51a%)(2/3)(27) = —3e6a , where the substitution w = cos &

was used. The secular equation (9.84) is

—EV  3e6a 0 0

—3e6a -EV 0 0
o = 0=(EV[(ED)? - (3¢5a)’]
0 o -tV 0
0 0 o -

EW =0, 0, 3¢6a, —3e6a . The third and fourth functions 2 p; and 2p_, are correct

zeroth-order functions. The correct zeroth-order function for EV = —3e&a is found from
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9.24

9.25

9.26

—E(l)c1 —3ebac, =0 =3ebac, —3ebac,
—3ebac, — E (1)02 =0=-3ebac, +3ebac,
which give ¢, = ¢, . Normalization gives ¢, =272, so the third zeroth-order function is

2712 (2s +2p,) . Similarly, the fourth zeroth-order function is 2712 (2s—=2py).-

By analogy to (9.103), (9.104), and (9.110), the correct zeroth-order functions are
272[15(1)35(2) - 3s(1)1s(2)] 272[15(1)35(2) + 3s(1)1s(2)]

272 [s(13p,(2) =3p, MIs2)] 27 [1s(13p,(2) +3p, (D1s(2)]

272 [1s(13p,(2)=3p,MIs()]  27"*[1s(D)3p,(2) +3p, (DIs(2)]

272 [1s(13p.(2) =3p.(M1s(2)]  272[Ls(D)3p.(2) +3p. (D1s(2)]

272 [1s(13d 2 (2) - 3d_ (D1s(2)] 27" [1s()3d  (2) +3d _, (D1s(2)]

27 s3d ;2 () =3d . (DIs@)] 27 [Is(D3d ;2 (D) +3d ;2 (D1s(2)]
272 [1s(1)3d,,(2) - 3d,,(D1s(2)] 27’ [1s(1)3d,,(2) +3d,, (D1s(2)]

27 [ls(13d,, (2)-3d, (D1s(2)]  27[1s(1)3d, (2) +3d . (D1s(2)]

272 [1s(1)3d . (2) - 3d,. (D1s(2)]  27"*[1s(1)3d,,(2) +3d . (D1s(2)]

(The imaginary forms of the p or d orbitals could also be used.) The two 1s3s functions
have different energies and give two nondegenerate energy levels. The 1s3p functions
give two levels, each level being threefold degenerate; 1s3p functions with the minus sign
belong to a lower level than 1s3p functions with the plus sign. The 1s53d functions give
two levels, each level being fivefold degenerate; 1s3d functions with the minus sign
belong to a lower level than 1s3d functions with the plus sign. The 1s3s levels lie lowest.
The 153d levels lie highest.

From (9.48), E¥ = -2%(+ +1)(e’ /875yay) = —2(13.6 €V) = —27.2 eV, as compared with
the He" ground-state energy [Eq. (6.94)] —2%(e*/ 8rgpa) = —4(13.6 eV) =—54.4 eV. The
first-order correction E for He is (2s(1)2s(2) | e?/ 47gyr, | 25(1)25(2)) . This integral

has a positive integrand and is positive, which will make the 2s* He energy larger than
~27.2 eV, making even stronger the conclusion that the 2s* He configuration is unstable
with respect to loss of an electron.

(1s(1)25(2) | € /4megn, | 1s(1)25(2)) = [ [[1s(OP[25(2)F (e /4 megny ) dTy dry = J, g, (Eq.
1). The labeling of the variables in a definite integral does not affect the integral’s value.

Hence interchange of 1 and 2 in Eq. 1 gives (1s(2)2s(1) | e2/47750r21 | 1s(2)2s(1)) = J |05 -
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9.27

9.28

9.29

9.30

Use of (9.104) or (9.103) gives
%(ls(l)2s(2) +1s5(2)2s(1) | e 147syr, | 1s(1)25(2) £1s(2)2s(1)) =

%(15(1)25(2) | (32/47&901"12 |Ls(1)2s(2)) £ %(1s(1)2s(2) | e2/47r50r12 | 1s(2)2s(1)) £
%(ls(Z)Zs(l) | e2/47z50r12 | Ls(1)2s(2)) + %(1s(2)2s(1) | e2/47z50r12 | 1s(2)2s(1)) =

1 1 1 1 _
EJISZS = EKISZS * 5K1s2s +§Jls2s - JlsZs * K1s2s .

As s — 0, the numerator and denominator both go to zero, so we use 1’Hopital’s rule:
lim,_, (e —1)/s =lim,_,,(ae®/l)=a.

W | 0x |y = 0(2/a) [}y xsin(mx/1)sin(nzx/l) dx =

20 1] cos[(m —n)zx/l] N xsin[(m —n)zx/l]  cos[(m+n)zx/l] xsin[(m+ n)zx/I] 1
a 2| (m-n)’z/l? (m—n)z/l (m+n)* 7> I1* (m+n)x/l

al| (m-n)*7*/1* (m+n)z*/I?

=2{ (_l)m—n_l ~ (_1)m+n_1 :|

since sinkz =0 and coskz = (—1)* where k is an integer. The integral was found from a

table or by using integrals.wolfram.com. Since (—=1)"" = (=1)" " (=1)*" = (-1)"*", we
O/ — 1 1

have (y,, | Ox |w,)) === [(-1)"" ~1] -

(m— n)2 (m+ n)2

ar’
number, then (=1)""" —1=1-1=0 and the particle-in-a-box (PIB) transition is not

}.Ifm—n is an even

allowed. So the PIB selection rule is that the change in the quantum number must be odd.

The transition will be allowed if at least one of the integrals <l//,(1)1 | Ox | 1//,9 ),

(w,?, | Oy 1,//,9 Y, (1,1/,?1 | Oz | ;yf,’ ) is nonzero. The three-dimensional PIB wave function is the
product f(x)g(y)h(z) of three one-dimensional PIB functions. We have

W 0x|w)y = 0(f()g(Mh(z) | x| £(x)g()h(2)) = O(f(x) | x| f(x)), since g and &

are normalized. The integral ( f(x)|x| f(x)) was shown in Prob. 9.27 to be nonzero only
if the change in quantum number Az, is an odd integer. Similarly, (1//,?1 | Oy | W,(l) ) is
nonzero only if An, is odd and (1//2, | Oz | y/,? ) is nonzero only if An, is odd. Thus three-

dimensional PIB transitions involving unpolarized radiation are allowed if and only if one
or more of the three quantum numbers changes by an odd integer.

(a) Equation (7.41) becomes BS =Y. (g, |BS)g,. Operating with A, we have
ABS = 4. (g, |BS)g, = X (g, | BS)Ag,, since A is linear. Multiplication by R* and
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9.31

integration over all space gives

(R|AB|Sy=3X(g; | BSXR| A|g;)=2(R| 4| gXg|B|S).

0 ) A ) A

[ LA L) P= ) L L)< L ) = s T L)Y T )
and Eq. (9.35) becomes E\ ~ (VAE) X, (w,” | H' |y Y | H' |y =
WAEYZ, (w1 H 1w T H [y = ] [y Wyl | ] |y )] =

WAEY [y [(H'Y [y =l | H [y )]

(@ T; (b) F (This is true only for wave functions with the same energy.);
(c) F; (d) F.
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Chapter 10

Electron Spin and the Spin—-Statistics Theorem

101 |8|=[s(s +DJ'2h = (5-9)"2h = /3(6.62607 x107** J§)/27 = 9.133x10* J1s.

10.2  From Fig 10.1, cos@ = m.h/[s(s + D'?n =1 /[L ®)['? =1/3Y% = 057735 and
6 = 0.95532 rad = 54.74°.

10.3 (a)
§2(cla +c,p) = clSA'Za + cZSA'Zﬂ =¢8(s +D)h%a + c,s(s +D)R%B = s(s + D) (qa+c,p),
where s = Z. Also, S (qa+c,B)=aS.a+c,S. 3= saha —5chp.
S2(aa + ) = S.[S.(ca + ¢, B)] = S. (kaha - c;hB) = 1P (ca + ¢, ).

(b) 1=322 , [(ca+eB)* (ca+ep)= |af T2, a*(m)a(m,)+

12 12 2§12 — 1.2 2
() e 2 1B+ (c) e zms=-1/2ﬁ*“ + |cz| X BB = |cl| 1+0+0+ |cz| -1

mg= my=

[where (10.11) and (10.12) were used]; so |cl|2 + |c2|2 =1.

104 (a) —sh, —(s+Dh,..., (s =Dk, sh

(b) Since the labels on the directions of space are arbitrary, the answer is the same as in
part (), namely —s#, — (s +Dh,..., (s =Dk, sh.

(c) For s =1, the only experimentally observable value of S? is £37° =37, The
observable values of each of S, S, and S, are —%7 and 7, so the only observable
value of each of SZ, S5, and S? is 1#°. The relation $7% = 1%° + 17 + 1 7% shows that
§? =82 +87 +SZ is satisfied with observable values.

For s =1, the observable value of S? is 2i%. The observable values of each of S_,
S,.and S, are —%, 0,and #, and the observable values of S7, 52, and S? are 4° and 0.
The relation 2% =7 + #* +0 shows that S? = 52 + S + S? can be satisfied with

observable values.
For s =2, the observable value of S? is %%hz = %hz . The observable values of each

of S, S,.and S, are =37, —~17, 17, and $7, and the observable values of SZ, S7,

and SZ are 24% and 17°. The possible observable combinations for SZ + 52 + 57 are
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10.5

10.6

122 142 , 12 132,132 942 132,932, 942 93+2 L, 942, 9422
h° g he+5h", RS+ 4R +4h,4h+4h+4h,and4h+4h+4h,none0f

which equals 7%, so 5% = 52 + 52 + 52 cannot be satisfied with observable values.

(a) Fermion. (b) Fermion. (c) Fermion. (d) Boson.

(e) The *C nucleus has 12 fermions (6 protons and 6 neutrons); with an even number of
fermions, it is a boson.

(f) The *C nucleus has 13 fermions (6 protons and 7 neutrons); with an odd number of
fermions, it is a fermion.

(g) The *C atom has 18 fermions (6 protons, 6 electrons, and 6 neutrons); with an even
number of fermions, it is a boson.

(h) The *C atom has 19 fermions (6 protons, 6 electrons, and 7 neutrons); with an odd
number of fermions, it is a fermion.

(i) The N atom has 21 fermions (7 protons, 7 electrons, and 7 neutrons); with an odd
number of fermions, it is a fermion.

(j) The N atom has 22 fermions (7 protons, 7 electrons, and 8 neutrons); with an even
number of fermions, it is a boson.

@ [By, T1/ (g1 920 93) =

Bo(=1212m,)(V3 + V5 +V3) [ (a1, 42, 43) = (=h°12m,)(Vi + V5 +V3) o f (d1. 051 45) =
By (12 12m,)(0° [ 18g7 +” f10q5 +” f18g3) + (h*12m,)(Vi + V5 +V3) £ (q2, 41, 43) =
(1% 12m)[0° £ (92, 1, 43)1005 + 07 (43, 41, 43)10aF + 0% f (4. 41, 45)1005)] +
(7*12m,)[8° [ (92, @1, 43)1041 +0 (42, 41, 43)/0q5 + 07 [ (92, 1, 43)/0g3)] = O

Let ¢' = el(Amz,)"?. We have [B,, V1 (41, 45, q5) =

Bol(=ze?Ir — Ze I, — Ze* Iy + e Iy + €2 I1ig + €2 113) [ (1, €, 43)]

(<Ze? 11— 2e? Iry = Ze? Iy + €1, + €% 1113 + €2 11ry3) By f (G0, 42, 43) =

(~ZeIry — Ze'? 11— Ze Iy + €% I 1yy + €% I1og + €% 113) [ (2, 41, G3) —

(~Ze 15, — Ze'? Iry — Ze Iy + € 11y + €2 115 + €% rys) [ (¢, 41, g3) =0. It follows from
(5.4) that [B,, H]=0.

(b) [1312' 1323]f(Q1: 921 93) = fizﬁzsf(%’ 92+ 43) —ﬁzsfizf(%’ 92, 43) =

Bof (@1, 3. 42) — Baf (a2, @12 43) = (@1 030 @1) = / (03, 01, 45) # 0.

(c) If fis antisymmetric, then B, f (g1, 4. 43) = —f (1, 42 45) and

f)zsf(‘h’ 92, 93) = —f (491, 921 43) - SO

[1312' Igzs]f(fh' q2:93) = ]3121323f(91’ 92+ 43) —ﬁzsﬁlzf(% 92:43) =

(-0 f (@1 920 93) — (~D* f (g1, 42, 43) = 0.
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10.7 We must prove Athat i
L (91 @)1 Paglars q2)dedr, =[] g(q1, 42)Balf (a1, ¢2)1*d7 dz,, that is, we must
show that [[[/ (g1, 92)]1*e(q2, @) dridr, =[[g(ar, 4)f (92, @)]*drydz, (EQ. 1).

Since the integration variables in definite integrals are dummy variables, we can rename
them in any way we please. On the left side of Eq. 1, let ¢, be relabeled as ¢, and let ¢,

be relabeled as ¢;. Then the left side of Eq. 1 becomes [[[f (¢, ¢:)1*g(q1, q,)d7, d7y,
which is the same as the right side of Eq. 1.

10.8 (1) Neither symmetric nor antisymmetric; (2) antisymmetric; (3) symmetric;
(4) neither; (5) symmetric; (6) symmetric.

10.9 With a spin of zero, electrons would be bosons and would require a symmetric wave
function. There would be no exclusion principle to limit the number of electrons in the
same orbital. Since the spin is zero, no spin factor is needed in the wave function. The
zeroth-order ground-state wave function would be 1s(1)1s(2)1s(3), and the first excited
state would be 3™Y2[Ls(1)Ls(2)2s(3) +1s(1)2s(2)Ls(3) + 2s(1)Ls(2)1s(3)]

10.10 This function is antisymmetric, whereas the spatial factor in the He ground-state wave
function is symmetric.

10.11 (@) AL/ ®Weg@)]=2"[fWe?) -2/ 2)]=2""[fD)e(2) - B,/ De(2)]=
27V2(1-B,) f(g(2), 50 A=2""2(1-B,).
(b) Use of Egs. (10.36) and (10.37) gives
) /@ g@ AQ
AfDWeg@rB)=B) 2|/ 2) g2 n(Q)|=
/@3 2B @)
6 V2L M)g(2)h(3) - /)2Wh@) - f@)22hQ) - FD2EAR) + /B)2Wh)+ /(2)2@)hD] =
6 V*(L— By — By — Py + ByBs + B3Ry) f()g(2)h(3)
A= 6_1/2(1_ 1312 - ﬁis - 1323 + 13121313 + [Ai31312)

Other answers are possible. For example, 1313}312 could be replaced by 13121323.

10.12 Writing the original determinant, we first add —c; times column 1 to column 3 and then
add —c, times column 2 to column 3:
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L@®a@) @ADL LOlae@+c0]1 |Ls@a@ Ls@)AQ) Ls@)c,BM)
L(2)a(2) 15(2)B(2) Ls(2[ex(2) +c,5(2)]| = [1s(Qea(2) 1s5(2)B(2) 1s(2)c,B(2)| =
L(3ad) 1s)BR) LsQ)aa@) +cBQ)| [LsR)aB) Ls()BEB) 1s(3)c,B(3)

L@a@) L@)p@ O

15(2)a(2) 15(2)p(2) 0|=0

Ls(3a@) 1Ls(3)pR) 0

10.13 To construct wave functions for bosons.

10.14 Since the muon is not identical to an electron, the wave function need not be

antisymmetric with respect to interchange of an electron and a muon, and the ground state

has both electrons in the 1s orbital and the muon in a 1s orbital.

10.15 (a) Grouping together terms in 1//(0) that have the same spin factor, we have

w'® =672 15(1) 25(2)15(3) ~1s(1)L5(2) 25(3) | A1) (2)  (3)
+62[1s(1)15(2) 25(3) - 25 (1)1s(2)1s(3) ] (1) B(2)
+672[ 25(1)1s(2)1s(3) - 15(1) 25 (2)1s(3) Ja (1) 2 (2) B

0) =af(l)a(2)a(3)+ba(l)B(2)a(3)+ca(l)a(2)B(3)=A+B+C
where the spatial function multiplying the spin function S(1)a(2)«(3) is called a and
where 4 =af(1)a(2)a(3), with similar definitions for , ¢, B, and C. We have

Y :j|w(0) |2H’df
= [ |4 H dr+j |BPH' dr+j |CPH' dr+[ A*BH' dz+ [ B*CH' d7
+[ A*CH' dr + [ AB*H' dr + [ BC*H' dr + [ AC*H' dz
Because of the orthogonality of the different spin functions in 4, B, and C, the last six

integrals in E® are zero.

(b) Since the spin functions are normalized, summation over spins in the first three
integrals in E® gives one. Therefore

U = [[] a*H'dvy dvy dvy + [[[ B2H'dvy dv, dvs + [[[ 2Hdv, dv, dv

(c) If we relabel the electrons in the a term in w as follows: 1—»2, 253, 31,
then a is converted to 5. H' is unchanged by this relabeling. Since the value of a definite
integral is independent of how we label the integration variables, the first and second
integrals in the last equation are equal. If we relabel the electrons in the a term as follows:
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153, 21 33— 2, thenais converted to c. Therefore the first and third integrals in
EY are equal. Hence E® =3[[[a’H'dv,dv,dv,.

(d) We have 3a* = 1[Ls(D)2s(2)Ls(3)]* - [Ls(D]*Ls(2)25(2)Ls(3)2s(3) + 1 [Ls(D)Ls(2)2s(3)]?
and H' = e'2(1/r12 +1/r5 +1/1,5). Because of the orthogonality of 1s(3) and 2s(3), the
middle term in 34 does not contribute to the /7, integral and
3[[[a?(e?In,)dv,dv,dv, =

LI PI2s(F (e Iny) dvydv, + [T [Ls(QF (e /r,) dvy dv, =

1 J1s05 + 3 J1g, Because of the orthogonality of 1s(2) and 2s(2), the middle term in 3d”
does not contribute to the /5, integral and 3[[[a?(e'?/rs)dVv,dv, dv; =

LT OP s (€% 1rz) dvy dv, + 1 [ILs@IP[2sQ)F (€% 1rig) dv,y dv, =

LT, + 34, Finally, 3[[[a’ (e Iry)dv,dv,dvs; =

$1I2sQPILsG)F (¢ /r5) dvy dv, ~] [15(2) 25(2)Ls(3)25(3) (e ry3) dvy dV, +

LI @P[25sR)F (e Iryg) dvydV,= 3Ty, — Kypp, + 31,5, - Adding these three
integrals, we get E® =3[[[a?H'dv,dv,dv; =2Jy,, +Jiq, — Ky, -

10.16 ED =[[[[LsMPLs(21P[25) (e 11, + € 15 + €% ry3) dvy dvy dvg =
TP Ls)F (€% 111) dvy dvy + [ [25B)) (€% /115) dvy dvg +
s [25() P (e 1) dv, dvg = Jyy, + 21, , SINCe the orbitals are normalized. The

exchange integral in the correct result (10.51) is missing.

10.17 |mg|=(g.el2m,) | S |= (g.el2m )& $1°)"? =
13Y2[(2.0023)(1.60218 x10** C)(6.6261x107>* J5)/[27(9.1094x 107" kg)] =
1.6082x107% J/T,since 1 T=1NC*m*s=1kgC*s™

10.18 (a) £=-mg-B=—(g.e/2m,)S-B=—(g.el2m,)|S||B|cosd=—(g.e/2m,)S |B|=
~(g.el2m,)(x57)| B|=F(g.enl4m,)|B|.
(b) The energy difference between the two levels in part (a) is (g ef/2m,)|B |, so
v=|AE|lh = (g.el4zxm,)|B|=
[(2.0023)(1.60218 107X C)/[47(9.1094 x107°! kg)](1.00 T) =2.80 x 10° 57, since
1T=1NC'm's=1kgC's™
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(c) The proton, like the electron, has a spin quantum number of %. Replacement of m, by
m, and g, by gy inpart (b) gives v = (gye/4zm,)|B|=
[(5.5857)(1.60218x107%° C)/[47(1.6726 x107?" kg)](1.00 T) = 42.58 MHz.
10.19 (a) |I| =[/(I +DI"*h = (- 5)"%h = 115(6.62607 x107** J s)/27 = 2.042x107* Js.
(b) I, =M h=-3n,~%h, $h, 3.
(c) The same as (b).

10.20 (a) y = gye/2m, =5585695(1.602176x107*° C)/2(1.672622x10"% kg) =
2.67522x10®% (C/kg)(N C™* m™ s)/T, where the expression for the tesla given in Sec. 6.8
was used. Use of 1 N = 1 kg m/s? gives ;/:2.67522><1O8 sH/T = 267.522 MHz/T.

(b) From (10.60), v = (267.522 MHz/T)(1.00 T)/27 = 42.5775 Hz.

10.21 (a) E =-ynM ;B with M, :% and —%. So |E| increases linearly with B, and we have

M] =-1/2

M] =1/2

(b) M, =1,0,-1. There are three energy levels with £ = 0 for the middle level:
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10.22

10.23

10.24

B B I o ot I A I N A IR 2 22

The second, third and fourth arrangements produce the same magnetic field. The fifth,
sixth and seventh arrangements, produce the same magnetic field. Thus we have four
different possible contributions to the magnetic field: from the first arrangement; from the
second, third, or fourth arrangement; from the fifth, sixth, and seventh arrangement; from
the eighth arrangement. The CH, transition is split into four lines with relative intensities
1:3:3:1.

(a) The methyl peak is a triplet with 1:2:1 relative intensities; the CH, peak is split into
four lines (of intensities 1:3:3:1) by the methyl protons and each of these lines is split into
two lines (of equal intensity) by the CHO proton, so the net result is an octet with relative
intensities 1:1:3:3:3:3:1:1; the CHO peak is split into three lines of relative intensities
1:2:1. The total relative intensities of the CH3, CH,, and CHO proton peaks are 3:2:1.

(b) The methyl protons give a triplet (intensities 1:2:1) and the CH, protons give a quartet
(intensities 1:3:3:1). The total relative intensities of the CH3 and CH; proton peaks are 6:4
(that is, 3:2).

(c) One peak that is not split.

(d) One peak that is not split.

(e) The proton on the 2 position gives an unsplit peak; the protons at the 4 and 6 positions
give a peak that is a doublet (1:1 intensity ratio); the peak of the proton at the 5 position is
split into two peaks by the proton at the 6 position, and each of these two peaks is split
into two peaks by the proton at the 4 position—because the spin—spin coupling constant
between the 5 and 6 protons is the same as the spin—spin coupling constant between the 5
and 4 protons, two of the lines resulting from the splitting coincide with each other, and
the net result for the 5-position proton is a triplet with 1:2:1 relative intensities. The total
relative intensities of the 2-position proton, the 4- and 6-position protons, and the 5-
position proton peaks are 1:2:1. (Actually, because the NMR frequency differences
between nonequivalent protons in this molecule are very small, the first-order analysis is
not valid for this molecule and the spectrum is complicated.)

Similar to (10.66), we have S a= kp (Eq. 1), where £ is a constant. Normalization gives
1=3, [Bm)]*B(m) =%, (S_alk)*S_ alk so |k=%, (S.a)*S a=

%, (S.a)*(S, —iS)a=3, (S.a)*S,a-i¥, (S.a)*S,a. Use of the Hermitian
property (10.68) for 5 and § gives k*k =%, a(§ §_a)*—i2 a(§ S_a)*. Taking

the complex conjugate of the last equatlon and usmg (10. 63) and (10 64), we have
=2 a*SSa+zZ a*S Sa= 2o a*(S +iS )Sa hI a*S Sa=

sta*(SZ—SZZ+hSZ)a:ZmSa*(%h2—%hz i )a =%, a* o= 1250
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| k|=|"%|, and we can take k =7, and Eq. 1 becomes Sa= hp , which is (10.70). From
(10.70) and the equation that follows it, we have Sa= hp and 3'+0( =0. Combining
these two equations we have (§+ + 3’_)0: =hp and (§+ - 3’_)0: =—hp . But (10.63) gives
S, +S =25 and S, -S_=2iS,,50 S,a=5np and S, = 3ihp.

10.25 Use of (10.73) and (10.72) gives S%a = S,S,a = S, (L 1) = 1% . As noted in Prob.

10.264a, the possible results of a measurement of S, are 27 and —17, so it makes sense

that a measurement of SZ must give 4.

10.26 (a) Since the labels on directions in space are arbitrary, the answer must be the same as

10.27

for S., namely, 57 and —%

(b) From S‘Xa =2hp and S‘X,B =2 ha , we have §x(a +p)=5hf+3ha=3h(a+f),
so a + f is an eigenfunction of S, with eigenvalue %h . To normalize it, we multiply by
27Y2 t0 get 27Y2(a + B), since a and B are orthonormal. Also
Sa—p)=3np-Lha=1n(p-a)=-1n(a-p), and 27Y%(a - p) isanormalized
eigenfunction of §x with eigenvalue —%h.

(c) Immediately after the measurement, the spin state function is ¥ = « . From part (b),
the S, eigenfunctions are £, = 27?(a + ) with eigenvalue 17 and f, = 27%(a ~ f3)
with eigenvalue —%h. Note that £, + f, = 2Y2 4 . Hence if we expand the state function in
terms of the §x eigenfunctions, we have ¥ = a = 2‘1/2f1 + 2‘1’2f2 . The probabilities are
given by the absolute squares of the coefficients, so there is 50% probability to get %h

and 50% probability to get —%h when S, is measured.

(d) From S a=%ing and S g =—%iha, we have

a . . .2 . P . . ~ )

S, (a+if)=3ihf—3hi%a =3h(a+if),s0 a+if isan eigenfunction of S, with
eigenvalue 17 . To normalize it, we multiply by 27% to get 27/?(a +ip) , since & and
$3 are orthonormal. Also S (= if) = 1inf +L1i*ha = 3n(ifi—a) = -1h(a -if) , and

—~1/2 . . . . . a . . 1
277 (a —ip) is anormalized eigenfunction of S, with eigenvalue —37.

(@) M+ 'm =AY} ;.1 Normalization gives 1=(Y, m+1| m+l>=(]JA*A)<M+ ]m|M+ i)
SO |A| :<M+ jm|M+ jm> _<M+ jml(M +lM )
M.Y,, |M 1Y, >+1<M+ i |M |Y,,,) - Use of the Hermitian property for M and M

gives A*A=(Y,, | M, | MY, *+i(Y,, | M,|M.Y,)*. Taking the complex conjugate
of the last equation and using (5.113) and (5.143) and (5.144), we have
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A== (Y, | M | MLY,,) =Y, | M | MLY,) = (Y, | M, —iM, | M.Y,) =
Yy |M_M+ Y, =, |(M2—M5—th) Y, =Li(G +Dn* = m*h? —=mh®XY,, | Y,,)
[+ DA% = m?h% —mn?]. So | A|=[j(j +1) — m(m +D*?#, in agreement with (10.74).
Also, M_ Y,, = BY; ,_,. Normalization gives
1=(Y; 4 1Y, 1) = WB*BXM_Y,, | M_Y,,
=(M_ Jml(M —iM,)Y,,) = (M Y, |M,_|Y
Hermitian property for Mx and My gives
B*B =(Y,, |Mx |]\;[,ij>*— iKY, |My |M Y,,)*. Taking the complex conjugate of the
last equation and using (5.112) and (5.143) and (5.144), we have

= (Y | M | MY, + Y, | M MY, = (Y, | M +iM | MY, =
Yy | MM Y,,) = (Y, | (M2 = M2+ hML)Y,,) =[G + DR = m?he + mh?KY,, | Y,) =
[i(j +D)h? —m?h® + mh?]. So | B|=[j(j +1) — m(m -1)]Y? &, in agreement with (10.75).
(b) With M, =S, Y, =8, j=s =%,and m=mg =-%, Eq. (10.74) becomes
§+,8=[%—(—%)]1’2ha =ha . With M_=S_, Y,, =a, j=s=%,and m=m, =
Eq. (10.75) becomes S_a =[3— (-1)["2ng = np.

) so |BP =(M_Y IM_
z(M |M |Y

]m

Y. Use of the

jm Jm =% jm jm

NIH

(c) With j=1=2, Eq. (10.74) becomes L,Y;* = 6Y2aY? (Eq. 1). From (5.65) and
(5.66), L, = L, +iL, = ik[(sin ¢ —ic0s $)(0/06) + cot (cos ¢ + isin #)(0/0¢)] =
in[—ie” (6100) + cot 0 e (816¢)] = he'[(0106) + i cot O(610¢4)] . From (5.99) and
Table 5.1, ¥, = (27) Y2 1(15)"singcosd e ™. So
LYyt = ne?[(0106) + i cot 0(0/04)](15/87)2 sin G cos @ e =
ne' (15/187)2[(cos? @ —sin?@)e ™ —i - i(cos O/sin G) sin @ cosHe ?] =
n(15/87)"? (cos? @ —sin?@ + cos? ) = n(15/4)"? (27) Y2 (3cos?H -1) =
6Y2[(15/4-6)? (27) V'?(3cos? 0 —1)] = 6Y2 1Y, , since (5.99) and Table 5.1 give
Y = (27)Y2(10/16)Y?(3cos® 6 —1) = (27) M2 (15/24)Y?(3cos® 6 -1).

10.28 (a) The «, g, and ¢ +c, column vectors are

HERHEN

(b) (S)u=(@l|S,|a)=%na|B)=0, (S),=(a|S,|p)=4nalay=1r,
(8o =[S )" =21, (8,)5 =(BIS,| By =31 B| ) =0, where (10.72), (10.73),
and orthonormality were used. So
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0 in 01
S, = =1in
“dn 0) 210

(S, =(alS,lay=Lia| f)=0, (S,),=(|S,|p)=-Lil(a|a)=-
(S,)ar =[S 1 =%ilt, (S,) =(BIS, | By =-Lin(B|a)=0,50

s [0 —%ih_lhO—i
Y\Ln o ) 2\li 0

1-
zlh’

2
(Su=(alS.la)=hala)y=4h, (S.)p=(alS.|p)=-$Mal|p) =0,
()30 =(BI5.1 B) =—3n(B| By=-1h, s0

in 0 1 0
S. =2 Ry
0 -in 0 -1

(D) =(a|$?| By =331%(a| B) =0,

(S.)21 =[(S)12]*=0,

(S =(a|$?|a) = 13n%(a|a) =317,
(5 =[S =0, ($)) =(BIS?| By =131*(B1 B) =317 . S0

2
52— %h 0 _1p2 30
32| 4

0 2n 0 3

0 -i 0 2i 0 in 0
I IV g R ¥ R B LA B
0 —i 0 i 0 -2 0 —3n
(d) Equation (8.82) is
-1 1z
2 1=0=4-(n)® and A=xin
in -2 2 2

The eigenvectors for A = J_r%h are found from

%hcl - /102 = O = %hcl i%hCZ
which gives ¢, = £¢, . Since the two basis functions are orthonormal, normalization gives

27Y2 and the eigenfunctions are 2Y2(«r + 8) , where the upper sign is for the

lal=]e|=
positive eigenvalue. These results agree with Prob. 10.26b.

10.29 (@) F. (b) T. (c) F. (The complete wave function must be antisymmetric.) (d) F.
(This is true only if the fermions are identical.) (e) T. Anatom of 12Br has 35 electrons

10-10
Copyright © 2014 Pearson Education, Inc.



and 79 nucleons, for a total of 114 fermions, which is an even number, so this atom is a

boson. (f) T. (g) T, since the nuclear and electron magnetic moments have m, and m,,
respectively, in the denominator. (h) T [since y in the equation after (10.59) is positive

for a proton].
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111

11.2

11.3

11.4

11.5

Chapter 11

Many-Electron Atoms

(a) It was noted near the end of Sec. 6.5 that n” states belong to an H-atom energy level
with quantum number 7. This is the number of orbitals belonging to a given n. Since each
orbital holds two electrons, a shell with quantum number » holds up to 2n* electrons.

(b) For a given /, there are 2/ +1 values of m. Since each orbital holds two electrons, the
capacity of a given subshell is 2(2/ +1) =4/ +2.

(c) 2 electrons.
(d) 1 electron.

2 2 2

H = _I (Vl2 +V§ +V§)— ze i+L+i +-2 L+L+L

2m, dreg\ 1y 1y 13) Ameg\r, ryy T3

As noted after (11.19), the radial equation for R(7;) has the form (6.17), namely,
—(1* 12m,) (R} + 21 R)) + [I(1 + DI 12m 2 1R, + Vi ()R, = &R, ,

where V] is given by (11.8).

The STOs (11.14) have "™ in place of rlZ;:f)_l b jrj in the hydrogenlike radial function
(6.100). Only if n—/—1=0 will the sum have a single term, as does the STO. When
n—I1-1=0, the rlzn__l_lb 7 factor becomes r'h, = byr"~', which is the STO form.

j=0 "J

Hence only when / =n—-1 (1s, 2p, 3d...), do STO and hydrogenlike AOs have the same
form.

By analogy to the hydrogenlike formula (6.94), we can estimate an orbital energy as
E ~—(Z2/n*)(e*187€ya,) . The 1s AO is the innermost orbital and s electrons screen

each other only slightly. So the effective nuclear charge Z_; for a 1s electron is slightly

less than the atomic number of 18. If we use the helium-atom variation result Z — %

(Eq. 9.65), then Z g ~17.7 and E,, ~ —(17.72/1)(13.6 eV) = —4260 eV . Figure 11.2

(with allowance for the logarithmic scales) gives (E,,/Ey)"* = 14., and
E,, =—(144)*(13.6 V) = 3020 eV.
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11.6 The crossing occurs at the point that is 0.36 of the way from Z = 20 to 30. Since
10%%% = 2.3, the crossing occurs between Z = 22 and 23.

11.7 (@) E,, = —(0.01702)2'%1(27.2 eV) = —1.15 eV, as compared with the true value
—1.14 eV.

(b) E.,. ~—(0.01702)7*'(27.2 eV)=-5.92 V.

E=-(14.534+29.601+47.448 +77.472 +97.888 + 552.057 + 667.029) eV = —-1486.03 eV.
E,.. 150.40% of E.

11.8 (a) From (11.39), the possible J values go from %+ 4 to | %— 4| by integral steps and so

hn 9 1 s
are 5, 3,5, 5 -

(b) Addition of j, =2 and j, =3, gives J values of 5, 4, 3, 2, 1. Addition of j; :% to
9977155331

. 11
each of these five J values gives total J values of 35033505550 -

11.9 True. Suppose that j, < j,. Then the J values are

h¥iy hth=L h+h=2 i+ == A+ h—h hth—Ua+Ds
At J—=Uy+2),... ji+Jj,—=(Js+ Jy)=J,— Jj,. There are j, values that precede the

value in the box and j, values that follow the value in the box, so the total number of

values is 2j, +1, where j, is not larger than j,.

1110 [M,, M2 =M, + M, ., M31=[M,,, M}+[M,., M?]1=0+0=0, where we used
(11.22), (5.4), (5.109) for M, and the sentence after Eq. (11.24).

1111 M. | jijpIM ) = (M, + M,.)Y C(jy..omy) | jymy) | jymy) =
ZC(]} m)M | jymy) | jymy) +ZC(]'1 .M, | jymy) | jymy) (Eq. 1), where
operator linearity was used and the sums go over m; and m,. We have
M, | J12IM j) =M ;1| jijaIM ) My | jimy) =mh| jym), and
Mzz | jomy) =m,h| j,m,) [see the tables between Eqs. (11.33) and (11.34)]. Also, as far
as M,_ is concerned , | j,m,) is a constant and as far as M,_ is concerned , | jm,) is a
constant. Hence Eq. 1 becomes
M h| jijpdM ) = CUy...my)mh| jymy) | jymy)+ Y C(jy...my)myh | jymy) | jymy) =
Z:C(j1 oy )(my +my))h| jimy) | jomy) (Eq. 2). Use of (11.33) in Eq. 2 gives
M ;Y Cyemy) | jymy) | jomy) = Cjyooomy)(my +my) | jymy) | jymy) so
Z:C(j1 sy )my +my, =M )| jimy) | jom,) =0 (Eq. 3). Since the product functions
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| jym,) | j,m,) are a linearly independent set, no one of them can be expressed as a linear
combination of the others and the coefficients of | j,m,) | j,m,) in the sum in Eq. 3 must
vanish: C(j,...m,)(m +m, —M;)=0.Hence C(j,...m,) =0 whenever

m; +my —M ; # 0. The Clebsch—Gordan coefficient is nonzero only when m; + m, =M ;.

11.12 Use of (11.26) gives
(M2, Mu] = [M12 "‘Mz2 + 2(M1xsz +M1yM2y +M12M22)7 Mlz] =
(M7, M1+ M3, M1+ [2M, My, M 1+12M,, M, M 1+[2M M), M,.]=
0+0+2M, [M,,, M1+ 2M, [M,,, M\, 1+2M,.[M,., M,.]=
—2ihMy M, +2ihM M, +0 = 2ih(M, M, — M, M, ,)) , where (5.4), (5.109) for M,
and for M, and (5.107) were used.

11.13 (a) False. (b) True.

11.14 Forthe ss case, , =0 and [, =0,s0 L =0. Also 5; =1 and s, =1, so (11.39) gives
S=10 and 25 +1=3, 1. These spin multiplicities also apply to all other cases of two
nonequivalent electrons. The terms are S and 'S
For the sp case, [, =0 and /, =1, so L =1. The terms are *P and 'P.

For the sd case, [, =0 and /, =2, s0 L =2. The terms are D and 'D.
Forthe ppcase, [, =1 and [, =1,s0 L=2, 1, 0. The terms are 3D, 1D, 3P, lP, 3S, s

11.15 (a) The electrons in closed subshells contribute nothing to the orbital or spin angular
momentum and are ignored. For 3p5g, we have /; =1 and /, =4, so the possible L

values are 5,4, 3 (H, G, and F terms). Also s; =+ and s, =, s0 (11.39) gives S =1, 0
and 25 +1=3, 1. The terms are 1F, 3F, IG, 3G, 1H, ’H .

(b) Forthe 2p3p3d configuration, we have /, =1, [, =1, and /5 = 2. Addition of /, and
[y gives 3, 2, 1, and addition of /; to these values then gives L values of 4, 3,2, 3,2, 1, 2,
1, 0. Addition of s; =1 and s, = gives S =1, 0, and addition of s; =1 gives the total S
quantum number possibilities as 3, £, 1+, with 25 +1=4, 2, 2. The terms are

’s, s, %s,*p,*p,*P,?P,*P,*P,*D, *D, *D, *D, *D, *D, *D, *D, *D, °F, *F, *F,
’F,°F,*F,%G,?G,"G.

(c) From Table 11.2a, the terms for the 2 p4 configuration are ’p (L=1,85=1),

'D (L=2,5=0),and 'S (L =0, S=0). Addition of /=2 and s :% of the 4d electron to
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11.16

11.17

the L and the S of each of the 2 p4 terms gives the terms
°P,*P,?D,*D,*F,*F,*S,?P,*D,*F,*G,*D.

The He ground state is a 'S term with L =0 and S = 0.
(a) The 1s2s configuration will give rise to a IS term and will contribute.

(b) The 1s2p configuration produces only P terms and does not contribute.

(c) 2s? givesa 'S term and contributes.
(d) 2s2p gives only P terms and does not contribute.
(e) 2p? givesrisetoa 'S term and contributes.

(f) 3d? givesrise toa 'S term and contributes.

S.AMDAQ) = (8. +5,,)BMAQR) = 5. D AQR) +$,. LD B(2) =

BD)S,. A1)+ B1)S,.A(2) = L 1BQ2) M) -1 1B1)A2) = B B2).
S.[a()BQ) = pDa(2)] = (S, +S,)[a()B2) + fDa(2)] =

Si-la()B2) £ fDa(2)]+ S,.[a() A2) = f)a(2)] =

$1a()B(2) % S, D (2) + a()S,. f(2) + B1)S,.a(2) =

Lha()BQ2)FL1pMa(2) - ha()B2) £11p1)a(2) = 0.

Sla()a(2) =

Sta(Ma(2)+a)S;a(2) +28,,a(1)S,,a(2) + 28;,a()S,,a(2) + 25, .a()S,.a(2) =
LintaMa2)+ 13 aDa2)+2-10p0)1np2) +2- Linp()Linp(2) +
2-1ha()ina(2) =2n°a(Da(2).

S*BM)A2) =

SEAMBQ)+ BM)S; B(2) + 285, 1S, B(2) + 25, ()S,, B(2) + 25, f(1)S,. B(2) =
L3n’ p)AQ2)+13 17 B AQ2) +2- L ha() L ha(2) + 2(-L i a()(- L ih)a(2) +
2(-1m) A1) BQ2) =217 BDHBQ) .

S [a)BQ)+ pDa(2)] = SLa(DB2)+ S ADa(2) + S3a() A(2) + S; A1) (2) +
28,,a(1S,,B(2) + 28, B(DS,,a(2) + 25, ,a()S,, B(2) + 28, B1)S, a(2) +
28,.a(1)S,. f(2) +28,. B1)S,,a(2) =

3ra)B)+20° Ba2) + 31 a() f(2) + 21 B)a(2) +
2-1npM)Lna2)+2-1ha()inp2) +2-Linp)(-Lina2)+ 2(-Linya()Linp2) +
2-Lna()(-1m)BQ2)+ 2(-1 ) A1) L ha(2) = 207 [a() B2) + B (2)].
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11.18

11.19

11.20

S [a()B2) - ()] = STa) A(2) - ST fDa(2) + S3a() B(2) - S5 A (2) +
28,,a(1)S,,B(2) - 25, (DS, a(2) + 25, ,a(1)S,, A(2) - 25, B1)S,,a(2) +
28,.a(1$,.8(2) - 25, )S,.a(2) =

2r2a()f2) - 20 fD)a(2) + 1) A(2) - 2 1° B1)a(2) +
2-1np(M)Lna2)-2-Lha()Lnp2) +2-Linp()(-Lina2) - 2(-Linya()Linf(2) +
2-Lna()(-1m)B@)-2(-1np1) L ha(2)=0.

(a) Similar to Figs. 5.6 and 10.1, cos@ = S./|S |= #/[1(2)]"*# =0.70711 and

6 =0.78540 rad = 45° [see Egs. (11.51), (11.56), and (11.57)].

(b) 1SP=S-S=(S,+5,):(S;+S,) =IS; [ +|S,* +25,-S, =2|S, [ +2[S,[|S; | cos &
and cos@=(|S[* —2|S,[*)/2|S,[ . Since | S;’=13 4% =3 1°, we have

cos@=(SF -3n*)2n* =2|S}/n* -1.

For (11.57), (11.58), and (11.59), cos @ = 2(1)(2)#*/h* —1=1 and 6 =1.23096 rad =
70.53°. For (11.60), Fig. 11.3 (or the preceding formula for cosé) gives 8 = 180°.

(c) From Fig. 5.2, the components are 4, and A,.Let S, and S, be the projections of
S, and S, in the xy plane. The components of S, , and S, equal the x and y components
of S;and S,,s0 S, ,-S,, =IS,,[[S,,|cos®=§,,5,, +5,,5,, where® is the angle
between S;, and S, ,. Then §,,S,, +8,,5,, = 8,5, + 81,8, +51.5,, = 5,.5,, =

S'S, = 51,8, =1S11S;cos0—S,.S,. =| S, cosf-8,.8,. =3n* -1 -1hn-1h=0,s0
cosw=0 and @ =90°.

[S2, Bolf (a1 @20 435--) = (S +85 +S5 40 (8, +S, +S5 + )Py £ (412 425 G30--) —
Bol(S+S,+S5 4+ (5, +5,+ S35+ (41, 425 435--)] =
Si+S,+S5+) (5, +8,+ S5+ (q2: 41 302 ) —
(§2+§1+§3+---)-(§2+§1+§3+---)f(q2,q1,q3,...)=0,since §1+§2 :§2+§1

(Prob. 3.6). A similar proof shows that [S‘ 2, éj] = 0. Replacement of S with L in the proof
gives [I*, B,]1=0.

As noted in Sec. 11.5, the atomic wave function is odd if >, /. is odd. For the H, He, Li,
and Be ground states, all the electrons are s electrons and 2., /. = 0. The ground-state
configurations 1s*2s%2p of B, 1s?2s°2p° of N, and 15252 p°> of F have 2.; l; equal to

1, 3, and 5, respectively, and these atoms have odd-parity ground states.
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11.21

11.22

11.23

11.24

(a) Asnoted in the Atomic Terms subsection of Sec. 11.5, the number of states belonging
toatermis (2L+1)(2S +1).

For *F, QL+1)(2S+1)=(2-3+1)4 =28.
(b) QL+D2S+1)=1-1=1.

© QL+D2S+1)=2+1)3=9.

(d) QL+12S+1)=(4+1)2=10.

(a) From Table 11.2, the 2p* configuration gives rise to these terms: *P with
RL+1)(2S +1)=3(3) =9 states, 'D with (RL+1)(2S +1)=5(1) =5 states, and 'S with
RQL+1)(2S +1)=1(1) =1 state. The total number of states is 15.

(b) The 2p3p configuration gives these terms: D with (2L +1)(2S +1) =5(3) =15
states, 'D with (2L +1)(2S +1) =5(1) =5 states, P with(2L +1)(2S +1) =3(3) =9
states, 'P with (2L +1)(2S +1) = 3(1) = 3 states, >S with (2L +1)(2S+1)=1(3) =3
states, and 'S with (2L +1)(2S +1) =1(1) =1 state. The total number of states is 36 states.

(@) A single electronhas s =1,s0 S=1 > and 25 +1=2.

%
(b) Addition of s, =% to s, :5 gives §=0,1and 25+1=1, 3.

(c) Addition of s, :% to § =0, 1 (the possibilities for two electrons) gives S :% and
S = % as the possible different S values for three electrons, with the possible spin
multiplicities being 25 +1=2 and 4.

(d) Additionof s, =7 to S = 2, S 3 (the possibilities for three electrons) gives S =0, 1,2

as the possible different S values for four electrons. Addition of sg = > t085=0,1,2 gives
S = ; , ; , 2 as the possible different S values for five electrons. Addrtron of 5, = 5 to
S = é, s 2 glves §=0,1,2,3 as the possible different S values for six electrons

Addition of s, = to §=0,1,2,3 gives S = as the possible different S values

2’ 2 ’ 2’ 2
for seven electrons, and the possible spin multiplicities are 2, 4, 6, 8.

(e) f'* has the same terms as £ and the spin multiplicities are 1 and 3.

(F) The same as f, namely 2.

(@) For 'S, L=0 and S =0. Hence (11.62) gives J = 0. The only level is ISO, with
degeneracy 2J +1=1.

(b) For >S, L=0 and S=1,s0 J =1 and the only level is °S;,, with degeneracy
2J+1=2.
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11.25

11.26

11.27

(c) For 3F,L=3and S=1,s0 J=4,3, 2. The levels are 3F4, 3F3, 3F2 with
degeneracies 9, 7, and 5, respectively.

(d) For *D, L=2 and S=2,s0J=1,3,3, 1 Thelevels are

*D,,, *D,,, *Dy,,, *D,,, with degeneracies 8, 6, 4, 2, respectively.

For a 3D3 level, L=2, S=1,and J =3.
@) [L(L+D]"*h=6"h.

(b) [S(S+D]"2n=2"h.

) [J(J+D]"*r=12"h.

For the 1s configuration of H and for the 1s?2s configuration of Li, the ground level is
%S,/ . For the closed-subshell 1s* configuration of He, the 1s*2s” configuration of Be

and the 1525%2p°® configuration of Ne, the ground level is 1S0 . For the 1s*2s*2p
configuration of B, L=1, S =1, and J =2, 1; by the rule near the end of Sec. 11.6, the
lowest level is 2P, . For the 1s*2s*2p* configuration of C, the terms are given by Table
11.2 as 3P, ID, and 'S. By Hund’s rule 3P lies lowest. For *P the J values are 2,1,0
and the lowest level is ° F,. For the 152522 p3 configuration of N, the terms are given by

Table 11.2 as P, D, and *S. By Hund’s rule *S lies lowest. For *S the only level is
%S, . For the 1s°25*2 p* configuration of O, the terms are given by Table 11.2 as *P,
'D ,and Is. By Hund’s rule 3P lies lowest. For °P the J values are 2, 1, 0 and the lowest
level is 3P2 . For the 1s*2s%2p’ configuration of F, the terms are given by Table 11.2 as

2P . For %P, the levels are *P,, and *P,, . By the rule near the end of Sec. 11.6, *P,, is

lowest.

For the ,,Sc configuration [Ar]3d 4s? , the rule near the end of Sec. 11.6 gives the ground
level as >D;, .

For the ,,Ti configuration [Ar]3d 245%, Table 11.2 and Hund’s rule give the lowest term
as >F with L=3 and S =1 ; the J values are 4, 3, 2 and the ground level is 3F2-

For the V configuration [Ar]3d>4s”, Table 11.2 and Hund’s rule give the lowest term as
*F ; the J values are 9/2, 7/2, 5/2, 3/2 and the ground level is *F} , .

For the Cr configuration [Ar]3d°4s', Table 11.2 gives the highest-multiplicity term of d°
as %S with S =5/2 and L = 0. When the contribution of the 4s electron is included, the
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11.28

11.29

11.30

11.31

highest-multiplicity term will have S =3 and L=0,a 'S term with the single level 7S3 .

For the Mn configuration [Ar]3d°4s*, Table 11.2 and Hund’s rule give the lowest term as
6S with the single level °S), .

For the Fe configuration [Ar]3d %45%, Table 11.2 and Hund’s rule give the lowest term as
D ; the J values are 4, 3, 2, 1, 0 and the ground level is > D,.

For the Co configuration [Ar]3d’ 4s*, Table 11.2 and Hund’s rule give the lowest term as
‘F ; the J values are 9/2, 7/2, 5/2, 3/2 and the ground level is 4F9/2.

For the Ni configuration [Ar]3d®4s?, Table 11.2 and Hund’s rule give the lowest term as
’F ; the J values are 4, 3, 2 and the ground level is 3 F,.

For the Cu configuration [Ar]3d 044" the only term is %S with the single level 2S1 /2

For Zn with [Ar]3d'"4s?, the ground level is lSO.
The most degenerate level has the highest J, namely *F,,, of Co.

(&) The m values go from —/ to /, and we have

rr . 11
m: 1 1=1 o —l+1 -

The only value of M, for this arrangement is zero, since positive and negative m values
cancel. With only M, =0 allowed for the ground term, this term must have L =0.

(b) If L =0, we get only a single level that has J = S. Hence no rule is needed to decide
which is the lowest level of the term.

E/he = (1eV)[(1.602177 %107 1)/(1 eV))/[(6.62607 x107>* J 5)(2.997925x10* m/s)] =
806554 m™' (1 m)/(100 cm) = 8065.54 cm ™"

For the 2s°2 p3p electron configuration, Hund’s rule predicts 3D as the lowest term, but
the 'P term lies slightly below *D. For 2s°2p3d , Hund’s rule is violated. The atomic

energy-level tables at physics.nist.gov/asd show at least 13 other configurations of C
where Hund’s rule is violated.

The AL =0, £1 rule means that S levels can go to S and P levels, P levels go to S, P, and

D levels, and D levels go to P, D, and F'levels. The AS =0 rule means levels of singlet
terms go to singlet levels and triplet levels go to triplet levels. The A2, /;) = 1 rule

prevents transitions between two levels that arise from the same electron configuration.
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11.32

11.33

The Al =1 rule is obeyed for 2522 p2 going to 2s2 p3 . The allowed-transition

wavenumbers in cm ™ are:

'Ry »°D, 64089.8, ‘B, —’P 75254.0, ‘P, —’S, 105798.7,

'R —°D, 640734, P —D, 64074.5, ‘P =B 75237.6, ‘B —’P, 752389,
'R —’P) 752397, ‘B S, 105782.3,

P, =D, 640435, 3P, »°D, 64046.4, ‘P, »°D, 64047.5, P, »’B 75210.6,
P, P, 752119, °P, S, 105755.3,

'D, »'D, 87685, 'D, »'P 109685,

and 'S, »'P, 98230,

where the first level in each pair arises from the 2522 p2 configuration.

The 2s° 2p3s levels are listed as:
Level 3Po ‘ 3Pl ‘ 3Pz ‘ lpl
(E/hc)/em™ ‘ 60333.43 ‘ 60352.63 ‘ 60393.14 ‘ 61981.82

The discussion at the beginning of Prob. 11.31 gives the following allowed transition
wavenumbers in cm™' (the first number listed for each transition) and wavelengths in nm
(the second number listed), where the first level in each pair arises from the 252 3s

configuration:

Py =P 60317.0, 165.791;

P —°P, 60309.2, 165.812; B —’F 60336.2, 165.738;
P —=’P) 60352.6, 165.693;

3P, P, 60349.7, 165.701; *P, »°B 60376.7, 165.627;

'P >'D, 51789.2, 193.090; 'P, —'S, 40333.8,247.931.

The calculated wavelengths agree with the ones listed in the NIST database except for the
wavelength of the last line, which NIST gives as 247.856 nm. This is because NIST lists
wavelengths that are between 200 nm and 2000 nm as wavelengths in air (rather than in
vacuum), so the index of refraction of air affects the NIST value.

For *P,, Eq. (11.66) gives s =H(OR[3-3-12) —1-3]= (R
For *B,, Eso, = HEM[L-2-12)- 121 =~&ER . So AEg, =3(EWR” . From (11.64),

1 dv 1 d ze& Ze*
I i a i = 555 and
2micr dr 2mycTr dr Amegr  8meymicr
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Zez @© 2.-3.2
R v— [ Ry rdr =
0'"*e

Ze* AT —Zrla Z%* a’ AT . .
) z J re dr = T3S = 53 » since the spherical
8reym;c” 24a” 0 1927gym;c*a” Z°= 192neym;c a

harmonics are normalized. So AEg, = (Z*h*e*/512¢,m°m’c?a’) =

(6.626x107* J§)%(1.6022x107" C)?
512(8.854x1072 C* N7 m™)7°(9.109x107! kg)?(2.998 x10® m/s)*(0.5295x 107" m)?
=7.242 x 10*J = 0.00004520 eV.

11.34 No. The 1s2p configuration has two partly filled subshells.

11.35
M.
S o 'So OJ

p Dy e—

1s725*2p* —"

11.36 AE, = uggBAM ; = p1gB . From (11.75), g =1+[(0.75-2+0.75)/1.5] = 2/3. From
Table A.1, | AE5 | = (9.274x1072* J/T)(0.200 T)(2/3) =1.24x107%* J = 0.00000772 eV.

11.37 (D| X", /| Dy=X" (D| f;| D). In D in (11.76), rows 1, 2, 3,... contain entries with
electrons 1, 2, 3.... The Prob. 8.22 expression with ijk replaced by pgr and by stw gives
(DT £ 1Dy = (1Un) Xy (Z(EDu, (D, s, (3)-++| f; | T (Dyuty (Dot (2u, (3)-++) =
(/n) Ty TEA(EDu, (Du, (2w, (3)-++| f; | (EDu, (D, (2, (3)-+) (Eq. 1). Consider the
integral 1 = (u,, (D, (), (3)-++| fy |u, (D, (2, (3)-+) =
(u, ] A L (D)t (2) |1, (2))ut, 3) [, 3y = (, D] f; | u(1))S,,5,,, -+, since the

spin-orbitals are orthonormal. Unless each of electrons 2, 3, ..., n, is in the same spin-
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orbital on the left and on the right of fl , the integral 7 will be zero. When each of
electrons 2, 3, ..., n, is in the same spin-orbital on the left and on the right of fl , then
electron 1 is also in the same spin-orbital on the left and on the right of 1}1 . Thus, each

integral in Eq. 1 is zero unless the permutation s¢tw--- is the same as the permutation
pqr---. The rightmost sum in Eq. 1 is over the various possible permutations s¢tw---. Thus

we drop the rightmost summation and change s, ¢, w,..., to p, g, 7,..., respectively. Also,
since the permutations on the left and right of f; are now the same, we will get either a

factor of (+1)* or (—1)*. Hence Eq. 1 becomes

(DX J; 1Dy = (Un)EiLy X u, (Duy 2, (3| f; [, (Du, (2)u, (3)-+) (Eg. 2).
Because f; refers only to electron i and the spin-orbitals are normalized, we have
(Dt (1, (3)-++ | f [, Dty (2, (3)-+) =, () | f; | w,, () (Eq. 3), where u,, is the
spin-orbital in u, (Du, (2)u, (3)--- that involves electron i. Also, note that

(u,,(i) | fl lu,, (i) =(u,, 1) | fl |u, (1)) (Eq.4), since whether we label the electron as 1 or
as i does not affect the value of this definite integral. The second . in Eq. 2 is a

summation over the n! permutations of p, g, 7,.... One-nth of these permutations have
electron 7 in spin-orbital u ,, one-nth have electron i in u,, etc. Since (I/n)n!=(n—-1)!,

Egs. 3 and 4 show that Z(up (Du, 2)u, (3)--| j; |u,(Du, (2)u,(3)---) =

(=D, D) | £ [, D)+, (D) ] f; 21, (D) +ut, (D] f; |w,(1) +] and Eq. 2 becomes
(DT fi1DYy = Un) S [, (D) |y L, D)+, O] |t (D) + (D] e, (D) +++] =
w, ] A 1, O+, D] f 1, D)+, (D] f |, D)+ = X5, (D ] f T (D),

since the quantity in brackets has the same value for each value of i. Use of
(u; M) fl lu; (1)) =<6,(D)| fl |6;(1)) [the displayed equation after (11.77)] gives

(D| 25, f, | D) = Z?:1<9_j(1) | fl |60;(1)), which is (11.78).
Proceeding similarly with the gij integrals, we have
(DIX]' Y. 8, |Dy =273 ,..(D| &;|D). Use of Prob. 8.22 gives
(DI X0 85 |D) =
Wn)Z S (& Du, (Du, (2, (3)-+| &5 | Z(FDug (D, (2u,, (3)--) =
U5 X Z X Du, (Duy (2u, (3)-+| &5 | (D, (Duy (2, (3)-+) (Eq. 5).
Consider the integral G = (u, (Du,(2)u,(3) | g lu,(Du,(2)u,,(3)--) =
Cup (Mg (2) | &1 [, Wue, (2))ut, (3) |1, 3)) -+ = (u,, Dty (2) | &1 |1y (D (2))6,,,, -+, since

the spin-orbitals are orthonormal. Unless each of electrons 3, ..., n, is in the same spin-
orbital on the left and on the right of g,,, the integral G will be zero. The rightmost sum

in Eq. 5 is over the various possible permutations stw---, and the nonzero terms in this
sum have each of electrons 3,..., n in the same spin-orbital on the right of g,, as on the
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left. Hence, for g;; = g;,, the only nonzero terms in the rightmost sum in Eq. 5 are
(u,(Du, (2)| &1y lu,(Du,(2)) and —u,(Du,(2)| &, |u,(Du,(2)); the first of these

integrals involves the same permutation on the left and right, so the +1°’s disappear. In the

second integral, the permutation on the right is gotten from the one on the left by one
interchange, so in this integral, the spin-orbitals are multiplied by (+1)(—1) =—1. Thus, the

integral ((£D)u,(Du, 2)u,(3)---| &; | (EDu;(Du, (2)u,,(3)---) in Eq. 5 is zero unless the
permutation stw--- is either the same as the permutation pgr--- or differs from pgr--- in

having the two spin-orbitals for electrons i and j interchanged. The rightmost sum in Eq. 1
is over the various permutations stw---. Thus when we do the rightmost summation, Eq. 5

gives (D| XY 5 & | D)=
(Unt) 5 S o I (Dt (210, ()0, ()| & |1, (D ()20, 0)-, () -+) =
(uy Wy (2)- -1, (@)1, (7)1 &5 T, Dy (2)-+-uy ()1, () -+ 1 (Eq. 6)

The rightmost 2. in Eq. 6 is a summation over the n! permutations of p, g, r,.... One-nth
of these n! permutations [that is, (n —1)! permutations] have electron i in spin-orbital u,,;
of these (n—1)! permutations with electron i in u,,, a fraction [1/(n —1)] have electron j in
u,. Thus (n—2)! of the n! permutations have electron i in u,, and electron j in u,. Also
(n—2)! of the n! permutations have electron i in u
therefore becomes (D | X' Y 5 & | D)=
2/ =D S s Ly, Dy ()| 13 11, (Dt (20) + (D, (2) | 13 L1, (Dt (2) +--

— G, D1ty (2)| &1z L1ty (D, (20) =G, (D, ()| @12 L1, (D, () =] (Eq. ),
where the dots indicate that terms with all pairs of spin-orbitals are included, with each
pair appearing once; that is, the term (u, (u,(2) | &, | u,(Du,(2)) does not appear in
addition to (u,(Du,(2)] &, |u,(Du,(2)), since (u,(Du,(2)[ &, |u,(Du,(2)) has been
allowed for by the factor 2 in Eq. 7. In writing down Eq. 7, we used the relations
Cupy (Duag (2)-- -1, @)1, ()1 & |1, W (2)- 14, (1) 10, () +) =
(ot D, () | &5 L1, (Duy (7)) and
Cuy (D, (1) | &5 [ (D, ()Y =, (D, (2) | &1 |14, (D, (2)) - The quantity in brackets in

Eq. 7 has the same value for each term in the double summation over i and j, and there are

, and electronj in u,,. Equation 6

1n(n—1) terms in the double sum. Hence Eq. 7 becomes (D | Y 51 851D) =
(u,(Duy(2) [ &5 [u,Du, (2)) +u,(Du, (2) | &1, [u,(Du,(2)) +--
— i, 01ty (2)| @13 20y (01, (20) = 2t (D, (2)| @13 |1, (D (2)) =+ (Eq. 8), where the dots

indicate that terms with all pairs of spin-orbitals are included. Instead of the dots, we can
use a double sum over the spin-orbitals to include each pair of spin-orbitals, and Eq. 8 is

(DXL 8,1 D) =
Sh0 Sk [t D, ()| &1 L1ty (Dt (2)) = Gt (Dt (2) | €15 1, (Dt (2] (Eq. 9).
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Each spin-orbital is the product of a spatial and a spin factor: u, = 6,0, . Since the spin
functions « and S are orthonormal, we have

(uy D, (2) | &1 11y Dy, (2)) =6, (1D6,,(2) | 12 1 6, (D,,(2)) and

1t Dt )| 215 110, Dt () =8, (6(1D6,(2)| 15 | 6, (16, (2)) and Eq. 9 becomes
(D] z?:_ll zj>i é’,’j | D) =

S0 Tk (G (D6, 810 1 6,(D0, () =8, (B(D8,(2)| 12 | 0, (DE ()]

which is (11.79).

11.38 (a) For a closed-subshell configuration, 6, =6, =¢,, ,=6,=¢,,..., 6,., =6, =¢,,>.

11.39

Consider the Coulomb integrals in (11.80) that involve 6,, 8,, &;, 6,. The contribution of
these integrals to (11.80) is J, +J;3 + J 4 + Jo3 +Jo4 + 34, Where the subscripts refer to
the 6 functions. Let J, g denote a Coulomb integral involving ¢, and ¢,. From the
relations between the 6’s and the ¢’s, we have J,, = J{’}l, Ji3 = J{’jz , Jig = Jfé , Sy = Jl‘é ,
Jog =T, Ty =J% . S0 Jpy + T+ Jyg + oy + Ty + T3y = 4J0 + I+ JL, , whose form
agrees with that of the Coulomb integrals in the expression to be proved. A similar result
holds for the Coulomb integrals involving the four orbitals 6,, 6,.,, 6;, 6,,, having
0,=6, and 6, =0

41> 80 the Coulomb-integral part of the expression in Prob. 11.38a is
correct. The orbitals 6, 6,, 6;, 6, have spin functions «, S, a, S, respectively, so the
contribution of the exchange integrals in (11.80) that involve 4, 6,, 6;, 6, is —K;; — K, .

The integrals K,,, K4, K,3, and K5, do not appear because of the Kronecker delta in
(11.80). We have K, = K{, and K,, = K?,, so —K,; — K,, = —2K/, , whose form agrees
with that of the exchange integrals in the expression to be proved. A similar result holds
for the exchange integrals involving the four orbitals é,, 6..,, 6., .., having 6, =6,

i Yitl> Yo Y+l i+l
and 0, =0,,,,

so the exchange-integral part of the expression in Prob. 11.38a is correct.
(b) First consider integrals where i # j . In the double sum in (11.83), the terms

2J; - K, and 2J; — K, occur, whereas the restriction j >i means that in the Prob.
11.38 double sum, we get 4J;; —2K,; instead of 2J;, - K;; +2J; —K ;. Because J;; = J;
and Kl-j = Kjl- ,

the double sum in (11.80) is X2 (2J, — K;;)) = X2 (2J, = J,) = XM2 T,

these two expressions are equal. The contribution of integrals with i = j to

If we take the special case that fl =1, then Table 11.3 gives
(D|n|D)y=n(D|D)=2._(u;(1)|u;(1)) = n (since the spin-orbitals are normalized) and
(D|D)y=1.1If Dand D’ differ by one spin-orbital u, # u,, then

n(D"| D) =(u, (1) |u,(1)) = 0, since the spin-orbitals are orthogonal. If D and D" differ by
more than one spin-orbital, Table 11.3 gives (D'| D) =0.
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11.40

1141

11.42

The zero level of energy is taken with the electrons and the nucleus infinitely far from one
another. Therefore the ground-state energy is minus the energy change for the process

Li — Li’" + 3¢, which is minus the total energy change for the processes

Li—> Li'+e, Li' > Li* + e, Li*” — Li*" + ¢ In the second and third steps, the 1s
electron is being removed from Li*" and from Li*", respectively, whereas the 1s ionization
energy of Li refers to removal of a 1s electron from Li. Hence the procedure mentioned in
the problem does not give the correct Li ground-state energy.

(a) Because the proton mass occurs in the denominator of m;, whereas the electron mass
occurs in the denominators of m; and mg, the magnitude of m; is much smaller than that
of m; and mg.

(b) The inner-shell electrons are in closed subshells and do not contribute to the orbital or
spin angular momenta. The valence electron is in an s orbital and has no orbital angular
momentum. Hence L is zero and m; is zero. (The nuclear spin is nonzero since the
nucleus has an odd number of protons.)

() T. With an odd number of electrons, there must be an odd number of unpaired
electrons. Since each electron has s = % , the total-electron-spin quantum number S must

be half-integral (% or % or % or ---) with an odd number of unpaired electrons. Hence 25
is odd and the spin multiplicity 25 + 1 is even.

(b) T. With an even number of electrons, there must be an even number of unpaired
electrons. The quantum number S must be an integer (0 or 1 or 2 or ---). Hence 2S5 is even
and the spin multiplicity 25 + 1 is odd.

(c) F. For example, a >S term has only one level.
(d) F. [See (11.10).]
(e) F.
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Chapter 12

Molecular Symmetry

121 (@ F. ®F (© T

12.2 (a) A C, axis bisecting the bond angle; two planes of symmetry—one containing the

12.3

12.4

plane of the nuclei and one perpendicular to the nuclear plane and containing the C, axis.
(b) A C; axis and three vertical planes of symmetry; each plane contains the C; axis and
an N-H bond.

(¢) A G axis through the H-C bond and three planes of symmetry; each plane contains
the C; axis and a C—F bond.

(d) A plane of symmetry containing the nuclei.

(e) A C; axis perpendicular to the molecular plane and passing through the center of the
benzene ring; the C; axis is also an S5 axis; three vertical planes of symmetry, each of
which contains the C; axis and a C—Cl bond; a horizontal plane of symmetry containing
all the nuclei; three C, axes, each containing a C—Cl bond.

(H) A C, axis that bisects the HCH bond; two vertical planes of symmetry, one containing
the H, C, H nuclei and one containing the F, C, F nuclei.
(g) No symmetry elements.

>
>

D‘j)
Q)

(a

) 0 B
()Eé 3, 641 6y, G
© E G, (L, 6,6, 6,
()E&

(e) E Cs’ C3, Ss’ 53’ a1 0p Ocr 04y Cogr Copy G
(f) E C2' a’ b'
(® E.

This does not meet the definition of a symmetry operation since it does not preserve the
distances between all pairs of points in the body. For example, the distance between one
of the Cl atoms that is moved and one of the Cl atoms that is not moved is changed.
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125 (a) E;
(b) o;
(c) éz?
@ G;
@ C;
M S,=i;
@ C;
(h) i.

12.6 (a) The top drawing in Fig. 12.7 shows that éz (x)é‘4(z) leaves the locations of F3 and Fs
unchanged, interchanges F; and Fg, and interchanges F4 and F,. This is a @2 rotation
about the F3SFs axis.

(b) The bottom drawing in Fig. 12.7 shows that 6’4 (z)é2 (x) leaves the locations of F,
and F4 unchanged, interchanges F; and Fg, and interchanges Fs and Fs. This is a @2
rotation about the F,SF, axis.

127 (a)

The top and bottom rightmost figures are the same, and these two operators commute.
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(b)

These two operators do not commute.

(©)

These operators commute.
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(d)

The operators commute.

12.8 (a) Itlies along the C, axis bisecting the bond angle.
(b) It lies on the C; axis.
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12.9

12.10

(c) It lies on the C; axis coinciding with the C—H bond.
(d) It lies in the molecular plane.
(e) No dipole moment, since we have noncoincident C, and C; axes.

(H Itliesonthe C, axis bisecting the HCH bond angle.

(g) No information.

(a) No.
(b) Because of the absence of an S, axis, the molecule is not superimposable on its

mirror image. However, the mirror image differs from the original molecule by rotation
about the O-0 bond, and there is a low barrier to rotation about this single bond. Hence,
the molecule is not optically active.

(a) E has no effect on the coordinates, so its matrix representative is
1 00
010
0 01

(b) &(xy) converts z to —z while leaving the x and y coordinates unchanged, so its matrix
representative is

1 0 0
01 0
0 0 -1

(¢) o(yz) converts x to —x and leaves the y and z coordinates unchanged. Its matrix

representative is
-1 00

0 10
0 01
(d) 62 (x) converts y to —y and z to —z, while leaving x unchanged. Hence, we have
1 0 O
0 -1 0
0 0 -1
(e) The 3”4(2) operation combines the effects of @4(z) and &(xy). As shown in Fig.
12.9,a 64 (z) rotation gives x'=—y and y' = x. The operation &(xy) converts z to —z.
Therefore the 54 (z) matrix representative is [see also the @4 (z) representative near the
end of Sec. 12.1.]
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0 -1 0
1 0 O
0 0 -1
(f) The following figure shows the effect of ég(z) :

", ) r

60° -4 <70

From the figure, we have
x=rcosd, y=rsind and

x' = —rcos(60° — #) = —r(cos60°cos & +sin60°sin ) = -2 cos O —%\/§rsin 0
x'=—%x —%\/éy
y' = rsin(60° - @) = r(sin 60°cos @ — cos 60°sin &) = %\/éx — v, where trigonometric

identities were used. Hence the matrix representative is

5 3 0
13 -1 o0
0 0 1
12.11 (a)
4 Z 4
Fa #5 Fl
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(b)
1 0 0 100 1 0 O
C,(x)=|0 -1 O o(xy)=/0 1 O 6(xz)=|0 -1 0
0 0 -1 0 0 -1 0 0 1
1 0 0)1 0 O 1 0 O
C,(x)o(xy)=|0 -1 0|0 1 0 |=l0 -1 0|=0(xz)
0 0 -1)l0 0 -1 0 0 1

12.12 (a) Since (5(;4)4 =1, the result of Prob. 7.25 shows the eigenvalues to be 1, i, -1, i.

(b) Since some eigenvalues are not real this operator cannot be Hermitian. Note also that
the C,(z) matrix representative near the end of Sec. 12.1 is not Hermitian.

12.13 (a) Since (5C2)2 =1, the result of Prob. 7.25 shows the eigenvalues to be 1 and —1.
(b) To prove this operator is Hermitian, we must show that
JZ T2 12 U (e 3, 201* Oy g (v, v, 2) dedy dz =
21010 g(x, 9, DO, (o) f (x, . D)*dxdydz (Eq. 1). The left side (Is) of Eq. 1 is
Is= [ 1" 17 [f(x v, 2)]*g(=x, -y, z)dxdydz . Let s =—x, t =—y . Then
Is= (" [ 727 [f(=s,—t, 2)*g(s, t, z)ds dt dz =
[ 02 12 Lf(=x, =y, 2)]* g(x, v, z) dx dy dz , where the dummy variables s and 7 were
changed to x and y. The right side of Eq. 1 is
rs= |7 [ " a(x v, 2)[f(~x, — v, 2)[*dxdydz . Since rs = Is, the operator is Hermitian.
(Note also that the matrix in Prob. 12.10d is Hermitian.)

12.14 (a) A rotation around the z axis leaves 2p, unchanged.
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(b) A 90° counterclockwise rotation about the y axis moves the positive lobe of 2p, onto

the positive half of the x axis and the negative lobe onto the negative x axis, and so
converts 2p_ to 2p,..

12.15 Figure 12.6 shows that i = &(xy)é2 (z). Also, S‘n = &(xy)én (z) . Since two rotations
about the z axis clearly commute with each other, we have
iC,(2)Cy(2) = iC(2)C, (2) = 6() ()G (2)C, (2) = G(0) EC, (2) = 6:(x)C, (2) = S, .
For n =1, the relation S, (z) =i[C, (z)C,(2)] (Eq. 1) becomes S (z) =iC,(z), S0 an S;
axisisa 2 axis. For n =2, Eq. 1 becomes S, (z) =iC,(z)C,(z) =iE =iCy(z), 0 an S,
axisisa 1 axis. For n =3, Eq. 1 becomes S;(z) = iCy(2)C,(2) = i[Cs (2)]° = i[Cs ()],
soan S, axisisa 6 axis. For n =4, Eq. 1 becomes
S,(2) =iC,(2)Cy(2) =i[C4 () =i[C,(2)] "}, s0an S, axisisa 4 axis. For n =5,
Ss =iC5(2)Co(2) = i[Cpp(2)]” and SZ =7%(Cyp)# =iCyy, SO an Ss axis is a 10 axis.
For n=6, S; =iCy(2)C,(z) =i(C5)? =i (C;)™* and an S, axisisa 3 axis. For n=7,
S, =iC,C, =i(C)® and (S,)° =i°(Cy)? =i(Cy) tandan S, axisisa 14 axis.

12.16 (a) Since the sum of two real numbers is a real number, closure is satisfied. The identity
element is 0. The inverse is the negative of the real number. (0 is its own inverse.)
Addition is associative. Hence this is a group.

(b) The identity element is 1. The inverse of 2 is % which is not an element in the

proposed group, so this is not a group.

(c) Multiplication is associative. The identity element is 1. The inverse is the reciprocal of
the number, and every member has an inverse. The product of two real nonzero numbers
is a real nonzero number, so closure is satisfied. This is a group.

12.17 The sum of two square matrices of order 4 is a square matrix of order 4, so closure is

satisfied. The identity element is the square order-4 null matrix (all elements equal to

zero). Matrix addition is associative. The inverse of a matrix with elements a;; is the

matrix with elements —a; . So these matrices do form a group.

12.18 We have ¢/2™/ef27iln — oi2n(k+)in (\where k and j are integers) and [¢'2***/"]" =1, so
closure is satisfied. The identity element is 1. The inverse is e 27"

of unity). Multiplication is associative. So this is a group.

(which is an nth root

12.19 (a) 34; (b) Ca; (€) Gy (d) Cao; (€) Op; (F) Car; (8) Dan; (h) Ca.
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12.20 (a) Doy (b) G5 (€) Gy (d) Co; (€) Cop
12.21 (a) Den; (b) Cop; (€) Copy (d) Copy (€) D2p; (£) D3y () Ciy (h) Doy () G

12.22 (a) Cop; (b)) ©p; (€) Doty (d) Coop; (€) Doy (F) & (The OH hydrogen is staggered
between two methyl hydrogens.); (g) Ca; (h) Cony () Si; () Gy (K) D3y (1) S
(m) 05 (m) .

12.23 (a) 95, (b) Capy (€) D2g; (d) O () Gy () Doiy (8) Das (h) &y (1) Do

12.24 (a) From Prob. 12.3b, there are 6 symmetry operations and the order is 6.
(b) From Prob. 12.3d, the order is 2.
(¢) The order is infinity, since there are an infinite number of rotations.
(d) From Prob. 12.3e, the order is 12.

1225 (a) E, Cy(2), 6,(x2), &,(yz).
(b) The product of E witha symmetry operation B is equal to B.The product of each
of the four operations in (a) with itself is equal to £. The C,(z) operation converts the x
coordinate to —x and the y coordinate to —y and does not affect z. The &, (xz) operation
converts y to —y and leaves x and z unchanged. The &, (yz) operation converts x to —x and

6y (x2)

leaves y and z unchanged. Thus (x, y, z) %(—x, -y, z)—=(-x, y, z), SO
6,(xz) Cy(2) = 6,(y2). Similarly, C,(z) &,(xz) = &,(yz). Also

(x, y, 2) &)(—x, -y, 2) M)(x, -y, z), S0 6, (yz) 6’2 (z) = 6,(xz) . Similarly,
6'2 (z) o, (yz) = 6,(xz) . Also, (x,y,z) M)(x, -y, 2) M)(—x, -y, 2), SO
6,(32) 6,(xz) = Cy(2). Similarly, &, (xz) &, (yz) = C,(z2).

(¢) The results of part (b) give the following multiplication table

E G 6,(x2) 6,02
E E G 6,(x) 6,02
G2) | Ga)  E 6,02 6,(x)

6,(x2) | 6,(x2) 6,02) E  Cy(2)

6,(32) | 6,02) 6,(x2) Cplz) E
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12.26 (a) Since E, 63, and 632 all commute with one another, this group is Abelian.

(b) Let the z axis go through the N atom and be perpendicular to the plane of the three
hydrogens. Drawing the projections of the atoms into the xy plane, we find that C; and
&(xz) do not commute, so the group is non-Abelian.

12.27 (a) Dsi; (b) Dsa

12.28 There are three C, axes, one through each NH,CH>,CH>NH, group:

The point group 9D, has three C, axes, but in D, these axes are mutually perpendicular,
which is not true here. The three C, axes in this complex ion actually lie in the same

plane; this plane contains the y axis and is tilted away from the viewer above the
equatorial square and toward the viewer below the equatorial square. These three coplanar
C, axes indicate a C, axis perpendicular to the plane of the C, axes. (This C; axis is one

of the diagonals of the cube in which one can inscribe the octahedral ion; recall from the
description of the group O, the presence of C; axes in a cube.) The following figure

shows two of the triangular faces of the octahedron. The C; axis is perpendicular to these
two parallel planes, and a 63 rotation sends an atom at one corner of a triangle to another
corner of the same triangle.

This complex ion, whose point group is 95, can be viewed as a three-bladed propeller:
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12.29

12.30

12.31

12.32

12.33

12.34

12.35

We have (x, y, z) CZ—(X)>(x, W —Z)M)(x' -y, 2).

(@) Ca; (b) Cuop; (€) Dan; (d) Car; (€) Dooi; (£) Coor; () C2v; (h) Dep; (1) Doo;
() D2, (K) Do if the opposite signs of the wave function on the two lobes are ignored
or C,, if these signs are not ignored; (1) G.

(a) A regular tetrahedron.

(b) The regular pentagonal dodecahedron is dual to the icosahedron, which has 20 faces
(Fig. 12.14). Hence the pentagonal dodecahedron has 20 vertices. (For drawings, see
mathworld.wolfram.com/Dodecahedron.html.)

(a) 1, 3,5,... (as noted in the description of the group ¢, ).

(b) 2,6,10, ..., since (S,,)" =6,C, =S, for n=1,3,5,....
(¢) 21=2,6,10,...,50 n= 1,3,5,....

To have a dipole moment, the molecular point group must not have noncoincident
symmetry axes, must not have a center of symmetry, must not have a symmetry plane
perpendicular to a symmetry axis (since the dipole moment vector cannot simultaneously
lie both on the axis and in the plane), and cannot contain an S, axis with » > 2, since the
§n operation reverses the direction of a vector. The following groups satisfy these

conditions: @y, G, C,, C,.

For optical activity, the molecule must have no S, axis, including the cases of a plane of
symmetry and a center of symmetry. The following point groups satisfy this condition:
@11 @nv @nv gv ®l S

The first player will win. As a hint, consider what chapter this problem is in. (The problem
did not specify whether or not pennies are allowed to overlap the edge of the board, and
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the winning strategy is the same whether or not pennies are allowed to overlap the edge of
the board.)

12-12
Copyright © 2014 Pearson Education, Inc.



131

13.2

13.3

13.4

Chapter 13

Electronic Structure of Diatomic Molecules

(@) F. (b) T. (c) F.(The total energy is E in the nuclear Schrodinger equation.)

At 0 K, the enthalpy change of a gas-phase reaction equals the internal-energy change.

4.4781eV 1.60218x107"° T 6.02214x10% molecules
molecule l1eV 1 mol

=432.07 kJ/mol

Consider the following processes, where all species are in their ground electronic (and
vibrational) states:

H,——>H +e —5H+H +e¢"
\E
4
2H
The energy change for step 1 is /(H»), the ionization energy of H,. The energy changes for
steps 2 and 3 are Do(H,") and Do(Hy,), respectively. We have AE, + AE, = AE; + AE,, so

I(H,)+ Dy(H}) = Dy(H,) + I(H), and I(H,) =4.478 eV + 13.598 eV — 2.651 eV =
15.425 V.

(a) From Sec. 4.3, the frequency of the strongest infrared band equals the vibrational
frequency of the diatomic molecule if the vibration is approximated as that of a harmonic
oscillator. The zero-point energy is 1/v = (6.626 x 107* 1 5)(8.65x10" s71) =

2.866x1072° J(1 eV/1.6022x107"° 1)=0.18 ¢V . So D, =4.43 ¢V +0.18 eV =4.61 eV.
(b) The electronic energy function U(R) is the same for “H*>Cl and 'H*’Cl [since a

change in the mass of a nucleus does not change anything in the electronic Schrodinger
equation (13.4)—(13.6)], so the force constant k, = U"(R,) is the same for these species

and D, in Fig. 13.1 is the same for the two species. Equation (13.27) gives

= 0.717

12
v,CHPC) [ u(B¥cn ] [1.00834.97) 3698 |
v,((H”Cl) | u(PHCI) 3598  2.014(34.97)

Then v,(*H”CI) =0.717(8.65x 10" s7') = 6.20x10" s™" and L/v =0.128 eV . So
D,=4.61eV =D, +0.13¢V and D, =4.48 ¢V .
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135 (a) Setting v =0 in (4.60), we get the zero-point energy as 1 v, —4hv,x,, s0

eve?’

- 1 1
D,=Dy+5hv,—chvx,.

(6.6261x107* J5)(2.9979x10'% cm/s)[0.5(1405.65 cm ™) —0.25(23.20 cm™)] =

(1.3846 x1072° I)(1 eV/1.6022x 107" J) = 0.08642 ¢V .
So D, =2.4287 eV +0.0864 eV =2.5151 eV .

13.6 The complete nonrelativistic  is Eq. (13.2). The purely electronic Hamiltonian is
h* h? e’ e’ e’ e’ e’
——V? - - - +

el = 27
2m, 2m, Aregry, Anmegrg  AmEgry, AmE s ATE

13.7 Let f(z)=(1+2z)2.Then f'=-2(1+z)", f"=6(1+z)", f"=-24(1+2z)",... and
fO)=1 f'(0)=-2, f"(0)=6, f"(0)=—24,.... The Taylor series (4.85) with a =0

gives (1+z) % =1-2z+32z* =42 +--- and replacing z by x/R, , we get the series in
(13.24).

13.8 (a) Since a(R—R,) in e “®R) i dimensionless, a has dimensions of L™'. Let
A=pah” and B = u°a’ h¢. From Eqs. (4.71) and (4.70),
[A] = ML*T ™ = [u[a][n]" = MPLMI1L29T™ = MP™ 12T~ . We have
b+d=1, 2d—c=2, —d=-2.Hence d =2, c=2, b=—1 and 4= 'a*h*. The

same procedure can be used to find e, f, and g, but it is simplest to note that since a has

dimensions of L' and B has dimensions of L, we must have B = al.

(b) The result of Prob. 4.29 gives a = (ke/2De)1/2 and Eq. 13.27 gives k;/z = 27n/e,u”2 ,

S0 a = 2m/e(,u/2De)”2. Then

A=y 'a®n? =271 ID, =vih? /2D, = (4403.2 ecm )2 ¢ h? /2he(38297 em ™) =
(253.129 cm™ e = (253.129 cm™1)(6.6261x 10734 7)(2.9979 x 10" cm/s) = 5.0283x 1072 J
B=a'= (2De/,u)1/2/2m/e.

= mymy/(my +my) =m;/2 = 0.5(1.007825 g)/(6.02214x10%) = 8.36766x10> g.

B =[2(38297 cm e/ u]"? 1272(4403.2 cm ™ )e = 0.010003, (A/ uc)?em'’? =
0.010003,[(6.6261x107** J5)/(8.36766 x1072* kg)(2.99792x10"" cm/s)]"?em"? =

5.1412x107"" m.
D,, =D,/ A= (38297 cm™')hc/(253.12y em™')hc =151.29.
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13.9 (a) We set up the spreadsheet similar to Fig. 4.9 but with the D, , value 151,29, (from the
Sec. 13.2 example) put in cell D2. x, goes from —1.44 to 2.8 in steps of 0.02. Since
G.=2D,,(1-e™ )2 —2E the formula in B7 is =2*$D$2*(1-EXP(-A7))"2-2*$B$3.

vib,r »
You may well find that the Solver has trouble converging. Instead of taking the

unnormalized vibrational wave function value in C219 as the target cell, it is better to
calculate the normalized S,(x,) wave function values [where S,(x,) is defined in the

Sec. 13.2 example] in column E (using the procedure given near the end of Sec. 4.4; see
also part b of this problem) and use E219 as the target cell. Add the constraint £, >0.

Increase the number of Solver iterations to 5000. Also, graph the normalized wave
function. You may still find the Solver does not converge (especially for the lowest
levels), and using E209 instead of E219 as the target cell may increase the chances of

convergence. You can also temporarily decrease the precision to, say, 0.01 to get an initial
estimate of E,, which can then be found more accurately by increasing the precision.

Even so, for some levels you may have to adjust the energy value by hand (after finding
an initial estimate by running the Solver a few times in succession), being guided by the
number of nodes. One finds the six lowest E values as 8.57252518603940,

vib,r

24.9675657754079, 40.3625822603903, 54.7575697506298, 68.1525305970211, and
80.5474722505875. (A ridiculously large number of significant figures were found to

ensure that the wave function stays very close to zero at the right end, so that the answers
to (b) will be accurate.) Use of the 4 value in Prob. 13.8b gives E;, /hc = (A/hc)E

vib,r
(253.12y cm ™ H)E

vib,r
2169.95, 6320.01, 10216.94, 13860.73, 17251.38, and 20388.90 cm ™.
(b) We calculate the normalized S, values in column E. For example, cell E7 contains

the formula =C7/$H$2"0.5, where cell H2 has the formula =SUMSQ(C8:C219)*$D$3,
where D3 contains the interval value. In column F, we calculate the x.S”s, values. For
example, cell F7 has the formula =A7*E7/2*$D$3. Then (x,) is found from the formula
=SUM(F7:F209). The (x,) values found for the six lowest vibrational levels are 0.0440,
0.1365, 0.2360, 0.3435, 0.4605, and 0.5884. Use of

x. =x/B=(R-R,)/B=(R-0.741 A)/(0.5141 A) gives (R) =0.741 A +(0.5141 A)(x,)
and we find the following (R) values for the six lowest levels: 0.764, 0.811, 0.862, 0.918,
0.978, 1.043 A.

(c) The x, limits in the Sec. 13.2 example are appropriate for energies below E, =95.7.

and we find the six lowest Morse-function vibrational levels as

The energy spacing between the highest two levels in part (a) is 12. The spacing between
adjacent levels will continue to decrease as we go to higher levels, and we want to

calculate four more levels. We shall therefore add 4(12) = 48 to the highest energy value
of 80 in part (a) to get 128. For E, =128, we find the classically allowed region as in the

Sec. 13.2 example: 128=D, (1-e™ )* =151(1—¢")?, which gives x, = 2.53 as the
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13.10

13.11

right limit of the classically allowed region. Adding 1.2 to this, we get 3.7 as the right
limit for x,. We shall keep 0.02 as the interval. For these higher levels, the Solver more

readily converges and the target cell should be E264. Continuing the process in (a), we
find E for the next four levels to be 91.9424054, 102.337342, 111.732295,

vib,r
120.127274. Use of E.y /hc = (253.125 cm™)E

vib, gives the E . /he values as 23273.3,
25904.5, 28282.7, and 30407.7 cm .

From Prob. 13.8b, 4=v2h*/2D, = (214.5 cm™")*¢*h*/2hc(12550 ecm ™) =

(1.83308 cm™Yic. D,, = D,/A= (12550 cm™')hc/(1.83308 cm ™' )hc = 6846.4.

= mymy/(my +my) =m /2 =0.5126.904 g)/(6.02214x10*) =1.05365x10** g.

B= (2De/,u)1/2/27zve =

[2(12550 cm ™" Yhe/ u]"? /1272(214.5 em™)e = 0.11755(h/ pe)?em!? =
0.11755[(6.6261x107>* J5)/(1.05365x107>° kg)(2.99792 x10'° cm/s)]"? em"? =
5.384x107"" ' m =0.5384 A. R,, =2.666/0.5384 = 4.952.

The sixth-lowest vibrational level will have an energy that is less than

5.5hv, = 5.5h(214.5 cm™")c = (1180 cm™" )¢ , which division by 4 gives as a reduced
energy of 1180/1.833 = 644. To find the limits of the classically allowed region for this
energy, we have 644 =D, (1-¢ ™ )* =6846(1—¢ *)* and 1 - e =+0.307 . We get
x, =—0.27 and x, = 0.37. We shall extend this region by 0.43 at each end and take the
range from —0.70 to 0.80 with s, = 0.01. (Note that the minimum possible x,. is
(0-2.67)/0.539 =-4.95, s0 —0.70 is OK.) Because the classically allowed region is

much narrower here than in Prob. 13.9, it is appropriate to use a shorter extension here
into the classically forbidden region. For the lowest levels, the Solver has trouble

converging; see Prob. 13.9a for how to deal with this. We find the following values:
E ., = 58.383056671139, 174.398929144567, 289.414096609111, 403.428129942721,

vib,r
516.440634357965, 628.451248394192.
Then Ey/he = (A/hc)Ey,, = (1.83308 cm™)E

vib,r

values as 107.02, 319.69, 530.52, 739.52, 946.68, 1152.00 cm '

and we find the lowest E ; /hc

@) Eyy/he=(v+1)v,/c)—(v+1)*(v,/c)*/A(D,/hc) . Substitution of D, and v, values
from the Sec. 13.2 example gives for v=0:

E/he =[1(4403.2) — 1(4403.2)*/4(38297)] cm™' =2169.96 cm™" . For the next five

levels, the formula gives 6320.03, 10216.97, 13860.78, 17251.47, 20389.02 cm .
(b) To find the predicted v,,,, , we set D,/hc = E ; /hc to get

38297 em™! = Eyp /he = [(Vyey +2)(4403.2) = (Vp +1)7(4403.2)7/4(38297)] em ™.

max
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13.12

13.13

Setting z =V,,,, +7, we have 126.564z° —4403.22+38297 =0 and z =17.43, 17.36,
which corresponds to v, =16.93, 16.86, so the Morse function predicts v, ,, =16.

We have from Eq. (13.16) (R—R,) = [ |y ' (R—R,)d7 =

Jo |P(r) P (R=R)R* dR I5™ [T | Y} By, ¢y) [ sin0d0dg =[5 | P(r) [ (R—R,)R dR =
ff)o |F(r)P(R- R,)dR , since the spherical harmonics are normalized and F = RP [Eq.
(13.18)]. Use of x=R—R, and S(x) = F(R) gives (R—R,) =["; | S(x)[*x dx.

(a) Coulomb’s law F = 0,0, /47,15 gives

[47g,] =[O /[FIL* = Q*/MLT*L* = Q*°M 'L°T?.

(b) Let 4= h“mfec (47rgo)d . Then

[A]=[E]=ML*T? = [a]"[m,[e]'[475, ] = ML*TH*MPQ°(Q*M'LT?), so
a+b—-d=12a-3d =2, c+2d =0, —a+2d =-2. Adding twice the last equation to
the second equation, we get d =—-2. Then a=-2, c=4,and b=1, so

A= /‘fzmee4 (4rs, )_2 = ¢ /4reyay .

Let B =h'm/ e®(4xg,)" . Then [B]=L =[h]'[m,} [e]¢[4ns,] =

ML T Y M/ QS (Q*M™ 'L T?) so s+ f—r=0, 2s=3r=1, g+2r=0, —s+2r=0.
Then r=1,s=2, g=-2, f =—1 and B =h’m; e (4ng,) = q, .

(c) From w, =wB*?* and r. = r/B, we have

oy, /or. = B (0w or)orlor) = B**(0w/dr)B = B¥* (0w /6r)a, . Also, as shown in
Sec. 13.3, 62% / 61;2 =B 2(621///6r2)a§. Substitution into the H-atom infinite-nuclear

. . 'y 20y 1 o e’ .
mass Schrodinger equation — +— + Ly — =F ives
sered 2m, ( ot ror) 2my? v dreyr veEv e

2 -3/2 A2 -3/2 2 2
h (B 8‘//r+ 2 B 5%J+ h 373/2(h72L2)%_ e Bfmz// _

- =
2m, aé 8}”,2 Br. a, or. 2me32”r2 4re,Br,

AE. By, = (e*/4nsyay)E, By,
Multiplying by aOB3/ % and using B = a, and

(R Imyay) = (B* Im,)(m,e* Ih* 4xgy) = e* /4, , we see that all terms have the factor

2
62/472'80 , which cancels. So we get _1o l’g” +£61’//’ + 12 (h_sz)l//r —il//r =Ey,.
2\ or” 1. or 2r; 7,

Use of (5.68) gives
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1{d%w, 2oy 1 (& d 1 & 1
- = |- +cotd—+ — ¥, ——Vy,=E
2( o’ 1, arr) 2rf[aez 00 sinfgog ) T

which is the desired result.

13.14 (a) Let 7“m e (47g,)" be the desired atomic unit of time. We thus have (see

13.15

Prob. 13.13a) T =[#]"[m,"[e] [47,]" = ML2T)*M°Q°(Q*M'L>T?)?. So
a+b-d=0,2a-3d =0, c+2d =0, —a+2d =1. Adding twice the last equation to the
second equation, we get d =2. Then a =3, ¢ =—4, b =—1 and the atomic unit of time is

h3mgle_4(47r80)2 . Noting that E, in (13.29) is
E, = & /4nsya, = (e*/4ne,)(m,e* /dmeh®) = me* [(4m,y)* h* , we get h/E,, as the atomic
unit of time.

The dimensions of electric dipole moment are charge times length. Since e is the
atomic unit of charge and a, is the atomic unit of length, ea, = 47zg,h*/m e is the atomic

unit of electric dipole moment. Alternatively, let 7*m; e® (47¢,)" be the atomic unit of
electric dipole moment. Then QL = [A]'[m, 1 [e]é[47&,] =

ML T M/ Q¢(Q*M™'L>T?)” so

s+f-r=0, 2s=3r=1, g+2r=1, —s+2r=0.Weget r=1,s=2, g=-1, f =-1,
and the atomic unit of electric dipole moment is #%m,'e”! (475,) = ea, .

(b) Electric field strength is a force divided by a charge and its dimensions are the same

as energy divided by (length times charge). Since the atomic units of energy, length and
charge are E,, a,, and e, the atomic unit of electric field strength equals E, /eq,.

Alternatively, electric field strength has dimensions of MLT2Q™". Let 7"m e’ (475, )
be the unit of electric field strength. We have

MLT Q™" =[#]"[m, [}’ [47g, ] = ML’ T )" M*Q”(Q*M 'L T?)* so
w+x—z=12w-3z=1, —w+2z=-2, y+2z=—-1. We get

z=-3,y=5 w=-4,x=2so h'm2e’(4ng,)" (which equals E, /ea,) is the atomic
unit of electric field strength.

E,/ea, = (27.2114 eV)(1.6022x 107" J/eV)/(1.6022x 107" C)(0.52918 x107'" m) =

5.142x10'" V/m.

(a) The proton mass is 1836.15 times the electron mass m, and m, is the atomic unit of
mass. Therefore the proton mass is 1836.15 atomic units of mass.
(b) —1, since the proton charge e is the atomic unit of charge.

(¢) h=2rzh and h has the numerical value 1 in atomic mass units, so / has the
numerical value 27 in atomic mass units.
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(d) He' is a hydrogenlike atom with ground-state energy for infinite nuclear mass given
by (6.94) as —4[e*/ (2)4reya,]. Since e, a,, and 47¢, have numerical values of 1 in

atomic units, this energy is —2 hartrees.

(e) From Prob. 13.13a, the atomic unit of time is
h/E, = (6.62607x107* Is)/[27(27.2114 eV)(1.602177 x107" J/eV)] = 2.41888x107"" s

so one second is (2.41888 x 10_17)_1 =4.134x10'® atomic units of time.

(F) Speed has units of distance over time, and the atomic unit of speed is
a,/(WE,) =E,ay/h=

(27.2114 eV)(1.602177 x 107" J/eV)(0.529177 x 107'° m)27/(6.62607 x107>* J 5) =
2.1877x10° m/s. Then (2.99792 x 10® m/s)/(2.1877 x10° m/s) = 137.03 .
(g) With infinite nuclear mass, the H-atom ground-state energy is —% hartree. From

(6.94), this energy is proportional to the reduced mass, which (6.105) gives as 0.99946m,,

so with use of the reduced mass, the H-atom ground-state energy is —%(0.99946) =
—0.49973 hartrees.

(h) From Prob. 13.14a, the atomic unit of electric dipole moment is
eay = (1.6021766x107"° C)(5.2917721x107"" m) =8.478353x107° Cm =2.54175D,

so one debye is 1/2.54175 =0.39343 atomic units.

13.16 S, = [1s*1s, dr = [(K*/7)e ™) dr = [(k* 1 z)e ™ dr =
(KR 8) [T [L, [ (& —n)dedndg =

k3R3I27r‘[1 e_kRéz _é:_z_i_ 2 +77_2€—kR§
8z J0 I kR Kk*R*> K'R) kR

R (27 I —kR(l 2 2 ] n° _ix
d e | —+——+ —-——e dn =
87 IO M—l[ kR K*R*> KR®) kR 7

dndg =

11

4 kR k*R* Kk’R®) 3kR
KR ™[ ( 1 2 2 j 2 ]
—| 2| —+ + —

4 | \kR Kk*R* KR*) 3kR|
where Eq. (A.7) was used.

K3R3 R _n(l 2 2 j 7

-1

=e ™ (K*R*/3+ kR +1) (Eq. 1)

1317 (a) H,, =[1s,* Hls,dr . In atomic units, H =—1V> —k/r, + (k—-1)/r, —1/n, =
H, +(k=1)/r, = 1/n,, where H, is the Hamiltonian for a hydrogenlike atom with nuclear

charge k. Since the orbital 1s, in (13.44) is for a nuclear charge of k, we have
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13.18

H,1s, =—1k1s, [Eq. (6.94) in atomic units]. So

H,, =[1s,H,1s,dr+(k=1)[(s2/r,)dr - [ (s> /r,)dr (Eq. 1).

[1s,H s, dr = -1k [1s] dv =1 &>.

[(s2/r)dT = (K 17) [T dg ] sin@, db, [ (e /v, )i dr, =

43 M (—r, 12k —1/4KD) 7=k .

[Qs2/n)dr = (K /m) (e /n)dr =

QIR TR ) [ d [1 [} [ P IE —)(E7 - n*)dEdn =

KR D)[L, e [T e (g +mydédn =

(KCR*12) [, & ™R R (—£/kR —1/K*R* — 5/ kR)] [ dy =

(KR*12)[1, ™1™ R (1/kR +1/k*R? +n/kR)dn =

(*R?12)e ™R [e ™™ (~1/k*R* = 1/I°R® —n/k*R* — /IR |, =

(K*R?/2)e ™[ (=2/k*R* = 2/K°R*) + R (2/k°R*) = = (k + 1/R) + /R
Then H,, =[1s,H 1s, dr + (k-1)[ (1s>/r,)dz - [ (s> /1) dt

Hy ==Lk +(k-Dk+e R (k+UR) - VR =1k> =k + e (k +1/R) - /R

(b) H, =Hi=H,, =[ls}Hls, dr =[1s}{H, + (k-1)/r, =1/ ]ls, dr

H, =[1s,H 1s,dr + (k-1)[ (syls,/r,)dr - | (Is,1s, /1, ) d7 .

[1s,H 1s, d7 = —%kz [1s,1s, dr = —%szab

[1s,1s,/r, dr = (K /7) [ (e ¥« [y Ydr =

QIR )R 18)[57d g [1 [T [e /(& +mI(E -y dédn =

(ER* D)L [T e (E—mydEdn = (KR 12)[L,[e ™ (<E/kR -1/ R® + n/kR)] [} dip =
(KR*12)[1, ™ (1/kR +1/k*R* = n/kR)dn =

(K*R?/2)e ™ 2(1/kR +1/k*R*) = (kK*R + k)e ™

By symmetry (just interchange the labels a and b in the definite integral)
[Asyds,/r)dr =[(s,1s,/r,)dr = (K*R + k)e ™ .

So H,, =[1s,H s, dr+(k=1)[ (syls, /r,)d7 — ] (Is,1s, /1, ) dT =

—LI?S, + (k=DER+ ke ™ = (KPR + k)e™ = -1k, + (k= 2)(kK*R + k)e ™.

(&) Let t=kR. Then Eq. (13.63) becomes
K —k-R'"+ R0+ + (k> —k)(1+1)e’
2t l+e ' A+1+£2/3) '
The R™' terms in the numerator are not proportional to either & or k%, so we multiply
numerator and denominator by kR =t to get
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. Kt—kt—k+k(+ e + (kK> =kt +t)e”" _
t+e(t+1>+1/3)

2 2y -t 4 -2t _ 2y -t
JE1 tjtr(t+t2)e3 Tk t 1+(1:t)e 2 (§+t )e EkzF(t)+kG(t)
t+e (t+t°+1/3) t+e (t+t°+1/3)

(b)
OW, 10k = 2kF + k>(dF 1dt)(0t/0k) + G + k(dG/df)(0t/ok) = 2kF + k> F'R+ G +kG'R =0

The desired result does not contain R, so we use ¢ = kR to rewrite the last equation as
OW,/0k = 2kF + ktF'+ G +tG" =0 and we get k = —(G +tG")/(2F +tF").

13.19 A C++ program is

#include <iostream>
#include <cmath>
using namespace std;
int main() {
doubler, k, s, a, b, den, t, ex, num, u, umin, kmin;
labell:
cout << " Enter R (enter -1 to quit) ";
cin >> r;
if (r<0)
return O;
cout << " Enter initial k ";
cin >> a;
cout << " Enter incrementink ";
cin >>s;
cout << "Enter final k ";
cin >> b;
umin = 1000:
for (k=a; k <= b; k=k+s) {
t=k*r;
ex=exp(-k*r);
num = k*k-k-1/r+(1/r)*(1+t)*ex*ex+k*(k-2)*(1+t)*ex;
den=1+ex*(1+t+t*t/3);
u=1/r-k*k/2+num/den;
if (u<umin) {

umin = u;
kmin = k;
}
}
cout << "R= " <<r<< "kmin=" <<kmin << "U= " << umin << endl;
goto labell;

}
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(If more accuracy is needed, use the k accurate to 0.001 and an increment of 10°° to get k
accurate to 0.000001.) The results are

R/bohr 0.5 1 2 3 4 6

k 1.779 1.538 1.239 1.095 1.028 0.995

U/hartree 0.2682 —0.4410 —0.5865 —0.5644 —0.5373 —0.5091

0.4 -

0.2 -
0.1 1

-0.1 4
-0.2 4
-0.3 4
-0.4 4
-0.5 4
-0.6 1
-0.7 -

13.20 A C++ program is

#include <iostream>
#include <cmath>
using namespace std;

int main() {
double ri, dr, rf, ki, dk, kf, umin, r, k, t, ex, num, den, u, rmin, kmin;
labell:
cout << " Enter initial R (enter -1 to quit) ";
cin >> ri;
if (ri < 0)
return O;
cout << " Enter R increment ";
cin >>dr;
cout << "EnterfinalR";
cin >> rf;
cout << " Enter initial k ;
cin >> Kki;
cout << " Enter k increment ";
cin >> dk;
cout << " Enter final k ";
cin >> kf;
umin = 1000;

for (r = ri; r<=rf; r=r+dr) {
for (k=ki; k<=kf; k=k+dr) {
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13.21

13.22

t=k*r;

ex=exp(-k*r);

num = k*k-k-1/r+(1/r)*(1+t)*ex*ex+k*(k-2)*(1+t)*ex;
den=1+ex*(1+t+t*t/3);

u=1/r-k*k/2+num/den;

if (u<umin) {

umin = u;

kmin = k;

rmin =r;
cout << "rmin =" << rmin << " kmin = " << kmin << " umin =" << umin << endl;
goto labell;

}

We first have R go from 0.1 to 6 in steps of 0.01 and & go from 0.01 to 3 in steps of 0.01.
This gives R.;, =2.00 and k_;, =1.24. Then we have R go from 1.99 to 2.01 in steps of

0.0001 and k& go from 1.23 to 1.25 in steps of 0.0001. The resultis R ; = 2.0033,
kmin =1.2380, and U ;, = —0.58651.

(a) If the usual convention of having the z axis be the internuclear axis is followed, the
cross-section plane is taken as the xz (or the yz) plane (and not the xy plane). In Mathcad
the initial value 1.05 for k£ works for most of the R values and a Mathcad sheet is shown
on the next page.

(b) The required statements are shown below the figures on the Mathcad sheet. In some
versions of Mathcad the initial guesses for £ and R must be rather close to the optimum
values in order to obtain good values for the optimum values. The Minimize function
works much better than trying to make both derivatives zero. If one removes the dU/dk =
0 and dU/dR = 0 statements after Given and changes Find(k,R) to Minimize(U,R k), one
gets the accurate values £ = 1.2380, R = 2.0033, which agree with the results given by the
Excel Solver.

If we replace R:=3.8 — FRAME/10 by R:= 10 and add k = below the root statement, we
get the optimum £ for R = 10. One then changes the R value. (If a converged result is not
obtained at a particular R, one changes the initial £ guess from 1.05 to some other value.)
Optimum £ values found for the bonding and antibonding MO are

R/bohrs 0.1 1 2 2.5 4 6 10

Kvonding 1.9799 | 1.5379 | 1.2387 | 1.1537 |1.0283 |0.9951 |0.9991

Kantibonding | 0.4199 | 0.6581 | 0.9004 | 0.9621 1.0158 | 1.0105 1.0009
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H2+ MOs, b =1 for bonding, b = -1 for antibonding

b:=1

2 -1 -1
1 kK-k-R R™ (1 + kR)-exp(-2-kR k- (k = 2)-(1 + kR)-exp(—k-R
U(R,k) :=E—o.s-k2+ + R (1 +kR)-exp( ) + bk-(k = 2)-(1 + kR)-exp(-k-R)

2
R
1+ b-exp(—k-R)-(l + kR + kz-?j

FRAME
10

k= root| LUR, k), k
dk

R:=38-

k:=1.05

N:=30 i=0,1.N j:=0,1.N yi:=—2.5+é zj:=—2.5+%

phi(y,z) =k".n . eXP[ [y + 2+ 0.5~R)2]0'5] + b,exp[ [y (2 0.5~R)2]0'5]

[2+ b2expkr)-(1 + kR + 12R237Y)]”

Mi,j = phl(yl,ZJ)

20 N
T \\
@ 0.15
0.05 i)
0.1 0.3 % B o
20 \ 0.15 /
005
0.1 .1 005
10 //——0.15 \
035025,
.05 D_lﬂ-lﬁkjj—; 021 p1 005
ol VAN )
0 10 20 30
M M
b=1 k:=1.2 R:=2
d d _3
L UR,K) =-0.044 € UR,K) =-9.268x 10
dk dR
Given
1
k>0 R>0" R<4 Lurp=0 Lurw=o
dk dR
)i d(k,R)
= Find(k,
R
k=1.2348 R =2.01933

4 UR, k) =25113827x 108 L U®R k) = 147x 107
dk drR
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13.23 The Solver is used to minimize 1/R plus (13.63) for each of the desired R values and for
each choice of sign in (13.63); the constraint k£ > 0.01 is included. The results are

R 0.1 1 2 2.5 4 6 10

ki 1.9799 1.5379 1.2387 1.1537 1.0283 0.9951 0.9991
U 8.02179 | —0.44100 | —0.58651 | —0.57876 | —0.53733 | —0.50908 | —0.50030
ky 0.4199 0.6581 0.9004 0.9620 1.0158 1.0105 1.0009
U, | 9.58692 | 0.45129 | —0.16581 | —0.29131 | —0.44500 | —0.49007 | —0.49970

13.24 The figure below shows that 7, =r,, 1, =1,, 6, =6, 6, =6,, ¢' = ¢, where the

coordinate systems are as in Fig. 13.10.

(X, Ys _Z) (X, Y, Z)

13.25 (a) Formation of Li, from the Li, ground-state electron configuration KK (0, 2s)*
removes an electron from the bonding o, 2s MO, thereby reducing the bond order, so we
expect Li, to have the greater D, . (Actually, D, of Li is 1.06 eV, less than the 1.30 eV
D, of Li; . The 2.67 A R, of Li, is, as expected, less than the 3.11 A R, of Li, .)

(b) Formation of C, from the C, ground-state electron configuration
KK (o, 2s)2 (oF 2s)2 (m,2 p)4 removes an electron from the bonding 7,2p MO, thereby

reducing the bond order, so we expect C, to have the greater D, .
(c) Formation of O, from the O, ground-state electron configuration

2 2 2 4 2 . .
KK(o,2s) (0, 25) (0,2p) (7,2p)" (7;2p)” removes an electron from the antibonding

7g2p MO, thereby increasing the bond order, so we expect O, to have the greater D, .
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13.26

(d) Formation of F,” from the F, ground-state electron configuration
KK (o, 2s)? (o) 2s)? (0,2 p)? (m,2 p)! (742 p)* removes an electron from the antibonding

7g2p MO, thereby increasing the bond order, so we expect F, to have the greater D,.

(&) The ground-state electron configuration will resemble that of O, and will be
KKLL(o, 35)? (ofF 35)* (0,3 p)2 (7,3 p)4(7r;‘3 p)2 . There are two unpaired electrons in the
unfilled 77 3p shell. With four more bonding electrons than antibonding electrons, the
bond order is 2.

(b) Removal of the highest-energy electron from the answer in part (a) gives the electron
configuration as KKLL(c,3s)*(0.*3s)*(0,3p)*(7,3p)* (z*3p). With five more bonding
electrons than antibonding electrons, the bond order is 2.5. There is one unpaired electron.
(c) Adding an electron to the incompletely filled shell in part (a) gives the electron
configuration as KKLL(o, 3s)? (oF 35)° (o, 3p)2 (m, 3p)4(ﬁ§‘3p)3 . With three more
bonding electrons than antibonding electrons, the bond order is 1.5. There is one unpaired
electron.

(d) The N; configuration is KK (o, 2s)? (oF2 s)? (7,2 p)? (0,2 p)? and removal of an
electron gives KK (o, 2s)? (o2 s)? (,2 p)! (0,2p). The bond order is 2.5. There is one
unpaired electron (S =1).

(e) Addition of an electron to the N, configuration gives the ground-state electron
configuration as KK (0,25)*(6*25)*(x,2p)*(6,2p)’ (7} 2p). As in part (b), there is
one unpaired electron and the bond order is 2.5.

() Removal of an electron from the F, configuration gives the ground-state electron
configuration as KK (o, 2s)* (oF2 5)? (0, 2p)* (7, 2p)* (7 2p)*. Asin part (c), there is
one unpaired electron and the bond order is 1.5.

(g) Addition of an electron to the F, configuration gives the ground-state electron
configuration as KK (c,2s)*(0,525)*(0,2p)*(z,2p)" (x¥2p)* (0 2p) . There is one

unpaired electron and the bond order is % .

(h) Removal of an electron from the Ne, configuration gives the ground-state electron
configuration as KK (c,25)*(0,525)*(0,2p)* (x,2p)" (x¥2p)* (0 2p) . As in part (g),

1

there is one unpaired electron and the bond order is 3

(1) Removal of an electron from the Na, configuration KKLL(o, 3s)* gives

1

KKLL(o,3s). There is one unpaired electron and the bond order is
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13.27

(J) Addition of an electron to the Na, configuration gives KKLL(o, 35)? (0*3s). There is

1

one unpaired electron and the bond order is -

(k) Addition of an electron to the H, configuration gives (agls)z(a,j‘ 1s). One unpaired

electron; bond order %
() Configuration KK (o, 2s)? (ofF 2s)? (7,2 p)3 ; one unpaired electron; bond order 1.5.
(m) Configuration KK (0, 2s)? (oF 2s)? (,2 p)4 ; no unpaired electrons; bond order 2.

(n) Configuration KK (0, 2s)? (oF 2s)? (7,2 p)4 (0,2p); one unpaired electron; bond
order 2.5.

(a) For KKLL(o, 35)? (ofF 3s)* (0,3 p)2 (7,3 p)4(7z§‘3 p)2 there are two unpaired electrons
in the unfilled 77 3p shell. By Hund’s rule, the lowest of the three terms listed in Table
13.3 fora z* configuration is 3Z§ .

(b) For KKLL(o, 3s)? (oF 35)* (0,3 p)* (7,3 p)4(7r£,"3 p)there is one unpaired electron,
which is a 7 electron, and the term is n g
(¢) For KKLL(o, 35)? (oF 3s)* (o, 3p)? (7, 3p)4(7z;3p)3 the z° configuration has the
same term as a 7 configuration, namely *IT .

(d) We have KK (o, 2s)? (O'Lj"2s)2 (7, 2p)* (0,2p). As noted in Sec. 13.8, a single o
electron corresponds to a X" term, so the ground term is 22; .

(e) We have KK(o, 2s)? (oF2 5)? (7, 2p)* (o, 2p)? (732p). As in part (b), the ground
term is *IT g

(f) Wehave KK(c,25)*(0.%25)*(0,2p)"(x,2p)* (z¥2p)’. Asinpart (c), the ground
term is *IT g

(@) Wehave KK(0,2s)*(0:%25)*(0,2p)* (7, 2p)* (x2p)* (62 p) . The ground term is
%" since the only unfilled shell has one electron in a u orbital.

(h) For KK(0,25)*(0,525)’(0,2p)*(7,2p)" (z¥2p)* (0} 2p) , the ground term is %, ,
as in (g).

(i) For KKLL(c,3s), the ground term is 22;

(i) For KKLL(o, 35)*(0,*3s) , the ground term is X} .

(k) For (o, 1s)*(c*1s), the ground term is 23 .

(I) For KK(o, 2s)* (ofF 2s)* (7, 2p)’, the ground term is > IT,.

13-15
Copyright © 2014 Pearson Education, Inc.



13.28

13.29

13.30

(m) For KK(o,25)*(0,*25)*(7,2p)" the ground term is '} .

(n) For KK(0,25)*(0,*25)* (7, 2p)*(0,2p) the ground term is *X} .

(&) A X term has A =0 and there is no orbital degeneracy. For a singlet term, S = 0 and
there is no spin degeneracy. Hence a 'S~ term has one wave function.

(b) With S =1, there are three spin functions and a 3%* term has three wave functions.

(c) With S=1, there are three spin functions; with A # 0, there is a two-fold degeneracy
due to the two values (+A and —A) of M . Hence there are 3(2) = 6 wave functions for a

3T term.
(d) 12)=2.
(e) 6(2)=12.

The levels of a term are labeled by the value of A + X, which takes on the values
A+SA+S-1,..,A-S.

(@) A 'S term has A =0 and S = 0 and has only one level. As noted in Sec. 13.8 , fora =
term, the spin—orbit interaction is negligible and one does not put a subscript on the level,
which is written as ' .

(b) For a X term, the spin—orbit interaction is negligible and the level is *X* .

(c) S=1, A=1, and the levels are 31_12, 31_[1, 31_10.
(d) S=0, A =3, and the level is 1CI)3.
(e) S=5/2, A=2, and the levels are °Ag,,, °A; )5, °As)y, Asns OA 0, OA ).

As the figure on the next page shows, reflection in a plane containing the internuclear (z)
axis does not change r, or 7, and changes the angle of rotation ¢ about the z axis to

27 — ¢, which is equivalent to changing it to —¢ . [The point (x, y, z) in the figure lies in
front of the plane of the paper.] Each 7 molecular orbital (one-electron wave function) in
(13.89) is an eigenfunction of iz and so has the form f(&, 77)(27:)*1/26"’""’ . Since r, and
1, are unchanged by the reflection, the confocal elliptic coordinates £ and 7 in (13.33)

are unchanged by the reflection and fis unchanged by the reflection. The phi factor is

12 =im¢ Therefore the 6(xz) reflection changes the

changed by the reflection to (27)"
MO 7., to 7_, and vice versa. The first function in (13.89) is changed by &(xz) to

7. W, 2)+ 7,27, )+ 7, ,(Dx'(2)+ 7, (2)7" (1), which is the same as the
original function. The second function in (13.89) is changed by &(xz) to

7O, )+ 7,27, ) -7, (D7’ (2) - 7,,(2)x (1), which is —1 times the original

function. Similarly for the third and fourth functions.
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(x, ¥, 2)

13.31

13.32

13.33

(X, - Z)

As shown in Prob. 13.30, &, (xz) converts ¢to—¢ and leaves £ and 77 unchanged. So
[iz, OAO'V (x2) ]eim¢ = —1h(8/8¢)éo_v (xz)eim¢ + ihéav(xz) (a/a¢)ezm¢ _
—ih(0/0¢)e™™ +ihO, (.ime™ = —mhe™™ — mhe ™™ % 0.

The g means the wave function is an even function; that is, ¥ is unchanged on inversion of
the spatial coordinates of all the electrons. From (13.78), inversion interchanges 7, and 7,

and increases ¢ by 7. Interchange of 7, and r, changes 7 in (13.33) to —7. Replacement of

n, and 77, by their negatives in this trial function multiplies it by (- 1)/** . Therefore
Jj + k must be an even number to ensure that the trial function is even. The plus sign
means that the wave function is unchanged by a &, (xz) reflection. This reflection does

not affect 7, or 1, (Prob. 13.30) and gives no restrictions on m, n, j, p.

@) S = [ A fHav =[] 1s,()1s,(2)s,2)1s, (1) v, dv,

Sy, = 1s, (1) | Ls, (D)(1s, (2) | 15, (2)) = S,
(b) H,, = (1s,(Dls,(2)|H,(1) + H,(2)+ H'|1s,(1)s,(2)) Forthe H (1) integral, we have
(Is, (D15, (2)| H, (|15, (D15, (2)) = (Ls, (DI H, (D15, (D)1, (2) | 15,(2)) . The Heitler—
London calculation does not have an effective nuclear charge in the ls function. Hence
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Is,(1) is an eigenfunction of H . (D) with eigenvalue —% hartree, the hydrogen-atom
ground-state energy. The 1s function is normalized, and we conclude that the H me
integral equals —% in atomic units. Similarly, the H »(2) integral equals —%. Defining
0 =(1s,(Dls, (2)|]:I'|1sa (D1s,(2)), we have H;; =0 —1.

(€) H,, = H,, =(1s,(Qls, ()| H,(1)+ H,(2)+ H |1s,(1)1s,(2)). The H (1) integral is
(15,(2) | 15, ()L, (DA, (D113, (1) = (15, (2) | 15, (2)){1s, (D= L - 15, (D) = =L 52,
Similarly, the H »(2) integral equals —%Sﬁb. Defining 4 as

A=(1s,(2)ls, (1)|I:['\1sa (Dls,(2)), we have H, = A — Ssb . Substitution in (13.98) gives

2

1+, 1+5% 1+ 82
2
VVz:Hll H, Q-1 A2+Sab:_l+Q 124

13.34 Addition of column 1 to column 3 and column 2 to column 4 (Theorem V of Sec. 8.5)
changes (13.112) to |(1s, +Ls, ) (Ls, +1s,) 2(1s,) 2(1s, )| = 4|(1s, +1s,)(Is, +1s;)Ls,1s,],
where Theorem IV was used. Subtracting column 3 from column 1 and column 4 from
column 2 (Theorem V), we get 4|1s,1s,1s,1s,|. Interchange of columns 1 and 3 and of
columns 2 and 4 multiplies the determinant by (—1)2 (Theorem VI), so we have shown

that the determinant equals 4/1s, Elsb E| .

13.35 For each of the AO pairs (2p,,, 2p,;), (2Pys> 2P35) s (2P24s 2P2), one AO will get

spin function « and the other will have spin £. Since there are two choices for the spin

assignment for each of the three pairs, there are 2° = 8 possible determinants. In addition
to D, and D, in (13.120) and (13.121), the other determinants are

Dy=1-2p2p,2p 2D 2D, 2P, | With coefficient —1;

Dy=12p2pw2Pyu2Py 2P, 2P, | With coefficient —1;

Ds=1--2p,2p,2pP 2P 2P, 2P, | With coefficient +1;

Dg=|2p2p2p 2D 2., 2P | With coefficient +1;

Dy =[--2py 2P, 2P, 2P 2P, 2D | With coefficient +1;

Dy=|-2p,2p42pPy,2P,2p., 2D, | With coefficient —1 (three interchanges).

13.36 (a) The 5’ term is the lowest triplet term (Fig. 13.19). The Heitler-London VB
functions for this term are (13.101). The spatial part of the MO function given in
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Sec. 13.13 for this term is

27"%[1lo, (Dlo, (2) - 1o, (Dlo, ()] »

272 {NILs, (1) + 1s, (DIN[1s, (2) ~ 15, (2)] = N1s,, (2) + 1, (IN[Ls,, (1) ~ 15, (D]} =
27Y2NN"2[1s, (Dls, (2) —1s, (Dls, (2)] = 2721 = 82,) " 2[1s, (D1s, (2) — Ls,, (D1s, (2)],
since N =2""2(1+5,)"? and N'=2""*(1-5,,)"" [Eqs. (13.57) and (13.58)]. This
spatial function is —1 times the VB spatial function in (13.101).

(b) The B'S' MO spatial function in Sec. 13.13 is

27"l (Do, (2) +10, (210, (D] ~

27 {N[1s, (1) + 15, (DIN[1s, (2) — Is, ()] + N[1s, (2) + 15, ()IN[Ls, (1) ~ 15, (D]} =
27Y2NN"2[1s, (D)ls, (2) —1s, (1)1s, (2)], which has only ionic terms.

13.37 (a) From (13.124), (Is|2s,) = (1—(1s | 2s)*) 2 (1s |[25 — (Is | 25)1s]) =
(1—(1s | 2s)*)2[(As | 25) = (1s | 2s)(1s | 1s)] = 0, since (Is|1s) =1. Also
(25, 125,) = (1= (15| 25)*) " ([25 — (Is | 25)1s]| [25 — (s | 2s)1s]) =
(1—(1s | 25)2) ' [(2s | 25) — 2(1s | 25)(1s | 25) + (15 | 25)*(Is | 1s)] =
(1—-(1s| 2s>2)_1[1 —(1s | 25}2] =1, since the 1s and 2s functions are real.
(b) ¢=a(ls)+b(2s)+--=c(ls)+d(2s,)+- =c(ls)+d[(1-S*)""* (25 = S - 15)].

Equating the coefficients of the 1s orbitals and equating the coefficients of the 2s orbitals,
weget a=c—S(1-82)"*d and b=(1-5*)"2d . So d=(1-5*)"?b and c=a+Sh.

(c) From (11.14) and (7.27), {Is | 2s) = (2£,)*2272(2¢,)"2(24) V2 [ e <273 gy =

13.38 We will assume that the s and p valence AOs of each atom produce valence MOs whose

pattern matches that in Fig. 13.17 and in the table near the beginning of Sec. 13.15.. Thus
we assume the valence MOs of each molecule to be corozo.

(&) The molecule has 10 valence electrons and filling in these valence MOs, we get a

2_4 2

ground-state valence-electron configuration of o2c 7 c? . There are no unpaired

electrons and the filled shells give a 'S* ground term.

7% with no unpaired

(b) The 8 valence electrons give the valence configuration o*c
electrons and a '2* ground term if the MO order given in the table near the beginning of
Sec. 13.15 is used. In fact, the ground term is actually *IT. From Table 13.3, this suggests

a 7 o configuration, perhaps o’c’7’c .

(c) The 8 valence electrons give the valence configuration o*c*z* with no unpaired
electrons and a '2* ground term.
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(d) The 9 valence electrons give the valence configuration o>cz*c with one unpaired

electron and a >=* ground term.

(e) The 11 valence electrons give the valence configuration o’c?z*c*7 with one
unpaired electron and a *IT term.

(f) The 11 valence electrons give the valence configuration o’c”z*c*z with one
unpaired electron and a ’I1 term.

(g) The 9 valence electrons give the valence configuration o>cz*c with one unpaired
electron and a 2" ground term.

(h) The 12 valence electrons give the valence configuration oc’z*c*7? with 2

unpaired electrons and a 33T ground term (Table 13.3).

(i) The 13 valence electrons give the valence configuration o*c*z*c?z® with one
unpaired electron and a *IT term.

(j) The 14 valence electrons give the valence configuration o’c?z*c*z* with no

unpaired electrons and a I$* term.

13.39 (a) Let A¢, + B¢, be the antibonding heteronuclear MO. Then orthogonality gives
0=Ac1p, + 20, | AP, + Bpy) = AL, | §,) + (| B+, AXP, | §,) + 2 B(d, | $) =
B =—(c; + Sypcr)Al(c, + Syp01) and A@, + By, = A, —[(¢; + Sap2) Al ¢y + SNy, =
[A/(cy + Supe)l(cy + Sapc)d, = (¢ + Sy 1= N'[(¢; + S, — (¢ + S4p¢2) 81,
where N" = A4/(c, +S,,¢;) and we assumed the orbitals are real, so (¢, | #,) ={&,| 4,) -
We can get the homonuclear result by setting ¢; = ¢, in the heteronuclear result. This
gives the antibonding homonuclear MO as N"(¢; +S,,¢,)(#, —#,) = N'(¢, — @,) , where
N'=N"(¢;+S,¢).
(b) (i 14y) =3(1=53)"" (s, +1s, |15, —1s,) =
LA=82)"7 s, |1s,) = (s, | 1s,) +(Ls, | 1s,) = (Ls, | 1s,)] =
$A=83)"2 (=5, + 5, -1)=0.

13.40 The simple VB method would be more useful since it gives the correct behavior when a
bond is broken, whereas the simple MO wave function goes to the wrong limit on
dissociation.

13.41 The zero level of potential energy corresponds to all nuclei and electrons infinitely far
from one another. To reach this state, we first start with the nuclei in F, at a distance R,

apart and dissociate the molecule to two ground-state F atoms. This requires an energy
D, =1.66 eV. Then we remove all the electrons in each F atom to infinity, one at a time.

13-20
Copyright © 2014 Pearson Education, Inc.



The energy needed to do this in one F atom is the sum of the first, second,..., ninth
ionization energies of F and the publication mentioned a couple of paragraphs before Eq.
(10.32) gives this sum as 2715.795 eV. Thus

U(R,) =—{1.66+2(2715.795)] eV = —5433.25 eV = —-199.668E, .

13.42 (a) N[Ls, (1) +1s,(D][Ls, (2) +1s,(2)127*[a() A(2) - BDa(2)].
(b) N[ls,(Dls, (2) +1s,(2)s, D127 [a(D) B2) - B (2)]

13.43 (a) False. For hydrogenlike functions, |2p_,|=|2p,|, but these states have different iz
eigenvalues and are different states.

(b) True. This is a one-electron system and the Hartree—Fock method gives the exact
wave function.

(c) False. See Sec. 13.11.
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141

14.2

143

14.4

Chapter 14

Theorems of Molecular Quantum Mechanics

pve =20 17 1 1 s (X, ¥, 2, %o, Y2, 2) P dx, dy, dz, =

2-1@+S5) T 12, 17, 118,18, (2) +1s, (2)1s,, [* dx, dy, dz, =

@+S2) 7 17 17 s [1s, ()T +[1s, ()]s + 215,15, 15, (2)1s,, (2)} dx, dy, dz, =
(1+S2) ™ [1s2 +1sZ +2-1s,15,S,,], since 1s,(2) and 1s,(2) are normalized and

S.p =1 1s,(2)1s,(2) du,. (The notations 1s, and 1s, denote functions whose variables are
X,Y,2)

Pao =205 12, 170 | duo (X, ¥, 2, X5, ¥, 2,) P dx, dy, dz, =

2-1(1+S,)7 [ (s, +15,)°[15,(2) + 15, (2)]*dv, =

L1+ S,) 2 (1sZ +185 +2-1s,15,) [ {[1s, ()T + [1s, ()T + 215, (2)1s, ()} dv, =
L(1+S,,)° (A5 +185 +2-15,15,)(2+ 2S,5) = (L+ Szp) "(IsZ +157 +2-1s,1sp) .

At the midpoint (mp) between the nuclei, we have r, =r,, = =e™"®, and 1s, =1s,. So at
the midpoint, pyg me = 2155 1+ S, )/ (L+S5) and pyomy =4-185/(1+S,,). Then
, e = A SBIA1S]) ~2:1550+ S3)° _ 2157025, 4 85) _
MO,mp — B, - - -
v (1+ o)A+ S5) (L+ Sap)(1+ S5)

2155 (1= Syp)°
(L+Sa)(1+S3)

Sap I8 positive for R <o, and oo mp = Avemp > 0-

Let O, and O, be two different origins, with b being the vector joining them. The figure
shows that r; =b+1,;. S0 2 Qi =2 Q(b+1y;) =bX; Q +X; Qi =2 Qi
since 2,; Q; =0.

() As noted preceding Eq. (14.19), the permanent electric dipole moment is zero for
states of definite parity. Each stationary state of a many-electron atom has a definite parity
that is determined by the sum of the I values of the spherical-harmonic factors in the wave
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function (Sec. 11.5). States arising from an electron configuration have even parity if
2 li iseven, odd parity if % I; is odd.

(b) For a one-electron atom, states with the same n values but different | values have the
same energy, and a stationary state that contains contributions from spherical harmonics
of different parity does not have a definite parity and need not have zero dipole moment.

(c) Two of the correct H-atom-in-an-electric-field zeroth-order functions for Prob. 9.23
are 27Y2(2s+2 Poy) . Which mix the even function 2s with the odd function 2p, . These

two zeroth-order functions do not have definite parity. As the diagram shows, these states
have an unsymmetrical distribution of electric charge and have a dipole moment.

coor (O

CO_ o

25 2p;

14.5 Consider the process NaCl —@ sNat+clm—2 5 Na+Cl.In step (a), an ionic NaCl
molecule dissociates to ions. We can estimate AE, as minus the potential energy of the

ions with their centers separated by R,. From (6.58), E, = e?/4zg,R, =

-19 2
(1£0222x110 2C) _(9.78x107%)) 1V ioev
47(8.854x1072 C2 N1 m2)(2.36 x10™° m)

1.6022x10729J

Step b involves the reverse of the ionization of Na and the addition of an electron to CI.
So AE, =-5.14eV +3.61eV =-1.53 eV . Thus we estimate D, ~ AE, + AE, =4.57 eV.

With the origin at the center of one ion, the dipole moment is calculated from (14.9) as
1 ~eR, = (4.803x107" statC)(2.36 x107® cm) = 11.3x 10 *® statC cm = 11.3 D.

14.6 The sum of Hermitian operators is Hermitian. The kinetic-energy operator and the
potential-energy operator in H,, were proved to be Hermitian in Sec. 7.2 and Prob. 7.7.

Thus we only need to prove that the Coulomb and exchange operators are Hermitian. We
must show that [[ f OFJ;Qg@)dv, = Jg(l)[\]j (D) f@W]*dv; (Eq. 1). From (14.28), the

left side of Eq. 1is [[f (1)]*g (l)jrl‘z1 | #;(2) ? dv, dv;. The right side of Eq. 1 is
TaOIf @ Tr5"14;(2) F dv,1*dv, = [g@Lf @1* 15" 4;(2) [P dv, dvy, which is the same
as the left side and shows that 5j Is Hermitian.

We now must show that [ f ()]*K; ) g(@)dv, = [ g@DIK; @) f O]*dv; (Eg. 2). From
(14.29), the left side of Eq. 2 is [[ f (D] P (1)Ir1‘21¢j*(2)g(2)dv2 dv;. The right side of Eq.
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14.7

14.8

14.9

14.10

1411

2is [gOI4; ) [1,'47(2) T (2) dv1*dvy = [y O] * [, (2)L F (] *dv, dv; (Eq. 3).
Since the integration variables in a definite integral are dummy variables, we can relabel
them any way we please. If we interchange the labels 1 and 2 on the right side of Eq. 3,
we get [] 9(2)[g; (2)]*r151¢5j D[ @)F*dv, dv,, which is the same as the left side of Eq. 2

and shows that KJ- is Hermitian.

The potential-energy operator in I—AICore in (14.27) contains attractions between the electron

and the several nuclei in the molecule, as compared with the attraction to the single atomic
nucleus in (11.7). The Hartree—Fock operator in (14.26) contains exchange operators that
are absent from the Hartree operator (11.7). The exchange operators arise from the
antisymmetry of the Hartree—Fock wave function.

Equation (14.28) gives (4 (1) | J;(0) | 4 1) = [ [4 Q¢ D[] 4;(2) [* 15" dv, dv, =
[1144;(21* 1, (D4;(2) do, doy = (4 (V)¢5 (2) | 15" | 4 (D5 () = J;; [Eq. 14.24)].
Equation (14.29) gives (4 (1) | K; ()| 4 1)) = [ [¢ OT*¢; D [[4; (216 ()15 dv, dv; =
[11¢ 04; QT n5'6; D (2 dvy dv, = (4D (2) [ 15" 4D (D) = K.

Use of (14.29) gives (7, (1) | K; 1) 7 @) = [ Lz, OT*¢; @) [ 55" 1¢; (17 (2 dv, dv, . Use
of the expansion (14.33) for ¢; (1) and ¢;(2) gives (. (D) | Kj(l);(s(l)> =

S0 20 ey T L W12, OLn (1% 26 (2) dv, dvy = S0 30 gl (ru | ts) .

(@) From (14.42), Py =230 ccg and (P )*=2(Z) cic,; )* =220 S e = Py
(b) Tr(P*F+ P.kHcore) = Z:E=1(|:>*F + P*Hcore)ss = Z:ts)=1 [(P*F)ss + (P*Hcore)ss] =
Z:gzl[zlrjzl(P*)sr(F) rs + erjzl(P*)sr ( Hcore)rs] = ZS:l[zlrjzl(Prs Frs + l:>rs H ;:;)re )] =
PSP (P.F. +P.H®®) and (14.45) follows from this result.

r=14s=1\"rs" rs rs''rs
(c) 2(CCh)y, =2X%3¢cl, =2Xcycs = P, where (8.90) and (14.42) were used.

Therefore 2CC' = P~*,

(a) Substitution of (14.5) for p into Ijo jijjop dx dy dz gives

f I_OO f paxdydz=nZgy [I--Jlw(r n,...r, My,...ms,) [>drdr,---dr, = n, since

w is normalized. The vector notation (Sec. 5.2) for spatial variables is used.
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14.12

14.13

14.14

(b) n= I/Odr = j Zr Zs P X Xs dr = Z:r Z:s Prs J‘Ir*Zs dr = Zr ZS PrsSrs = zr ZS PVSSST !
where Sio = (7, | xs) =<xs | )" =S
(c) Tr(PS*)=2,(PS*),, =2, 2 PSs =n, where the result of part (b) was used.

Using the expression for H"® given preceding these integrals, we have

Hi™ = (nl H core )=

(nl _%VZ —Glr+(&-2)r | ) ={(nl —%Vz =l ) + (61— 2)n 1/ | x). Since
—%VZ — ¢, /r is the Hamiltonian operator for a hydrogenlike atom with nuclear charge ¢;
and y, is a hydrogenlike 1s orbital with nuclear charge ¢;, we have

(-3V? = &iIr) =17 1 [Eq. (6.94) in atomic units] and the first integral in H{™ is
(nl-3v2=&ir| ) =-10(n | ) =-31¢7 . The function z, is the same as f, in
(9.60). After (9.60) it was shown that (f, |1/r | f;) = . Hence {y; |L/r| ) =¢&;. So
Hi'® = —1¢7 + (4 -2)¢ = 3¢7 —2¢,. The integral H5J™ is the same as H{™ except
that », (with orbital exponent ¢;) is replaced by y, (with orbital exponent &,). Also

H " can be written as H " = —1vZ ¢, Ir+(&, - 2)/r . Sowe can find H™ by
changing ¢; to &, in H{Y'™. We have H$3"® =1¢7 -2¢,.

For real basis functions, Eq. (14.39) is (rs|tu) = [[ 5" %, () 2 (D) 7, (2) 7, (2) dv, dv, .
Clearly, interchanging r and s does not change (rs|tu) and interchanging t and u does not
change (rs|tu).So (rs|tu) = (sr|tu) = (rs|ut) = (sr|ut). Relabeling the dummy
integration variables in a definite integral does not change its value. If we interchange the
labels 1 and 2 in (rs|tu), we get (rs|tu) =[] 7, (2) 2 (2) 7 D) 7, D) dv, dv, = (tu]rs),

where (14.39) without the stars was used. Combining this result with interchanges of t and
u and interchanges of r and s gives (rs|tu) = (tu|rs) = (ut|rs) = (tu|sr) = (ut|sr).

From (14.39), (11]12) = [[ 55t W) 1) 7,(2) 71(2) dv, dv, , where y is a 1s hydrogenlike
function with orbital exponent ¢;. In (9.53), E® is given by

Ot 1wy = As@)1s(2) | 5t | 1s(1)1s(2)) , where the 1s function has orbital exponent
Z [Eq. (9.49)]. Thus (11|11) is the same integral as E® | except that Z in E® is replaced
by ¢&;. Hence Eq. (9.53) gives (11|11) =5¢;/8 in atomic units. Likewise, (22| 22) is the

same integral as E® , except that Z in EY is replaced by ¢, . Hence Eq. (9.53) gives
(22| 22) =5¢,/8 in atomic units.
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14.15 The approximation F, ~ H™® gives F; ~ H™® =-1.849, F,, = H3" =-1.586,

14.16

F, =F,; =H;, =H,, =-1.883. The secular equation (14.36) is
-1.849 — ¢ -1.883-0.837¢;,
—1.883-0.837¢; —-1.586 — ¢;
and & =-1.98 and 1.035. With the lower root, (14.34) is
0.13c;; —0.226¢,, =0 and —0.226¢;; +0.394c,, =0, which gives c;;/c,; =1.7.

=0=0.29952 +0.283¢ —0.613=0

(a) From (14.41)withb=2, F; = H® + 32, 35 B [(11]tu) - (u | tD)] =

H?™ + Py[(11]11) - 3 (11] 1]+ P, [(11]12) - 5 (12 [1D)] + Py [(11] 21) - 5 (11] 21)] +
P,[(11]22) —%(12 | 21)]. From Prob. 14.10a for real functions, P, = P,;. From (14.47),
(12|11) = (11|12), (11|21) = (11|12). Therefore

Fiy = HiP® + 1B, (11]11) + B, (11]12) + Py, [(11] 22) - $ (12| 20)].

From (14.41) withb =2, F, = HS™® + 32, 32 P [(12 ] tu) -1 (lu [t2)] =

H" + P[(12]11) - 3 (11]12)] + PB,[(12]12) - 5 (12[12)] + Py [(12] 21) - 3 (11 22)] +
P»[(12]22) -3 (12| 22)]. From (14.47), (12]11) = (11|12) and (12]21) = (12]12), so
Fio = H™® + 1P, (12]12) + P,[3(12]12) - 1 (11] 22)] + 1 Py, (12| 22) .

From (14.41) with b =2, Fp = H$"™ + X2, 32 B, [(22|tu) — £ (2u | t2)] =

H2™ + Pal(22]11) - 3 (21]12)] + P,[(22]12) - 3 (22|12)] + Py[(22] 21) - 3 (21] 22)] +
Pp,[(22]22) - $(22]22)]. From (14.47), (22]21) = (22]12), (21| 22) = (22]12), so
Fpo = Hy® + Pul(22]11) - 3 (21]12)]+ P, (22|12) + 5 Py, (22| 22) .

(b) Fy=HZ"™ +5 PR (11]11) + P, (11]12) + Py,[(11] 22) - 3 (12] 21)]

F; =-1.8488+£(0.9062)R; + 0.9033R;, +[1.1826 — £ (0.9536)]Py,

F, —1.8488+ 0.4531R,; + 0.9033P,, + 0.7058P,,

Fio = H® + 3P, (12[1) + P,[3(12]12) - 1 (11] 22)] + 1 Py, (12] 22)

F, = -1.8826+ 2 R;(0.9033) + R, [3 (0.9536) — £ (1.1826)] + 1 P,, (1.2980)

F, =-1.8826 + P,;(0.4516;) + 0.8391R,, + P,,(0.6490)

Fpp = H® + P [(22]11) — 1 (21]12)] + P, (22]12) + 1 Py, (22| 22)

F,, = —1.5860 + R;[(1.1826) — 3 (0.9536)] + P, (1.2980) + 5 P,, (1.8188)

F,, =-1.5860+0.7058P; +1.2980F,, + 0.9094P,,
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14.17

14.18

14.19

1=[]¢, |2 dr =[(cyun +021lz)2 dr = C121IZ12 dz +2C),Co1 [ i, d7 + szlflzz dr =
c121 +2C13C Sy, + C221 = C§1(1+ 2815€1/Cyy + C'121/0221) = C221(l+ 25k + k?) =1 and
Cy = (1+ 25,k +k?)™2 where the fact that we are dealing with real functions was used.

For this cycle, ¢;; =0.842 and c,, = 0.183. From (14.49) P, = 2¢5 = 2(0.842)% =1.418,
P, = 2¢,,Cy = 2(0.842)0.183 = 0.308, P,, = 2¢2, = 2(0.183)% = 0.067 . From (14.50)—
(14.52), F,, =—1.8488 +0.4531P,, + 0.9033P,, + 0.7058P,, =

—1.8488 + 0.4531(1.418) + 0.9033(0.308) + 0.7058(0.067) = —0.881..

F, = —1.8826 + P;(0.4516;) + 0.8391P,, + P,,(0.6490) =

~1.8826 +1.418(0.4516;) + 0.8391(0.308) + 0.067(0.6490) = —0.940.

F,, = —1.5860 + 0.7058P,; +1.2980P,, + 0.9094P,, =

~1.5860 + 0.7058(1.418) +1.2980(0.308) + 0.9094(0.067) = —0.124. .

The secular equation det(F, —S,,&) =0 is

—0.881-¢; —0.940 - 0.8366¢;
—0.940 - 0.8366¢; —0.124; — &

The roots are & =-0.918, 2.809. For the smaller root, we get from (14.36),
0.037¢;; —0.175¢c,; =0

=0=0.300£" —0.567,¢ —0.774

The second equation (which has more significant figures in the coefficients) gives
cy,/Cy; = 4.61. Equation (14.48) gives c,;, = [1+ (4.61) + 2(4.61)0.8366] Y% = -0.182,,
and c;; =0.842.

With k =¢;,/cy; =1, Eq. (14.48) gives ¢y, = (2+2-0.8366) 2 = 0.5218 = ¢;;. Then
(14.49) gives P; =0.5445 =P, = P,,. Equations (14.50)-(14.52) give
F, =-0.7255, F, = -0.826, F,, = 0.0009. The first estimate of the secular equation is
—0.7255— ¢ —0.826 — 0.8366«;
—0.826 — 0.8366¢; 0.0009 — &;
with lowest root & =—-0.769. Then
0.043;¢;; —0.183c,; =0
-0.183c;; +0.770c,;, =0
and the second equation gives ¢;,/c,; =k =4.21 and (14.48) gives c,; =0.197 and
Cy; = ke, =0.829. Equation (14.49) gives B, =1.374, B, =0.327, P,, =0.078. Then
F,=-0.876, F, =-0.937, F,, =-0.121 and
—0.876 - ¢; —0.937 - 0.8366¢;
—0.937 — 0.8366¢; -0.121— ¢

=0 =0.3001s2 — 0.6575¢, —0.683 =0

=0=0.3001¢? — 0.571s; — 0.772
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with lowest root & =—-0.913. Then

0.037¢;; —0.173c,; =0

-0.173¢;; +0.792¢,, =0

and the second equation gives c;;/c,; = k =4.58 and (14.48) gives c,; =0.184 and

C;; = kcy; = 0.841. Equation (14.49) gives B, =1.415, B, =0.309, P,, =0.068. Then
F. =-0.881, F, =-0.940, F,, =-0.124. These Fock matrix elements are essentially

the same as the last set of Fock matrix elements in the example in Sec, 14,3, so the
remaining calculation gives essentially the same results as in the text.

14.20 (a) A C++ program is

#include <iostream>

#include <cmath>

using namespace std;

int main() {
int n;
double z1, z2, s, h1l, h12, h22, r1111, r2222, r1122, r1212, temp;
double r1112, r1222, k;
double c2, c1, pl11, p12, p22, f11, f12, 122, a, b, c, rt, €1, e2, e, d2, d1, ehf, d;
labelO:
cout << " Enter z1"; cin >> z1;
cout << " Enter z2 (enter -3 to stop) "; cin >> z2;
if (z2 <0)

return O;

s=8*pow(z1*z2, 1.5)/pow(z1+z2, 3);
h11=0.5*z1*z1-2*z1; h22=0.5*z2*z2-2*z2,
h12=pow(z1*z2,1.5)*(4*z1*z2-8*z1-8*z2)/pow(z1+z2,3);
r1111=5*z1/8; r2222=5*z2/8;
d=pow(z1+z2,4);
r1122=(pow(z1,4)*z2+4*pow(z1,3)*z2*z2+z1*pow(z2,4)+4*z1*z1*pow(z2,3))/d;
r1212=20*pow(z1,3)*pow(z2,3)/pow(z1+z2,5);
temp=(12*z1+8*z2)/pow(z1+z2,2)+(9*z1+z2)/(2*z1*z1);
rill2=temp*16*pow(z1,4.5)*pow(z2,1.5)/pow(3*z1+z2,4);
temp=(12*z2+8*z1)/pow(z1+z2,2)+(9*z2+z1)/(2*22*z2);
rl222=temp*16*pow(z2,4.5)*pow(z1,1.5)/pow(3*z2+z1,4);

n=0;

cout << " cl/c2 "; cin >> k;
c2=1/sqrt(1+k*k+2*k*s); cl=k*c2;

cout << "cl="<< ¢l << " c2="<<c2 <<endl
labell:

pll=2*cl*cl; pl2=2*cl*c2; p22=2*c2*c2;
f11=h11+0.5*p11*r1111+p12*r1112+p22*(r1122-0.5*r1212);
f12=h12+0.5*p11*r1112+p12*(r1212*1.5-0.5*r1122)+0.5*p22*r1222;
f22=h22+p11*(r1122-0.5*r1212)+p12*r1222+0.5*p22*r2222;

14-7
Copyright © 2014 Pearson Education, Inc.



1421

a=1-s*s; b=2*s*f12-f11-f22; c=f11*f22-f12*f12;
rt=sqrt(b*b-4*a*c);

el=(-b-rt)/(2*a); e2=(-b+rt)/(2*a);

e=el,

if (e2 <el)

e=ez2,

k=(e-f22)/(f12-s*e);

d2=1/sqgrt(1+k*k+2*k*s); dl=k *d2;

n=n+1;
if (n>500) {
cout << "Did not converge";
return O;
}
cout << "cl="<<cl << " (2="<<c2 << " n="<< n << end
cout << "E= " << e <<endl
if (fabs(c2-d2) > 0.00001)
goto label3;
if (fabs(c1-d1) > 0.00001)
goto label3;
cout << "Converged " << " N= " << n;
ehf = e + 0.5%(p11*h11+2*p12*h12+p22*h22);
cout << "EHF =" << ehf <<endl;
goto labelO;
label3: cl=d1; c2=d2; goto labell,

(b) In all cases, the calculation converges to the correct result. Six iterations are needed
for c;;/c,; =—1; five iterations are needed for each of the other choices.

(c) To ensure fully converged results, we change 0.00001 in the last two if statements to
0.0000001. Also, we add the statement cout.precision(8); to the program as a new line

after int main() {, so as to have 8 significant figures in the output. For these orbital
exponents, the program gives E - =-2.8616726 hartrees.

(d) For the calculations in part (d), we use the convergence test as modified in part (c).
For {; =1.46363 and &, = 2.91093, we get Er =—-2.8616485. For ¢; =1.44363 and

¢, =2.91093, we get E, - =—-2.8616477 . These energies are above that for the optimum
orbital exponents. For ¢; =1.45363 and ¢, = 2.92093, we get E. =-2.8616718. For
¢; =1.45363 and &, = 2.90093, we get Er =—-2.8616721. (Energies are given in
hartrees.)

From (14.43), p = Py x2 + 2P,xi2> + Py o . From (14.46) and (5.101),at r =0,
n=20321(47)"? = 0.9851 and g, = 232 /(47)"? =2.8007 . Soat r =0,
p =1.418(0.985) + 2(0.308)(0.985)(2.801) + 0.067(2.801)> = 3.60 electrons/bohr®.
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At r = 1bohr, y =2¢3% 51 /(4x)Y? = 2(1.45)%%e 4 /(47)Y2 = 0.2311 and

2, =232 (47)? = 0.1526.

Soat r=1, p=1418(0.231) + 2(0.308)(0.231)(0.1526) + 0.067(0.1526)? = 0.099
electrons/bohr®.

14.22 The condition that C" be unitary is given by (8.93) as | X (cq) * ¢ = 6;|. We have

[¢* @5 dr =T Zs(Co)* (r)* X dr = Xg Xy (Co)* o [ (2 )* 2 dr = 2o Xy (cg)* ¢ 0y =
25 (cg)* ¢ = 9;;, where the boxed equation was used.

14.23 (a) sx+3sysz = s"(x+3yz), so the function is inhomogeneous.
(b) 179 =s°179, so this function is homogenous of degree zero.
() (sx)?/sy(sz)® = s2x?/yz®, so this function is homogeneous of degree —2.

(d) [a(sx)® +b(sx)(sy)*T? = s¥?(ax® + bxy?)Y2, so the function is homogeneous of
degree 3/2.

14.24 From (14.76), (T) = —E for an atomic stationary state. We have E, > E;, so
0>-E,+E, —E >-E,, (T);>(),.

14.25 If A isa time-independent operator, then (7.113) becomes for a stationary state:
0=0+in"*(H, A]) and ([H, A]) =0, which is the hypervirial theorem (14.61).

14.26 (a) (T) =(¢|—(n*12m,)(VZ + V3)¢) . Use of Eq. (9.58) gives

(TY=(¢|(C%IAneyt, + L2 ldnsyr, — £ 262 4 nsyay)p) =

S IAmeg) g |15 | 9y + & (% 1hmey @I 1yt | ) — (& %6 1 4me520)( | #) - Equations after
(9.60) give (¢ 1t |4 = (|1, | §) = {Tay. Therefore

(TY = 2% |Amgyag + 2% 1A e a, — £ 26 dnsyay = (262 l4nsyay,.

Also (V) = (¢ | —Ze?[4ms,t, — Ze% 1A rsyr, + €2 [4ms,t, | 4) . Use of

(Bt ) =(d| 1,1 | ) = ¢ la, and the equation preceding (9.61) gives

(V) =-272,€*4ns 8, + 502 18(47s,)ay .

(b) For £ =Z —5/16, the results of part (a) become (T) = (Z —5/16)%e*/4zs,a, and
(V) =—-2Z(Z —5/16)e*/4nsya, +5(Z —5/16)e?/8(4 s, )a, = —2(Z —5/16)(e?/47s,a,)(Z —5/16) =
—2(Z —5/16)%(e*/4ns4ay) = —2(T ), which is (14.75).
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14.27 For the harmonic oscillator, V is a homogeneous function of degree 2, so the virial
theorem (14.70) gives 2(T) = 2¢V) and (V) =(T)=5.0x10"° J. Then E =(T)+(V) =
1.00x1078 J,

14.28 As shown in part (c) of the Example in Sec. 14.4, V is homogeneous of degree —1 and
(14.76) gives (T) =—E =59.10 eV.

14.29 V in Cartesian coordinates is homogeneous of degree 4 and (14.72) and (14.73) give
(V)=2E/6=(10eV)/3=3.33¢eV and (T) =4E/6=6.67 eV .

14.30 From Prob. 4.52, addition of C to V adds C to each stationary-state energy eigenvalue E.
Addition of C to V leaves (T) = (:,//|T ly) unchanged (since w and T are unchanged) and
adds C to (V). Suppose that before we added C to V, the function V was homogeneous of
degree n; then the virial theorem (14.70) gives 2(T) =n{V) (Eq. 1). After we added C to

V, the left side of Eq. 1 is unchanged but the right side is increased by nC. Hence Eqg. 1 no
longer holds. One might then think the virial theorem is violated but this is not so, because
after we add the constant C to V, V is no longer a homogeneous function and (14.70) no
longer applies. (For example, addition of C to the harmonic-oscillator V gives %kx2 +C,

which is no longer homogeneous of degree 2.)

14.31 (a) Use of Egs. (5.8), (5.1), and (14.61) gives {p,) = (M/ik){[X, ﬁ]} =0.
(b) Use of Egs. (5.9) and (14.61) gives (dV /ox)y = —(L/in){[ Py, I:|]> =0.

1432 At R=0,U =a—-c.At R=w, U =—c. Between 0 and o, U decreases monotonically
as R increases. (This is a repulsive state with no minimum in U.) We have
dU/dR = —abe . The virial-theorem equation (14.94) gives

(Ty)=-U -R(U/dR) =c—ae ™R +abRe™ =c+a(bR-1)e™™* . At R=0,
(T,y=c—a;at R=w, (T,) =c. For small R, we have e ™ ~1-bR and

(Tyy =c+a(bR-1)@1-bR) = c+a(-1+2bR), so (T, initially increases as R increases
from 0. For large R, we can neglect the -1 in (bR —1). At large R, the function Re PR

decreases as R increases, since the exponential function overpowers the factor of R, so
(Ty) decreases with increasing R at large R. Hence there must be a maximum in(T) . To

locate this maximum, we take the derivative:

d(T,)/dR = 0 = abe *® + abe ™ —ab?Re™™®, which gives R = 2/b and

(Ty)max = C+ale®. The virial theorem equation (14.95) gives

(V)=2U +R(dU/dR) = 2ae "R —2c —abRe™R = —2c + a(2-bR)e ™. At R=0,
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(Vy=2a-2c.At R=w, (V)=-2c.Forsmall R, a(2—bR)e ™ ~ a(2—bR)(1-bR) ~
a(2-3bR), so (V) initially decreases as R increases from 0. For large R, we can neglect
the 2in (2—DbR), so at large R, (V) increases as R increases. Hence there must be a
minimum in{V). To locate this minimum, we take the derivative:

d(V)/dR = 0 = —2abe ™R — abe ™ + ab?Re ™™, which gives R = 3/b and

V) min =—2C— ale®. Sketches of these functions follow. (The negative values of (T are

unphysical.)
2(a —c)
(Ter)
a-c
cC—-a U
V)

14.33 Differentiation of (14.95) gives
d¢V)/dR = 2dU/dR + dU /dR + R(d2U /dR?) = 3dU /dR + R(d U /dR?) .

At R=R,, dU/dR =0 and d(V)/dR = R(d?U /dR?). The second derivative d?U/dR? at
R =R, is the force constant k, for the bound state, and k, must be positive: To the left of
the minimum in U in R,, the slope dU/dR is negative and to the right of the minimum,
dU/dR is positive. Hence dU/dR is increasing as R increases through R, . If a function
IS increasing at a point, its derivative must be positive (or zero) at that point, so
d?U/dR? >0 at R,. Hence d(V)/dR>0 at R,.

Differentiation of (14.94) gives
d(T,)/dR = —dU /dR — dU/dR — R(d?U /dR?) = —2dU /dR — R(d?U /dR?).
At R=R,, dU/dR =0 and d(T,)/dR = —R(d?U/dR?). Since d°U/dR? >0 at R,, we
have d(T,)/dR<0 at R,.

14.34 This equation is valid. The molecular Hamiltonian operator (13.1) is a homogeneous
function of degree —1 of the Cartesian coordinates of all the particles (electrons and
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nuclei) and fe, +fN is the complete Kkinetic energy operator for the molecule, so the
equation given in the problem follows from the virial theorem (14.70).

14.35 We have D, =4.75eV =U () -U(R,) =-27.20 eV -U (R,) and U(R,) =-31.95eV,
where we used (6.108) and the fact that H, dissociates to two H atoms. At R,, dU/dR =0
and (14.95) gives (V) |r,=2U(R)) =-63.9¢eV, (Ty) g =-U(R;)=3195eV. We have

V) = V) +Vyy = V) +€°/47gyR,. Then

e (1.602x107"° C)?
4regR,  47(8.854x1072 C2 Nt m2)(0.741x107%° m)
=19.43eV. S0 (V) |p = (V) g, — €*/475R, = -83.3 eV.

leVv
1.602x10719 3

=3.11,x107% J

14.36 For the Fues function, dU /dR = D,(2R,/R? — 2R?/R®) . Equation (14.94) gives
(Ty) =-U —R(dU /dR) = U (0) + D, (2R,/R — R?/R?) - D, (2R, /R — 2R?/R?) =
—U (0) + D, (R?/R?) . Equation (14.95) gives
(V) =2U +R(dU/dR) = 2U () + 2D, (-2R, /R + R?/R?) + D,(2R,/R — 2R?/R?) =
2U () — 2D, (R, /R). The Fues function has (T) always increasing as R decreases
and has (V) always decreasing as R decreases. These behaviors are quite wrong (see
Fig. 14.1).

14.37 (a) For the hydrogenlike atom, H = —(#2/2m,)V? — Ze?/4 zz,r and
E, =—(22/n?)(e?/87sya) . Let A =Z . Then (14.123) gives
OE, 107 = —(2ZIn?)(e?/87eqa) = (0H 16Z) = (—e?I4meyr) and (U/r) = Z/n?a.
(b) From Sec. 9.6, if the secular determinant is in diagonal form, then the initially

assumed unperturbed wave functions are the correct zeroth-order wave functions. The
perturbation is H' = (0H/0Z) dZ = —(e2/47zgor) dZ . The hydrogenlike functions of a

degenerate level have the same n, so the off-diagonal elements of the secular determinant
are (nI'm’|— (e2/47zeor)|nlm> dz, where nlm denotes a hydrogenlike function with
quantum numbers n, |, and m, and the primes indicate that at least one of I" and m" must
differ from | and m, respectively. The —(e2/47zgor) in the integrand goes in the radial
factor in the integral (nl'm’|— (e2/47z50r)|nlm> , and this integral must be zero because of

the orthogonality of the spherical- harmonic factors in the wave functions when at least
one of I" and m’ differs from | and m [Eq. (7.27)]. So the secular determinant is in
diagonal form.
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14.38

14.39

14.40

14.41

2/2. Also

X

We have H = p2/2m+1kx®. Let A=m™. Then oH/02 = p
E = (v+3)hv = (v +1)h/27)(k/m)”? and

SEIB(m™) = (E/om)[om/a(m™)] = (6E/om)/[6(m~t)om] = —(E/6m)im™ = —m? (E/ém)
=-m’ (v +)nk"? (-1 m™?) = Im"? (v + 1)nk"?. So (14.123) gives

(0H /02y = 3(pZ)y =i m"?(v + 1)nk"? and

(p%y =m"?(v +1)nk"? = m(v + H)h@27z)(k/m)"? = m(v + 1)hv . Equation (14.74) gives
(T)=(pZ/2my=1hv(v+3) and (pZ) = mhv(v +1), which agrees with the Hellmann—
Feynman result found in this problem.

From (9.7), 6H/aA = H'. From (9.14), oE, /04 = E® + 2AE® +.-. + kA EW 4.
Then (14.123) gives 0E, /04 = EY + 2AE? + ...+ kKA TEM 4o =y |H' |y,) . At
2=0, y, becomes y(? andwe get E® = O H' |y ©).

Equation (14.131) gives F, , =-0U/oz, and F,, =—-0U/0dz,.Use of the chain rule and an
equation that corresponds to (14.85) gives

e _ QUR)R _dUuz-z _dUz-z _dU R _oU _ _
22 R ézz dR R dR R drRoz, oz, °°

On the dividing surface between binding and antibinding regions, we have
Z,00s0, ;2 + 27, cosé, 12 =0 (Eq. 1). Let d be the desired distance between these two
intersection points. At the left intersection point, Figs. 14.4 and 14.6 give r, =d,

h=d+R,, 6,=x,and §, =0. Equation 1 becomes —-Z,/d*+Z,/(d + R,)> =0, s0
7,d*=2,(d+R,)? and Z,/Z, = 1+ R,/d)? =1+ 2(R,/d) + (R,/d)?. The quadratic
formula gives R,/d ={-2+[4-401-2,/2,)]"*}/2=-1+(Z,/Z,)"? and

d =R, /[(Z,/Z,)"* -1].

(@) d=(0.92A)/(9Y2-1)=0.46 A.

(b) d =@.27 A)/A7M?-1)=0.41A.

(c) d=@.41A)/(35">-1)=0.29 A.

(d) d=(1.61A)/(53"2-1)=0.26 A.
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Chapter 15

Molecular Electronic Structure

15.1 The multiplication table for a group lists the products of all pairs of operations. For &, ,

the multiplication table is found to be

Cy E C,(2) 6, (xz) 6, (12)
E E Cy(2) G, (x2) 6y (yz)
C,(2) Cy(2) E 6, (yz) G, (x2)
6, (xz) 6, (xz) 6, (y2) E C,(2)
6, (y2) 6, (y2) o, (xz) Cy(2) E

Each entry is the product of the element at the left end of its row and the element at the
top of its column. The first row of entries and the first column of entries are easily filled in
since £ times any symmetry operation equals that symmetry operation. The entries on the
diagonal are all E since the square of each of the ©,, symmetry operations equals E .
The 6’2 (z) operation changes the x and y coordinates to their negatives. Each reflection
changes the coordinate perpendicular to the symmetry plane to its negative. Thus:

(6, 7, 2) =S (-2, 3, 2)5 (3,9, ) =25 (1, = 3, 2) 5 (v, p, 2)— 20D (x, 3, 2)

We have (x, y, z)%(—x, -y,z) M)(—x, v,z). Hence

G, (x2)Cy(2) = 6, (yz) . The remaining five products are found similarly, giving the
preceding multiplication table. (see also Prob. 12.25.)

The eight possible combinations of the OR eigenvalues +1 and —1 are

E Cy(z)  Gy(x2)  6,(2)
1 1 1 1
1 1 1 -1
1 1 -1 1
1 -1 1 1
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1
1 -1 -1 -1
15-1
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15.2

The first row (the totally symmetric species) is clearly a valid symmetry species.
The second row is ruled out since &, (yz)6,(xz) = éz (z),but (-D1=1.

The third row is ruled out since &, (yz)6,(xz) = C,(z), but 1(-1) #1.

The fourth row is ruled out since &,(yz)o,,(xz) = 6‘2 (z),but ()1 =-1.

The fifth row is a valid representation, since 6’2 (2)6,(xz) =0, (xz)éz (z)=06,(yz) and
1(-1) = ()1 =—1; Cy(2)6,, (32) = 6, (3)C5(2) = 6, (32) and 1(=1) = ()1 =—1;
6,(x2)6,(y2) = 6,(y2)6,,(x2) = C,(2) and (-1)(-1) = 1.

The sixth row is a valid representation, since éz (2)6,(xz2) =0, (xz)éz (z)=6,(yz) and
1) = 1) =—1; G3(2)6,,(32) = 6, (32)C(2) = 6, (x2) and —1(~1) =~1(~1) = I;
6,(x2)6,(y2) = 6,(32)6,(x2) = G, (2) and 1(-1)=-1.

Similarly, the seventh row is found to be a valid representation.

The eighth row is ruled out since &,(yz)c, (xz) = C,(z), but (=1)(-1) = —-1.

The symmetry operations for 9, are E, @2 (%), 6’2 »), 6'2 (z) . The square of each of these
operations is E . The éz (x) rotation changes the y and z coordinates to their negatives and
leaves the x coordinate unchanged. Similarly for éz (y) and 6’2 (z). Thus we have

(5, 3, 2)— S (3, - y, = 2) =05 (o, - 3, 2)

(x, 3, 2)— S (x, y, = 2) =S5 (o, -y, 2)

Since éz (z) moves the point at (x, y, z) to (—x,—y, z) , we have shown that

C,(1C,(x) = G ()G, (1) = Gy(2))|.

If we perform two successive cyclic permutations, changing x to y, y to z, and z to x, the
boxed equations become

Gy ()G, (1) = G, (1)Cy(2) = Gy (%)
G, (x)Cy(2) = Gy (2)Cy (x) = Gy (»)

The 9, multiplication table is therefore

2, E G, (x) G (y) C,(2)
E E (%) G () C(2)
G, (x) Gy (x) E Cy(2) G, (»)
C,(») G, () Cy(2) E C,(x)
Cy(2) Gy (2) Cy(y) G, (x) E
15-2
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The eight possible combinations of the OR eigenvalues +1 and —1 are

E G GO G
1 1 1 1
1 1 1 -1
1 1 -1 1
1 -1 1 1
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1
1 -1 -1 -1

The first row (the totally symmetric species) is clearly a valid symmetry species. The
second row is ruled out since 6’2 ( y)CA'2 (z2)= 6’2 (x) but 1(—1) # 1. The third row is ruled

out since C,(x)C,(y) = C,(2) but 1(~1) # 1. The fourth row is ruled out since
C,(x)C,(¥) = Cy(2) but (1)1 # 1. The eighth row is ruled out since C,(x)C,(») = C,(2)
but (—1)(—1) # —1. One finds that the numbers in the fifth, sixth, and seventh rows

multiply the same way as the symmetry operations, and these rows and row 1 are the
symmetry species.

(@) The E indicates the orbital degeneracy is 2. For this triplet term, S =1 and M has
three possible values. The total degeneracy is 2(3) = 6 and this is the number of
independent wave functions.

(b) The orbital degeneracy is2. S =0,s0 Mg =0. The degeneracy is 2(1) = 2.

(a) For each H, this set uses two s-type contracted Gaussians. Since the molecule has 8 H
atoms, the set has 2(8) = 16 contracted functions centered on H atoms. For each non-H
atom, the set has four s-type contracted functions and two sets of p-type functions. Each
set of p functions contains the three functions p,, p,,, p,, so each non-H atom has

4 +2(3) =10 contracted functions centered on it. There are 4 non-H atoms, for a total of
4(10) = 40 contracted functions on these atoms. The total is 40 + 16 = 56.

(b) The minimal-basis AOs are 1s on each H and 1s, 2s, 2p,,2p,, 2p, on each non-H.
A double-zeta set therefore has two s-type contracted Gaussian functions on each H, and

has four s-type and two sets of p-type functions on each non-H. This is a [4s2p/2s] set, as
in part (a). The total number of contracted Gaussians 1s 10(2) + 5[4 + 2(3)] = 70.
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15.6

(@) The minimal-basis AOs are 1s on each H and 1s, 2s, 2p_, 2 Py 2p. oneachnon-H. A

STO-3G set has one contracted Gaussian for each minimal-basis AO and so has 1 CGTF
on each H and has 5 CGTFs on each C and O. The total number of CGTFs is
10(1)+5(5)=35.

(b) In the 3-21G set, each inner-shell AO (in this case, the 1s AO of each C and each O)
is represented by one CGTF; each valence AO is represented by a linear combination of 2
CGTFs. Thus each H atom has 2 CGTFs. Each C and O has 1 + 2(4) = 9 CGTFs. The total
number of CGTFs is 10(2) + 5(9) = 65.

(c) Inthe 6-31G* set, each H has two s-type CGTFs; each C and O has one s-type CGTF
for the 1s AO, two s-type CGTFs for the 2s AO, six p-type CGTFs for the 2p AOs, and
six d-type CGTFs, for a total of 15 CGTFs per atom. Thus the total for the molecule is
10(2) +5(15) =95.

(d) The 6-31G** set is formed from 6-31G* by adding three p-type functions to each H,
so the molecule now has 95+10(3) =125 CGTFs.

(e) The 6-31+G* set is formed from 6-31G* by adding four functions to each non-H, so
the molecule now has 95+ 5(4) =115 CGTFs.

(F) For a first-row atom such as C or O, the cc-pVTZ set is 4s3p2d1f and so has
4+3(3)+2(5) + 1(7) =30 CGTFs for such an atom. For an H atom, the cc-pVTZ set is
3s2pld and so has 3 + 2(3) + 1(5) = 14 CGTFs. Thus for C4HyOH, there are

5(30) + 10(14) = 290 basis functions.

(9) For a first-row atom, the cc-pVQZ set is 5s4p3d2f'1g and so has
5+43)+3(5)+2(7) + 9 =55 CGTFs for such an atom. For an H atom, the cc-pVQZ set
is 4s3p2d1fand so has 4 + 3(3) + 2(5) + 7= 30 CGTFs. Thus for C4HyOH, there are
5(55) + 10(30) = 575 basis functions.

(h) For a first-row atom, the cc-pVDZ set is 352p1d and aug-cc-pVDZ increases the
number of sets of functions for each / value by 1 to give 4s3p2d, which means 4(1) + 3(3)
+ 2(5) =23 CGTFs. For an H atom, the cc-pVDZ set is 2s1p and aug-cc-pVDZ increases
the number of sets of functions for each / value by 1 to give 3s2p, which means 3(1) +
2(3) =9 CGTFs for each H. For C4HyOH, there are 5(23) + 10(9) = 205 basis functions.

(a) The minimal-basis AOs are 1s on each H; 1s, 2s, 2p,, 2 Py 2p, on each O; and
ls, 2s, 2p,, 2py, 2p.,3s,3p,, 3py, 3p. on each Si. The STO-3G set has 3 primitives for

each minimal-basis AO and has one CGTF for each minimal-basis AQ. The molecule has
24(9) + 60(5) + 24(1) = 540 CGTFs and 3(540) =1620 primitives.

(b) In the 3-21G set, each inner-shell AO (in this case, the 1s AO of each O and the 1s,
2s, 2p,,2p,,2p, AOs of Si) is represented by one CGTF (which consists of 3

primitives); each valence AO is represented by a linear combination of 2 CGTFs (one
having 2 primitives and one having 1 primitive). Thus each H atom has 2 CGTFs and has
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15.7

15.8

3 primitives. Each O has 1 + 2(4) =9 CGTFs and has 3 + 3(4) = 15 primitives. Each Si
has 5+2(4) =13 CGTFs and has 3(5) + 3(4) = 27 primitives. The total number of CGTFs

is 24(13) + 60(9) + 24(2) =900 . The total number of primitive Gaussians is
24(27)+60(15) +24(3) =1620.

(c) Inthe 6-31G* set, each H has two s-type CGTFs (one of which consists of 3
primitives and one of which has 1 primitive). Each O atom has one s-type CGTF (which
has 6 primitives) for the 1s AO, two s-type CGTFs (one with 3 primitives and one with 1
primitive) for the 2s AO, six p-type CGTFs (three having 3 primitives and three having 1
primitive) for the 2p AOs, and six d-type CGTFs (each having one primitive), for a total
of 15 CGTFs and 28 primitives per oxygen. Each Si atom has one s-type CGTF (which
has 6 primitives) for the 1s AO, one s-type CGTF (which has 6 primitives) for the 2s AO,
three p-type CGTFs (each having 6 primitives) for the 2p AOs, two s-type CGTFs (one
with 3 primitives and one with 1 primitive) for the 3s AO, six p-type CGTFs (three having
3 primitives and three having 1 primitive) for the 3p AOs, and six d-type CGTFs, for a
total of 19 CGTFs and 52 primitives per Si atom. The total for the molecule is 24(19) +
60(15) +24(2) = 1404 CGTFs and 24(52) + 60(28) + 24(4) = 3024 primitive Gaussians.

The CCCBDB at cccbdb.nist.gov gives these results: For HF/6-31G*,
—56.184356 hartrees, 1.92 D, 1.002 A for the NH distance, 107.2° for the HNH angle.
For HF/cc-pVDZ, —56.195732 hartrees, 1.73 D, 1.008 A, 105.9°.

The most convenient way to get most of the data at cccbdb.nist.gov is to click III
Calculated Data, click D. 1. a., enter C4H10 as the formula, choose Anti, click on the
HF/6-31G* energy (or the HF/cc-pVDZ energy), and you will get most of the HF/6-31G*
(or cc-pVDZ) data for both conformers. Partial results follow.

For HF/6-31G* for the anti conformer:

—157.298409 hartrees, 0 D, 1.528 A for the end CC distances, 1.5295 A for the middle CC
distance, 1.086 A and 1.086s A for the end CH distances, 1.088 A for the middle CH
distances, 113.1° for the CCC angle, HCH angles ranging from 106.2° to 107.7°, CCH
angles ranging from 109.2° to 111.3°, a CCCC dihedral of 180.0° (click on XII
Geometries at the left; then click B. 1. and enter C4H10 and choose Anti; then click the
HF/6-31G* box; then use the JMol model as follows: double click on an end carbon,
single click on each of the next two carbons, and finally double click on the other end C).

For HF/6-31G* for the gauche conformer:

—157.296895 hartrees, 0.077 D, 1.530 A for the end CC distances, 1.533 A for the middle
CC distance, 1.085 A to 1.087 A for the end CH distances, 1.088 and 1.087 A for the
middle CH distances, 114.4° for the CCC angle, HCH angles ranging from 106.2° to
107.7°, CCH angles ranging from 108.5° to 112.0°, a CCCC dihedral of 65.4°.

For HF/cc-pVDZ for the anti conformer:
—157.310044 hartrees, 0 D, 1.526 A for the end CC distances, 1.528 A for the middle CC
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distance, 1.092 A and 1.094 A for the end CH distances, 1.096 A for the middle CH
distances, 113.3° for the CCC angle, HCH angles ranging from 106.1° to 107.7°, CCH
angles ranging from 109.1° to 111.2°, a CCCC dihedral of 180.0°.

For HF/cc-pVDZ for the gauche conformer:

—157.308384 hartrees, 0.070 D, 1.528 A for the end CC distances, 1.532 A for the middle
CC distance, 1.092 A to 1.094 A for the end CH distances, 1.094 and 1.096 A for the
middle CH distances, 114.7° for the CCC angle, HCH angles ranging from 106.1° to
107.7°, CCH angles ranging from 108.4° to 112.0°, a CCCC dihedral of 65.4°.

@) [(S—Gyy)dr=[[515(S—Gyy)rPsinO@drdfdg =
STdp[s sin@dO[ (S — Gy ) ridr =4z [ (S — Gy ) rPdr, since S and G, are
functions of 7 only.

(b) We include the constraints that each orbital exponent be greater than 10°°. If we start
with the initial guesses 0.5, 1, and 2 for the orbital exponents and 1, 1, and 1 for the
coefficients d, and we use Options to set the Solver Tolerance to 10'* and the Solver

Convergence to 10™® (so as to increase the accuracy of the results), the Excel Solver gives
o, =0.109815, a, =0.405755, a; =2.227534, ¢, = 0.444619, ¢, = 0.535335,

c3 =0.154337. The graph is shown on the next page, where the dashed line is the STO
orbital and the solid line is the STO-3G function.

(c) For r between 0 and 0.35 bohr, the STO-3G function lies significantly below the STO.
At other r values, the two functions are quite close to each other.

0.6

', < STO

A

0.5

044

0.3 +

0.2 +

0.1 +

0

0 1 2 3 4 5 6
r/bohr

15.10 From (15.11), and the following equation, G.(r) = (2e,/z)*"* e Let u= {r. Then

2, 6G(r8) = L ¢ Qadn) e = 5L Qay i)yt =
Y eGu) = Sy = P e =P e = 8(r, )

i=1"%i
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15.11 (a) Using the information in the Sec. 15.4 example to interpret the results, we find the s

15.12

15.13

CGTOs for H to be
Is"=0.0334946¢,(18.731137) + 0.23472695g,(2.8253937) + 0.81375733g,(0.6401217)

1s" = g,(0.1612778)

where the orbital exponents are in parentheses. The polarization functions on H are

g, (1.10), gpy(l.lO), g, (1.10).

(b) We find

1s =0.0018347g,(3047.5249) + 0.0140373g,(457.36951) + 0.0688426 g, (103.94869) +
0.2321844g,(29.210155) + 0.4679413g,(9.286663) + 0.362312g,(3.163927)

25" =-0.1193324g,(7.8682724) - 0.1608542 g, (1.8812885) +1.1434564 g, (0.5442493)

25" = g (0.1687144)

2p. = 0.0689991g,, (7.8682724) +0.316424g , (1.8812885) +0.7443083¢g,, (0.5442493)...

2pl = g, (0.1687144)...

where the dots indicate 2p, and 2p, functions. The polarization functions are

8a, (0.800) ..., where the dots indicate five other d-type functions.

These two sets differ only in that 6-31G** has additional functions on H and He. Hence
for any molecule without H or He atoms, these basis sets are the same and give the same
energy. Some possible answers are CO,, C,Clg, NO,, and PCls.

(@) The molecular point group is C,,,. The symmetry species are given by (15.3). For

H,CO, the minimal-basis AOs are H, 1s, H»1s, Cls, C2s, C2p,, C2p,, C2p.,
Ols, O2s, O2p,, O2p,, O2p.. The z axis coincides with the C, axis through the double
bond, and we take the x axis as perpendicular to the molecular plane.

N

H1 H2

As in H,O, H;1s and H;1s are transformed into each other by é’z (z) and are not
eigenfunctions of Ocz(z) . We form symmetry orbitals as H;ls + H,1s and H,1s —H,1s.
The function H;ls + H,1s is unchanged by each of the four symmetry operations and
belongs to the totally symmetric species a,. The function H,1s —H,1s is unchanged by
E and by &,(yz) and is multiplied by —1 by é’z (z) and by 6,(xz), so it belongs to
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15.14

species b, . The Cls, C2s, C2p., Ols, O2s, and O2p. orbitals are unchanged by each of the
symmetry operations and so belong to a;. Each 2p. AO on C and on O is unchanged by
E and by &, (xz) and is multiplied by —1 by é’z (z) and by 6,(yz), and their symmetry
species is b, . Each 2p, AO on C and on O is unchanged by E and by 6, (yz) and is
multiplied by —1 by éz (z) and by 6,(xz), and their symmetry species is b, .

(b) 7 MOs change sign on reflection in the molecular yz plane. The only minimal-basis
symmetry orbitals that change sign on reflection in the molecular plane are C2p, and
O2p, . These two basis functions will give rise to two canonical 7 MOs. The remaining

10 o symmetry orbitals will give rise to 10 o canonical MOs. The canonical 7 MOs are
linear combinations of the 7 symmetry orbitals and have the forms ¢,C2p, +¢,02p, and
cC2p,. —c,02p,, where the c's are positive. In the ground electronic state, the bonding
7 MO ¢,C2p, +¢,02p, will be occupied by two electrons and the antibonding 7 MO
C2p, —c,02p, will be vacant. The molecule has 16 electrons, and the 14 electrons not

in the bonding 7 MO will occupy 7 canonical & MOs. (The symmetry species a and b
indicate that all MOs in this molecule belong to orbitally nondegenerate electronic levels.)

(c) The 8 occupied energy-localized MOs are as follows. An inner-shell orbital on C that
has a significant contribution from only Cls; an inner-shell orbital on O that is largely
Ols; two lone-pair orbitals on oxygen, each of which is a combination of O2p, O2p., and
O2s; a b(CH;) bonding orbital that is mainly a combination of H;1s, C2s, C2p., and C2p,;
a b(CH,) bonding orbital that is mainly a combination of H,1s, C2s, C2p., and C2p,; a
bonding o b(CO) orbital that is composed mainly of C2s, C2p., O2s, and O2p.; a bonding
7 MO that is composed of C2p, and O2p,, where it was assumed that the localized MOs
for the C to O bonds are the traditional o, 7 orbitals. If the double-bond localized MOs
turn out to be the "banana" bonds, we have two bonding »(CO) localized orbitals, each of
which is formed mainly from C2s, C2p., C2p,, O2s, O2p., O2p,.

(d) From part (a), there are 7 minimal-basis symmetry orbitals with a; symmetry, and the
maximum-size secular determinant is 7 by 7.

The molecular point group is G,, . The symmetry species are given by (15.3). The
minimal-basis AOs are Hi1s, H»1s, Ci1s, Ci2s, C2py, Ci2py, Ci2p., Csls, Ci2s, Co2py,
Ca2p,, Ci2p., Fils, Fi2s, Fi2p,, Fi2p,, Fi2p., F1ls, Fa2s, F22p,, F22p,, Fo2p.. The z axis
coincides with the C, axis and we take the x axis as perpendicular to the molecular plane:
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Cl Cz

H1 H2

As in H,O, H;1s and H;1s are transformed into each other by é’z (z) and are not
eigenfunctions of Ocz(z) . We form symmetry orbitals as H;ls + H,1s and H,1s —H,1s.
The function H,1s + H,1s is unchanged by each of the four symmetry operations and
belongs to the totally symmetric species a,. The function H,1s —H,1s is unchanged by
E and by &, (yz) and is multiplied by —1 by é’z (z) and by &, (xz), so it belongs to
species b, . We form the other symmetry orbitals by taking similar combinations of the

AOs on C; and C,, and of the AOs on F; and F,, and we examine the effects of the
symmetry operations on these symmetry orbitals. Consider for example, the symmetry
orbital F\2p, + F22p.. The AO F,2p, is transformed to —F,2p, by 6‘2 (2), 1s transformed to
F22p, by 6(xz), and is transformed to —F,2p, by &(yz). Therefore F2p, + F22p, is
unchanged by E;is changed to —F,2p, — F12p, = —(F12p, + F22py) by éz (z), is unchanged
by &(xz), and is changed to —(F2p, + F22p,) by &(yz). The symmetry species of

F12p, + F22p, is thus b,. Proceeding similarly with the other symmetry orbitals, we find
these results, where the y axis is taken to point to the right for all nuclei:

a by a by a by

a b2 a bz bl

Flsz - F22px

Clsz + C22px

Clsz - C22px

K2p,+E2p,

F2p,-EF2p,

a

b

ap

by

aj

C2p,+C,2p,

Ci2p, -Cy2p,

Flzpz + F22pz

Flzpz - F22pz

15-9
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by ai al by

C12p2+c22pz Clzpz_c22pz

aq bz

15.15 Using the MOs (15.19), (15.22), and Fig. 15.2, we have

Hl 7 H2 Hl + 5 H2 Hl z HZ
1611 3611 1b1

+ f—
2b,

15.16 1= N|[(H,ls = H,ls)* dr = N[[(H,1s)* dz + [(H,1s)* dz + 2 [ (H,1s)(H, ls)dz] =
N(2+2S,,) and N =2""2(1+8,,)""?, where S|, is the overlap integral.

15.17 For choice ¢, M , the MO of an excited electron would be best approximated by a virtual
orbital of M. All the MOs that are filled in M are filled in the excited state of M , so the
virtual Hartree—Fock orbitals calculated for M are appropriate for use as occupied excited

MOs of M .

15.18 We shall calculate the energy of the ion M" at the equilibrium geometry of the ground-
state uncharged molecule M. When a ground-state molecule M is ionized, the process is
so fast that the relatively heavy nuclei do not have time to adjust their locations to the
equilibrium geometry of M, so it most probable for M to be formed at a geometry close

15-10
Copyright © 2014 Pearson Education, Inc.



15.19

15.20

to that of ground-state M. The energy difference between M" and M with both species at
the ground-state equilibrium geometry of M is called the vertical ionization energy, and it
is this ionization energy that Koopmans' theorem refers to. Since the two species have the
same geometry, the V), nuclear-repulsion term cancels when the energy difference is

taken. Both the closed-shell species M and the ion M have single-determinant Hartree—
Fock wave functions, so we use (11.80), where the sums go over the occupied spin-
orbitals. We assume that the MOs do not change on going from M to M at the same
geometry as M. The ion M has one less spin-orbital than M. If the electron is removed
from MO £, then for M, the term G, ]}1 | 6, (1)) 1s missing from the first sum in
(11.80), and all terms with i or j equal to k are missing from the second sum in (11.80).
Let M; =J; -6, , K. Thenfor M, the terms M, My ,..., M 1, My 4. My 415,

..., M, are missing from the energy expression. The Hartree—Fock energy difference
E;r(M7) = E- (M) is therefore equal to minus the sum of the missing terms:

E;r (M) = E (M) = —(0,(1) | fl |6, (1)) -2, M,; (Eq. 1), where we used M, = M,;,
which follows from J; =J;; and K; =K ; [Eq. (11.84)]. The sum

:'1:1 M = Zf:1 (Jki -9,

}ns,kms,

K;;) involves the spatial orbitals of the n occupied spin-

orbitals of the closed-shell species M. The n electrons reside in #/2 different spatial
Orbltals, SO 01 = 02, 03 = 04,..., etC. HCDCC Jkl = sz, Jk3 = Jk4""’ Jk,}’l—l = Jk}’l . IfWe

define ¢ =6,=6,,¢,=60,=0,,...,94,, =0,_, = 0,, then for the J integrals, we can
replace the sum over 4,,..., 6, with a sum over ¢,,..., ¢,,, if we multiply each J by 2.
From (11.82) and (14.27), we have fl = H*™(1), so (6,(1) | fl |6,(1)) = H;; [Eq.
(14.23)]. The orbitals 6,, &, 6;,... have the spin function « and the orbitals 6,, 8,, 6,...

have the spin function f. The Kronecker delta in J,, ,, K;; in the sum will thus alternate

s,070s,J
between 0 and 1 as we sum over i, and for the K integrals, we can replace the sum over
0,,..., 0, with a sum over ¢,..., @,,, . Therefore Eq. 1 becomes

Epyr(MY) = Eppp (M) = —HE™ = Y 2(2J,. — K,,) . Comparison with Eq. (14.30) gives

E;r(M") = E,-(M) = —¢, , which is Koopmans' theorem.

The minimal-basis AOs are H;1s and H1s, and the symmetry orbitals are H;1s + H,1s
and H;1ls —H»1s.

From Figs. 15.1 and 6.13, we see that each of the four symmetry operations leaves 3d ,

unchanged and leaves 3dx2_y2 unchanged, so these two AOs have symmetry species a;.

From the discussion on p. 146 of the text, the other d orbitals look like this:
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15.21

15.22

oo oo
ol oI

OO
O

3d 3d

xy Xz d yz

We find the effects of the symmetry operators on these three AOs to be

E éZ(Z) OA_U(XZ) &U(yz)
3dy, | 1] 1 -1 -1 | a
3d,, | 1 -1 1 -1 by
3d, | 1| -1 -1 1 | b

Therefore the 3d , and 3dx2—y2 AOs contribute to the 1a;, 24, , and 3a¢; MOs in (15.19),
the 3d,, MO contributes to the 15 MO, and the 3d,, AO contributes to the 15, MO.

(a) Subtraction of the n =3 equation from the n = 4 equation and the n = 5 equation gives
Eqop(4) = Egep(3) = A(e™*? —e7?) and  Egcp(5) — Egep(3) = A(e? —¢7?). Dividing
the second equation by the first to eliminate 4, we get

Eqor(5) —Escp(3) P —e?® 7606778 +76.05777 _
Escp(4)— Egcp(3) e *B -8 —-76.06552+76.05777  °

Defining x = ¢ %, we get

=)/ =) =2 =D /(x =) = (x+D(x=1)/(x=1) = x +1=1.2916, s0

x =0.2916. Then B = —Inx =1.232.(The Excel Solver can also be used to find B.) Then
Egcp(4) — Egop(3) = A(e™* —e7*®) and —76.06552 + 76.05777 = A(—0.017582), so

A =0.4408. Substitution in (15.23) with n =5 gives

—76.06778 = Egcp(0) +0.4408¢ 22 and Eyp(o0) = —76.0687.

(b) Using the Excel Solver, one finds that the optimum A and B values are nearly
unchanged from those in (a), and Egqp(0) = —76.0686.

(a) The L values are 4 and 5 for these two basis sets. Subtraction of (15.88) with n =135
from (15.88) with 11 = 4 gives Egcp(aug4) — Egcp(aug-5) = 54e V4 —64e°% so
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15.23

15.24

(—76.066676 + 76.068009)E, = A(6.52319x10™®) and 4 =20435 E, , where
E, =1 hartree. Substitution in Eq. (15.88) with n =4 gives

76066676 E, = Egcp(0) + (20435 E,)5¢ "V and Egep(0) = ~76.06823 E, .

(0) Egcr(aug-5) - Egcr(aug-6) = 64 — 746 50
(=76.068009 + 76.068153)E; = A(9.05206 x 10°) and A = 15908 E, . From (15.88) with

n=>5, =76.068009 E, = Eg-p()+ (15908 E, )6e‘9*/g and Eqqp(0) =—-76.06818 E,, as
compared with Egp(0) ==76.0683 E, listed in the table.

(a) This expression is just Eq. (15.24) written using sum notation.

(b) Use of the definitions in the equations after (15.25) followed by use of (15.25) gives
Z'r n, + Z"r>s Z"s n,g = Z'r zi nr,i + zr>s zs Zi nr—s,i =

Z:r Z:i nicf,i + 2Z:r>s zs Z:i nicricsiSrs = Z:i n; (Zr cf,i + 2’Z:r>s Zs CricsiSrs) = Z:i n,=n,

where the result of part (a) was used.

The reference of Prob. 15.29¢ (hereafter referred to as MROO) tabulates values of the
overlap integral (y, | x,) between STOs with orbital exponents &, and £, separated by

a distance R, (in bohrs) in terms of the defined parameters

p=L(C +E)Ry and 1=, ~)IC,+Ey).
In these tables, y, in (y, | x;,) must be the AO with the smaller value of the quantum
number 7, or if the two n values are equal, y, must have the greater orbital exponent. The
MOs (15.19) are calculated at the experimental geometry Ry = 0.958 A = 1.81 bohr,
6= 104.5° = 1.824 rad. The H-H distance Ryy is found from sin(6/2) = 1 Ry /Ry, s0
Ry = 2(1.81 bohr)sin(1.824/2) = 2.86 bohr. The orbital exponents are [see the paragraph
preceding Eq. (15.18)]

Sy =1.27, Coi5 =7.66, G =2.25, £y, =2.21.
For (Ols |H,ls), p = %(7.66 +1.27)1.81=8.08, t =(7.66-1.27)/(7.66 +1.27) = 0.716.

The MROO tables give the following (ls | 1s) values: 0.054 at p =8.0,  =0.7; 0.059 at
p=8.0,1=0.8;0.040 at p=9.0, t =0.7. To allow for the increase in ¢, we add

(0.016/0.1)(0.059 — 0.054) = 0.001 to the 0.054 value. To allow for the increase in p, we
add (0.08/1)(0.040 — 0.054) =—0.001 to the 0.054 value. Thus (Ols | H,ls) =0.054 +

0.001 —0.001 = 0.054.
For (H,1s |H,ls), p= %(1.27 +1.27)2.86 =3.63, t = 0. The MROO tables give these

(Is|1s) valuesat t =0:0.244 at p =3.6,0.215 at p =3.8. Interpolation gives
(H,1s | H,1s) =0.240.
The MROO tables are for nonorthogonalized STOs, so we need to use (13.124) and the
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15.25

formula in Prob. 13.37c to write

(Ols | 02s) = 24(7.66)¥%(2.25)7%/3%(7.66 + 2.25)* =0.2313 and

02s, =[1-(0.2313)*T"3(025 - 0.2313-Ols) =1.028- 025 — 0.2377 - Ols .

Then (H,1s| O2s,) =1.028(H,1s| O2s) —0.2377(H,1s| Ols) .

For (H,1s|02s), p=1(1.27+2.25)1.81=3.19, t = (1.27 - 2.25)/(1.27 + 2.25) = -0.278..
The MROO tables give the following (ls | 2s) values: 0.468 at p =3.2, t =-0.3; 0.508 at
p=30,t=-03;0464at p=3.2,t=-0.2.So0

(H,1s] O2s) = 0.468 + 0.002 — 0.001 = 0.469 . As found above, (Ols | H,1ls) =0.054. So
(H,1s] O02s, ) =1.028(H,1s| O2s) —0.2377(H,1s| Ols) =1.028(0.469) — 0.2377(0.054) =
0.469.

The MROO tables give values of (H,1s| O2po) and (H,ls| O2p7) ; here the 2po AO is
a 2p,, AO on O, where the y" axis is along the OH, bond and points toward H;; the 2 p7z
AOisa 2p, AO on O, where the z' axis is in the molecular plane and is perpendicular to

the OH; line. We use modified versions of Fig. 15.6 and Eq. (15.40) with y and z
interchanged. In the modified Fig. 15.6, a = %(180o - 104.5°) =37.75°. The 2p, and

2p, AOs are proportional to y and z, respectively, and multiplication of the modified

equations in (15.40) by the exponential part of a 2p AO gives
2p,=2po=2p,cosa+2p sina and 2p.=2pr=-2p, sina+2p, cosa.

From these two equations, we get

2p, =2pocosa—-2prsina =0.7907(2po) - 0.6122(2 prr)

2p, =2posina+2prcosa =0.6122(2po)+0.7907(2 pr)

Then (H,1s|O2p ) = 0.7907(H,1s| O2 po) — 0.6122(H, 15| O2 px) . The overlap of the

negative half of O2pz with H, 1s cancels the overlap of the positive half of O2pz with

Hils, so (H,1s|O2prz) = 0. For (H,1s|O2po), p = %(1.27 +2.21)1.81=3.15,
t=(1.27-2.21)/(1.27+2.21) = —-0.270. The MROO tables give the following (ls | 2 po)

values: 0.382 at p=3.2,t=-0.3;0402at p=3.0, r=-0.3;0.432at p=3.2,
t=-0.2.So (H;1s| O2po) =0.382 + 0.005 +0.015 =0.402 and

(H1s|O2p,) =0.7907(H,1s| O2po) = 0.318. Finally,

(H15|O2p,) = 0.6122(H,15| O2po) — 0.7907(H,1s| O2 pzr) = 0.6122(H,1s| O2 po) =

0.6122(0.402) = 0.246.

(a) From the equation after (15.25), Eq. (15.25), and the MOs (15.19),
Mogs, = X Mons, i = 24 M€, 4 = 2(0.015)” +2(0.820)% +2(~0.502)* = 1.85;

Noop, = 2 ”ic(z)sz,i = 2(1)2 =2; Nogp, = % ”icézpy,i = 2(0-624)2 =0.78;
Ny, = 2 Moy, = 2(0.003)% +2(0.132)* +2(0.787)* =1.27;
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My 1 = 2 1 ey = 2(=0.004)% +2(0.152)% + 2(0.424)” +2(0.264)° = 0.54s;

Myt = 24 iCiy 1, = 2(=0.004)7 +2(0.152)% +2(—0.424)% +2(0.264)° = 0.545.

(b) To find the interatomic overlap population, we take the sum of those n,; values for
basis functions  and s that lie on different atoms, using (15.25) and the overlap integrals
in the Sec. 15.6 example. For 2a;, we have 2(2)(—0.027)0.152(0.054) +
2(2)(-0.027)0.152(0.054) + 2(2)(0.820)0.152(0.471) + 2(2)(0.820)0.152(0.471) +
2(2)0.132(0.152)0.247 + 2(2)0.132(0.152)0.247 + 2(2)0.152(0.152)0.238 = 0.53.

For 1b,, we have 2(2)0.624(0.424)0.319 + 2(2)0.624(—0.424)(-0.319) +
2(2)0.424(-0.424)0.238 = 0.50.

(c) The contribution of MO i to the gross population in the basis function y, is given by
N,

r,i

=N, AT M = nicrz’i +4m 2, (2c,¢,S,,) [see the equation for N, on p. 458
and (15.25)]. Since we are using an orthogonalized 2s AO, S, is zero for two different

AOs both on O. From (15.19), the contributions to the gross population of O, are
Nog, 1a, = 2(0.015)% +2(0.015)(—0.004)0.471(2) = 0.000

Nos, 24, = 2(0.820) +2(0.820)(0.152)0.471(2) = 1.580

Nos, 3a, = 2(~0.502)% + 2(—0.502)(0.264)0.471(2) = 0.254

Summing these contributions, we find Np,, =1.83. Also,

Nots e = 2(1.000)* + 2(1.000)(~0.004)0.054(2) = 2.001

Nots2a, = 2(~0.027)* +2(=0.027)(0.152)0.054(2) = 0.001

Nois3a, = 2(~0.026)* + 2(~0.026)(0.264)0.054(2) = 0.000

Summing these contributions, we find Ny, =2.00. Then

Nogp. 15, = 2()% =2.000 = Ny,

Noap, 16, = 2(0.624)* +2(0.624)0.424(0.319) + 2(0.624)(—0.424)(=0.319) =1.116 = Noap,
Noyp 10, = 2(0.003)* +2(0.003)(—0.004)0.247(2) = 0.000

Noyp. 24, = 2(0.132)% +2(0.132)(0.152)0.247(2) = 0.055

Nooy, 34, = 2(0.787)% +2(0.787)(0.264)0.247(2) = 1.444

Summing these contributions, we find Ny,, =1.50.

Nyt 114, = 2(-0.004) —2(0.004)(1.000)0.054 — 2(0.004)(0.015)0.471
— 2(0.004)(0.003)0.247 — 2(0.004)(—0.004)0.238 = 0.000 .
Nyt 124, = 2(0.152)% +2(0.152)(~0.027)0.054 + 2(0.152)(0.820)0.471+
2(0.152)(0.132)0.247 +2(0.152)0.152(0.238) = 0.184.
Nyt 130, = 2(0.264)7 +2(0.264)(=0.026)0.054 +2(0.264)(~0.502)0.471 +

2(0.264)(0.787)0.247 + 2(0.264)0.264(0.238) =0.150.
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15.26

15.27

Ni 1510, = 2[(0.424) +0.424(0.624)0.319 + 0.424(~0.424)0.238] = 0.443.

Summing these contributions, we find Ny 1, =0.777= Ny ;.

Suppose O and O, have the same sign. Imagine that we reversibly push Q, toward O

(which is located at the origin) along the x axis, starting at x =c and ending at x=d .
Reversibility means that we exert a force that differs only infinitesimally from the

electrical repulsive force between the charges. The infinitesimal work dw we do when we
displace Q, by dx is dw = F dx, where F'is the force we exert on Q,. F'is in the negative

x direction and dx is negative, so dw is positive. Since F is in the negative x direction and
QQ, i1s positive, we have F' =-00, /47r.90x2 and dw =—(Q0Q0,/ 47zgox2) dx . Summing up

the infinitesimal elements dw, we get w as a definite integral. So

d d _
bp = Wosp/Q, = [ F dx | O, = =[0,[00, /4rgox*1dx | O, = (Q/4mey)(x ™) [ = Q/4med .
If O and Q, have the opposite sign, then they attract each other, and we have to exert a

force in the positive x direction; the expression F' = —-QQ,/ 47rgox2 is still valid here, since

0Q, is now negative and £’ is now in the positive x direction. Thus we get the same result.

Gradient paths are perpendicular to the surfaces of constant probability density.

15.28 Interchanging the x and z axes relabels the xy plane as the yz plane and relabels the yz

plane as the xy plane, thereby interchanging the 6(xy) and 6'( yz) operations. In Table
15.3, interchange of the &(xy) and &( yz) eigenvalues leaves the symmetry species 4g,
Ay, Bag, and By, unchanged and makes the following changes in the other species:

15-16
Copyright © 2014 Pearson Education, Inc.
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15.30

B, > By,, By, > By,, By, > By,, By, > By, . Thus the 1 and 3 subscripts on the b

g b
MOs are interchanged.

(@) No. The normalization condition for the real MO ¢ =2 ¢, 7, is

2 202 2
V=[(eym+eyzy+0) dr=ci [ i dv+2e0 [ ipn dr++0 = cjj + 20,038+
This equation can be satisfied with ¢;; >1 if ¢;c,; is negative or if S}, is negative. Note

the negative coefficients for the H AOs in 1a,.

(b) In the notation of Prob. 13.37b, we have from (15.46): ¢ = —-0.064, d = 0.584 . From
Prob. 13.37b, ¢ =a+Sb and d = b(1-5%)""?, where § =(Cls | C2s) =

247283213122, + £,)t = 24(5.68)*%(1.76)°2 132 (5.68 +1.76)* =0.2516.

So b =0.584[1-(0.2516)*]1""? = 0.603 and a = —0.064 —0.2516(0.603) = —0.216..
Then 24, = 0.186(H,1s + H, 1s + Hy1s + H, 1s) — 0.216(C1s) + 0.603(C2s) .

(©) [(2a))*dr = (0.186)*[4 +12(H,1s | H,1s)]+ (0.216)* + (0.603)

—0.186(0.216)8(H,1s | Cls) + 0.186(0.603)8(H, Ls | C2s) — 0.216(0.603)2(C1s | C2s),
where the equivalence of all four H atoms was used. From part (b), (Cls | C2s) = 0.2516.
From p. 472 of the text, the C—H bond length is R.y =1.085 A =2.050 bohrs. The H-H
distance is given by the law of cosines as

Rey =[(2.050) +(2.050)% — 2(2.050)* cos(109.47°)]"% = 3.348 bohrs. The orbital
exponents are ¢y, =1.17, {yy =5.68, fp =1.76, {p, =1.76. See Prob. 15.24 for

information and notations on finding the overlap integrals from the reference given. For
(Hls [Hyls)y, p=3(¢, + &R, =53 (117 +1.17)3.348 =3.92, t = (£, - $,)/(C, + &) =
0. The MROO tables give these (ls |1s) valuesat t =0:0.215at p =3.8,0.189 at

p =4.0. Interpolation gives (H,1s | H,1ls) = 0.199. For (Cls|H,1s),
p=3(5.68+1.17)2.050 =7.02, ¢ = (5.68—1.17)/(5.68 +1.17) = 0.658 . The MROO
tables give these (ls |Ls) values: 0.063 at p =7.0 and 7 =0.6; 0.052 at p = 7.5 and ¢ = 0.6;
0.073 at p="7.0 and ¢ = 0.7. Interpolation gives (Cls|H,1s) =0.063 —0.011(0.02/0.50) +
0.010(0.058/0.10) = 0.068. For (H,1s| C2s), p = %(1.17 +1.76)2.050 = 3.00,

t =(1.17-1.76)/(1.17 +1.76) = -0.201 . The MROO tables give these (ls | 2s) values:
0.505 at p =3.0 and t =—0.2; 0.508 at p = 3.0 and # = —0.3. Interpolation gives

(H,1s | C2s) = 0.505. Then [(2a,)*dr = (0.186)*[4 +12(0.199)] + (0.216)* + (0.603)
—0.186(0.216)8(0.068) + 0.186(0.603)8(0.505) —0.216(0.603)2(0.2516) = 0.997.

We use the electron configuration given on p. 477. The lowest-energy MOs will be two

inner-shell MOs that involve the Cls AOs. The lag inner-shell MO will be almost

entirely g». The 15, inner-shell MO will be gs. There will be six occupied bonding MOs.
The g,; symmetry orbital will give the occupied # MO 1b,,, the highest-energy occupied
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15.31

15.32

MO. The 1b;, MO will be a bonding combination of the by, symmetry orbitals g;; and
812, namely, N(g, +cgy,). Since C,2p, is positive near H; and —C,2p,, is negative
near Hs, the coefficient ¢ must be positive to give a bonding MO. The 15,, MO will be a
bonding combination of the b,, symmetry orbitals g, and g,,, namely, N(gy +ag;,).
Since C,2p,, is positive near Hy and C,2p, is positive near Hs, the coefficient a must be
positive to give a bonding MO. The 25, MO will be a bonding combination of the b,
symmetry orbitals g5, g7, and gg, with the inner-shell symmetry orbital g, making only
a negligible contribution. Thus 2b,, = N(gs +ag,; + fgg). Since C,2s is positive near H;
and H, and —C,2s is negative near Hs and Ha4, we see that « is positive. Since C,2p. is
negative near H; and H, and C,2p. is positive near H; and Hs, we see that f is negative.
The 2a, and 3a, MOs will each be a bonding combination of the a, symmetry orbitals
g1, g3,and g,, with the inner-shell symmetry orbital g, making a negligible
contribution. In these MOs, the g; and g; functions will have positive coefficients. Since
C,2p, is negative near H; and H, and —C,2p, is negative near H3 and Hs, the function
g4 will have a negative coefficient in these MOs. As noted in the problem, g; makes a
negligible contribution to 3a, . Also, it turns out that the contribution of g, to 2a, is

small, and can be neglected in drawing the MO. Combining the symmetry orbitals with
the signs just deduced, we get the MO sketches shown on the next page.

(@ VU=1(0U/ox)+ j(oU/dy) +k(0U/0z) = 2¢,xi + 2¢,y) + 2¢,zK . The (i, j)th element
of the Hessian is (82U/8qi dq,),where ¢, =x, q, =y, g3 = z. So the Hessian matrix is

2¢¢ 0 O
0 2, 0
0 0 2c
2¢c 2c¢ 2c
(b) VU= 2¢(x+ y+2z)i+2c(x+y+z)J+2c(x+ y+z)k.The Hessian is | 2¢  2¢  2c |.
2¢c 2c¢ 2c

We use Table 15.5, the VSEPR method, and the rules on p. 484.

(@) Roy = 1.09A, Ryy = 0.96 A, R(CO)=1.43 A, ZHCH = ZHCO = 109.5°,

ZCOH = 106°, D(HCOH) = 60°, where D denotes a dihedral angle

(b) Roy = 1.08 A, R = 1.34 A, ZHCC = 122°, ZHCH = 116° (the deviations from
120° can be expected because the larger volume of the double bonds between the carbons
produces extra repulsions on the C—H bond pairs, forcing them closer together).

(€) Rey=1.09A, Reyy= 147 A, Ry = 1.01 A, ZHCN = 109.5°, ZCNH = 107°,
D(HCNH) = 60°.
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(d) Rey=1.09A, Ree = 1.52 A, Rep = 1.22 A, ZHCH = ZHCC = 109.5°,
ZCCC=116°, £ZCCO = 122°, D(CCOC) = 180°. In this unusual dihedral angle, the first
and fourth carbons are both bonded to the second carbon, and the second carbon is bonded
to O (see p. 503 of the text). The 180° value of this dihedral angle shows that the non-H
atoms lie in the same plane. D(HCCO) = 0° for one H on each C (rule 2b on p. 484).
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15.33 (a) A stationary point has VU = 0, and so has oU/0x =0 and oU/dy = 0. Hence
4x =0 and -2y =0, so the only stationary point is at x =0, y = 0 (the origin).

(b) For the function 2x* — »*, the stationary point (0, 0) is a minimum for the variable x,
since 2x” increases as x either decreases or increases from 0, and is a maximum point for
y, since — y2 decreases as y either increases or decreases from 0. Hence the origin is a

saddle point for U.

15.34 (a) The minimum is at x =1, y =2, since U is zero at this point and is positive at every
other point.

(b) The M superscripts in (15.72) denote the first estimates of the Hessian elements. Since
we are evaluating all derivatives exactly in this problem, these superscripts are omitted.

For U = 4(x—1)* +3(y —2)*, we have

U lox =8(x—1), dU /8y = 6(y —2), 0°U/ox? =8, 8*U/dy* =6, 0°U/dxdy =0*U/dyox =0
Uy =8(x =1, U,y =6(y; —2) and (15.72) gives

L 0-601=2)=6-80q ~1)

0-8(x; —1)—8-6(y, —2)
, = + :2
Yo =0 8.6-0

15.35 (a) The minimum is at the origin, x =0, y =0.
() 9,=0,9), VU= -6xi —12yj=(-6x, —12y), —VU, =-54i —-108j = (54, —108).
If the vector —V U, is placed with its tail at the origin, its head is at (—=54, —108); the
slope of the gradient-vector line is Ay/Ax = —108/(—54) = 2. The equation of the line with
slope 2 that passes through the point (9, 9) is 2=(y—-9)/(x—9) or y =2x—-9. We must
find the minimum of the function U = 3x* + 6 on the line y = 2x—9 . On this line,
U =3x% +6(2x —9)? = 27x*> —=216x + 486 . For the minimum, 6U/éx = 0 = 54x - 216
and x =4, y =2x -9 =—1. Thus the initial step (done using the steepest-descent method)
is from (9, 9) to (4, —1). For point 2, —-VU, = —6xi —12yj = -24i+12j = (24, +12) . The
Fletcher—Reeves formula gives
B, =(VU,-VU,)/(VU,-VU,) =[(24)* + (=12)*/[(54)* + (108)*] = 0.0493827 . Then
d, =-VU, + p,d, =-VU, + B,(-VU,) = -24i +12j+ (0.0493827)(-54i —108j) =
—26.66667i + 6.66667] = (—26.66667, 6.66667) . The slope of the d, vector is

6.66667/(—26.66667) = —0.250000 and the equation of the line with this slope that passes
through the point (4, —1) is —0.25000 = (y +1)/(x —4) or y =-0.25000x. We must find

the minimum of the function U =3x> +6 y2 on the line y =—0.25000x . On this line,
U =3x* +6(—0.25x)* =3.375x>. For the minimum, 6U/éx = 0 = 6.75x and
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15.36

15.37

15.38

15.39

15.40

x=0, y=-0.25x=0. For point 3, -VU; = —6xi —12y]j = 0i + 0] = (0, 0) . With a zero

gradient, we have reached the minimum.

The H-H distance Ryy is found from sin(6/2) = 3 Ry /Ry » 80
Ry = 2(0.958 A)sin[104.57/ (180)2] =1.515 A. The distance matrix is
0 0.958 A 0.958A

0.958 A 0 1.515A
0.958 A 1.515A 0

(a) True. Three non-collinear points determine a plane. If the nuclei are collinear, the
molecule is best described as linear. (b) True. (c) True. (d) True.

The four symmetry operations in (15.1) each leave @, unchanged and this vibration has

symmetry species g;. The operations é2 (z) and 6, (xz) convert the vectors of @y to their
negatives and the other two operations leave @; unchanged, so this vibration has
symmetry species b,.

O, = hv,/k = (he/k)V, = (6.6261x107* T5)(2.9979x 10" cm/s)/(1.3807 x 107> J/K) v,
O, = (14387 cm K)v,.

(@) ©, = (900 cm™")(1.4387 cm K) =1295 K

RO, /(%" 1) = (8.314 J/mol-K)(1295 K)/(e'******! _1) = 0.142 kJ/mol

(b) ®, =(300cm™")(1.4387 cmK)=431.6 K
RO, /(e®'T —1) = (8.314 J/mol-K)(431.6 K) /(e**"*'?%*1 _1) = 1.103 kJ/mol

() ©, = (2000 cm")(1.4387 cm K) = 2877 K
RO, /(e®'T —1) = (8.314 J/mol-K)(2877 K) /(e**""***! _1) =0.0015 kJ/mol

(@) D,/hartrees = 2(—74.783931) + (-37.680860) — (—187.634176) = 0.385454 .

D, = (0.385454 hartree)(27.2114 eV/hartree) = 10.489 eV.

(b) In the harmonic-oscillator approximation, each vibrational mode contributes

%hv = %hcﬁ to the ground-state vibrational energy. Adding up these contributions, we get

as the ground-state vibrational energy
1(6.626x107* 75)(2.9979x10'" cm/$)0.89(5595.1 cm™') = 4.946x107" J = 0.309 eV.
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15.41

So D, =10.489 eV —0.309 eV = 10.180 eV. The predicted atomization energy is
(10.180 eV)(1.6022x107'? J/eV)(6.0221x10% mol™") = 982.2 kJ/mol = 234.8 kcal/mol.

(€) C(g)+20(g)——>CO,(g)

2 i/ /
C(graphite) + O,(g)

These three processes are at 0 K, where there is no difference between energy changes and
enthalpy changes for ideal gases. Thus, from part (b), AHg, for step 1 is estimated as

—982.2 kJ/mol. From the thermodynamic data given in the problem,

222.6 kJ/mol, which is greatly in error. To find the change in AH° for the formation
reaction (reaction 3) on going from 0 to 298 K, we include AH° for taking each substance
from 0 to 298 K. For each of the reaction-3 gases at 298 K, statistical mechanics gives:

(a) a translational-motion contribution of %RT ; (b) a rotational contribution of RT ;

(c) a vibrational contribution that is found from the formula in Prob. 15.39;

(d) a negligible electronic contribution; (e) a contribution of RT to H,; of each gas,
arising from the definition H = U + PV . Since the number of moles of gases is the same
on each side of the formation reaction, contributions a, b, d, and e cancel, and we are left
with only the vibrational contributions for the gases and the contribution from heating the
graphite. From Prob. 15.39 and Table 13.2, ® = (1580 cmfl)(1.4387 cm K) =2273K for
O(g) and the vibrational contribution at 298 K is

RO/(e®'T —1) = (8.314 J/mol-K)(2273 K)/(¢**"**¥1 _1) = 0.009 kJ/mol. For CO,(g), the
two higher-frequency vibrations make negligible contributions; for each of the two lower-
frequency vibrations, ©, = 0.89(745.8 cm ')(1.4387 cm K) = 955 K and each contributes

RO /(e®'" 1) = (8.314 J/mol-K)(955 K)/(¢”****! —1) = 0.336 kJ/mol. Thus AH 2o =
AH £ +2(0.336 kJ/mol) —1.05 kJ/mol = 222.6 kJ/mol — 0.4 kJ/mol = 222.2 kJ/mol.

(a) To avoid a 180° angle in the Z-matrix, we use a dummy atom whose bond to the
carbon makes an angle of 90° with the molecular axis, as explained on p. 503. So

Cl

X2 1 1.0

O3 1 1.16 2 90.0

O4 1 1.16 2 90.0 3 180.0

Alternative answers with different orderings of the atoms are possible in this problem.
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(b) See p. 503 for help on finding the dihedral angles.

C1

H2 1 1.09

H3 1 1.09 2 109.47

H4 1 1.09 2 10947 3 120.0
H5 1 1.09 2 10947 3 -120.0
(c) ClI

02 1 122
H3 1 1.08 2 122.0
H4 1 1.08 2 122.0 3 180.0

(d) The simplest approach is to put a dummy atom on the other side of the C; axis as the
hydrogens. This makes the answer similar to that of part (b):

N1
X2 1 1.0
H3 1 1.01 2 111.0
H4 1 1.01 2 111.0 3 -120.0
H5 1 1.01 2 111.0 3 120.0
e Ci1
C2 1 134
H3 1 1.08 2 122.0
H4 1 1.08 2 122.0 3 180.0
H5 2 108 1 1220 3 0.0
H6 2 1.08 1 122.0 3 180.0

(F) In the Newman projections that follow, the O is behind the C.

H4 H4 H3 H4 H4 H3
@ @ PP
.C—0O .c—oO
. H; o 1 Hs Hg

Z-matrixes for first the staggered conformation and then the eclipsed conformation are
Cl

02 1 143

H3 2 096 1 106.0

H4 1 1.09 2 1095 3 180.0
H5 1 1.09 2 109.5 3 —60.0
H6 1 1.09 2 1095 3 60.0
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15.42

Cl

02 1 143

H3 2 096 1 106.0

H4 1 1.09 2 109.5 3 0.0
H5 1 1.09 2 109.5 3 120.0

H6 1 1.09 2 1095 3 -120.0

(9) No standard C-Cl bond length is listed in Table 15.5. If one looks up bond radii, one
find 0.77 and 0.99 A for C and Cl single-bond radii, respectively, which gives a 1.76 A
length for the C-Cl bond. In the following Newman projections, C2 is behind Cl1.

Clé Clé
H7 Cl13 H7 H3
H4 H5 H4 H5
HS8 CI8
Gauche Anti

Z-matrices for the gauche and anti conformers are

Cl Cl1

C2 1 1.54 C2 1 1.54

CI3 2 176 1 109.5 H3 2 1.09 1 109.5

H4 1 1.09 2 109.5 3 180.0 H4 1 1.09 2 109.5 3 180.0
H5 1 1.09 2 1095 3 -60.0 H5 1 1.09 2 1095 3 -60.0
Cl6 1 1.76 2 109.5 3 60.0 Cl6 1 1.76 2 109.5 3 60.0

H7 2 1.09 1 109.5 5 180.0 H7 2 1.09 1 109.5 5 180.0
H8 2 1.09 1 1095 6 180.0 CI8 2 176 1 109.5 6 180.0

The two C's are bonded to each other. One F and two H's are bonded to C1, and an O and
a Cl are bonded to C2. The O is bonded only to C2. Thus the formula is CH,FC(=0O)CL.
The dihedral angle D(OCCEF) is 180° and D(CICCF) is 0°. So the molecule is

H6
o7

Cl4
F3 HS5

15-25
Copyright © 2014 Pearson Education, Inc.



15.43 If we rotate the figure at the left by 180° about a vertical axis that goes through the
midpoint of the ST bond and is perpendicular to the ST bond, we get the figure at the
right, which shows that D(U, T, S, R) is also 60°.

R R

15.44 For the first atom, nothing is specified; for the second atom, one internal coordinate (IC) is
specified (a bond length); for the third atom, two ICs (a bond length and a bond angle) are
specified. for the fourth, fifth,..., Nth atoms, three ICs (a bond length, a bond angle, and a
dihedral angle) are specified. So the total number of specified ICs is
0+ 142+ (N-3)3 =3N-6 (since there are N — 3 atoms for which three ICs are
specified). However, for a diatomic molecule, nothing is specified for the first atom and
one IC is specified for the second atom, so one IC is specified. For a linear polyatomic
molecule, the situation is complicated by the need to use a dummy atom to avoid 180°
bond angles in the Z-matrix, and discussion is omitted.

15.45 (a) A Z-matrix is given in the Prob. 15.41c¢ solution. The calculated HF/3-21G
equilibrium geometry, dipole moment, and harmonic vibrational wavenumbers are
R(CO)=1.207 A, R(CH) = 1.083 A, ZOCH = 122.5°; 2.66 D;

1337, 1378.5, 1693, 1916, 3162, 3233 cm .

(b) The calculated HF/6-31G* equilibrium geometry, dipole moment, and equilibrium
(harmonic) vibrational wavenumbers are R(CO) = 1.184 A, R(CH) = 1.092 A,

ZOCH = 122.2°;2.67 D; 1336, 1383, 1680, 2028, 3160, 3232 cm . Multiplication of the
calculated harmonic values by the 0.895 scale factor gives as predicted fundamental
wavenumbers: 1196, 1238, 1504, 1815, 2828, 2893. Experimental values are 1.205 A,
1.111 A, 121.9°;2.33 D; 1167, 1249, 1500, 1746, 2783, 2843 cm ', where the
wavenumbers are fundamental wavenumbers. Some sources of experimental data are the
Handbook of Chemistry and Physics (CRC Press) and the NIST Computational Chemistry
Comparison and Benchmark Database (cccbdb.nist.gov) for geometries, dipole moments
and vibrational frequencies; the NIST Chemistry Webbook (webbook.nist.gov/chemistry)
for vibrational frequencies; Landolt-Bornstein, New Series, Group II, vols. 7, 15, and 21,
Structure Data of Free Polyatomic Molecules for geometries.

(c) The light H atoms have much larger displacements than the C and O atoms. The
following diagrams (not drawn accurately to scale) show the modes. Plus and minus signs

denote motions in the +x and —x directions, respectively.
15-26
Copyright © 2014 Pearson Education, Inc.



0) @)
y C y
H, H,
Hz Hl
1336 cm™! 1383 cm™! 1680 cm™!
z z z
0O 0 0
C Y C Y Yy
H
H; H; H, H; ? H,
2028 cm! 3160 cm™! 3232 cm’!

One can also use the output of the Gaussian program to visualize the normal modes. After
each calculated vibrational wavenumber, Gaussian gives the x, y, z vibrational
displacements of the atoms for that normal mode. To see where the x, y, and z axes have
been placed by Gaussian, consult the standard-orientation coordinates of the atoms given
by Gaussian preceding the frequency calculation.

(d) The predicted strongest mode is 2028 cm™'. The weakest is 1336 cm ™.

(e) Let the molecular plane be the yz plane, as in Fig. 15.1 and in the preceding normal-
mode figures. For the 1336 cm™' mode, éz (z) and &, (yz) reverse each vibration vector
and this is modes has symmetry species b, [see (15.3)]. For the 1383 and 3232 cm!
modes, 6'2 (z) and &, (xz) reverse each vector and these modes have symmetry species

b,. For the 1680, 2028, and 3160 cm™' modes, all four symmetry operations leave the

vibration vectors unchanged and these are a; modes.

15.46 (a) 1842 cm™' for CC stretching. 776 cm™' for CCl stretching. Out of plane

wavenumbers are 698, 1077, and 1093 em ™!

(b) Calculated harmonic wavenumbers scaled by 0.895 are 386, 625, 694, 964, 978, 1024,
1281, 1381, 1649, 3000, 3067, 3083 cm ™!, Experimental fundamental frequencies are
395, 620, 720, 896, 941, 1030, 1279, 1368, 1608, 3030, 3086, 3121 cm™".
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15.47

15.48

15.49

(c) The sum of the calculated wavenumbers in (b) is 18132 ¢cm™', which gives an
estimated zero-point energy of %(6.6261 x107* J5)(2.9979x10" cm/s)(18132 cm™) =

1.801x107" J = 0.0413 hartree.

The 1a; MO has orbital energy & =-20.55787 E, (E, =1 hartree), and is essentially the
1s inner-shell orbital on O. The 2a; MO has ¢ =-1.34613 E, and is a bonding MO that
extends over all three atoms and is positive throughout The 15, MO has

& =-0.71427 E, and is a bonding MO with two lobes of opposite sign that are separated

by a nodal plane perpendicular to the molecular plane. One lobe extends over H; and the
OH; bond line. The other lobe extends over H, and the OH, bond line. The 3a; MO has

& =-0.57080 E, and has two lobes of opposite sign. One lobe is centered on the side of

the oxygen that is away from the hydrogens, and the other lobe extends over the two
hydrogens. As discussed in the text, this is a largely lone-pair MO. The 15, MO has

& =—-0.49821 E, , has two lobes of opposite sign (one above and one below the molecular

plane), and is the lone pair 2p, AO on oxygen.

When using WebMO it is best to use the Symmetry menu to symmetrize the molecule
before running the geometry optimization, so as to ensure that the MOs have the proper
symmetry. The la, MO has orbital energy ¢ =—11.22433 E, and is an inner-shell & MO

consisting of two positive lobes, the 1s AOs on each carbon. The 15, MO has

& =—1122252 E,, and is an inner-shell o MO consisting of one positive and one negative
lobe, the carbon 1s AOs with opposite sign. The 2a, MO has ¢ =-1.03317 E} andis a
bonding o MO with one lobe extending over all six atoms. The 25, MO has

& =-0.7895 E, and is a bonding o MO with two lobes of opposite sign; each lobe

extends over two hydrogens bonded to the same C and over the two CH bonds to that C.
The 1b,, MO has ¢ = —0.64069 E, and is a bonding o MO with two lobes of opposite

sign; each lobe extends over two cis hydrogens and their bonds to the carbons. The 3a,
MO has ¢ =-0.58647 E, and is a bonding o MO with two positive lobes and one

negative lobe. Each positive lobe encompasses two hydrogens bonded to the same carbon
and the two CH bonds. The negative lobe extends over the CC bonds. The 155, MO has

& =-0.50194 E; and is a bonding o MO with two positive and two negative lobes; each
lobe extends over on CH bond and one H atom. The 15;, MO has & = -0.37440 E;, and is

a bonding 7 MO with one positive and one negative lobe; the lobes lie either above or
below the molecular plane. See also the figures in the Prob. 15.30 solution.

(a) Most negative near the O atom. Most positive near the hydrogens bonded to N.
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(b) Most negative on the part of the isodensity surface near the center of the double bond.
Most positive near the hydrogens.

(c) Most negative on hexagonal regions (each with a hole) of the isosurface that lie above
and below the interior of the ring. Most positive near the hydrogens.

(d) The most negative regions of the isodensity surface are near the carbon-carbon bonds.

The most positive regions are near the hydrogens and also above and below the ring near
the center of the ring.

15.50 Mulliken charges: 0.434 on H, —0.869 on O.
MK charges: 0.409 on H, —0.817 on O.
CHELP charges: 0.412 on H, —0.824 on O.

CHELPG charges: 0.408 on H, —0.816 on O.

15.51 The ESP map suggests the T structure is lower energy, since it puts the negative charge
near the center of one ring close to a positive hydrogen of the other ring, whereas the
sandwich structure has the negative charges of the two monomers close to one another.
(Two other benzene dimer structures are the parallel-displaced structure and theT-shaped
tilted structure; see Figure 1 in the reference given in the text.)

15.52 The following HF/3-21G energies as a function of bond angle are found:
100° 102° 104° 106° 108° 110° 112°

—75.583863  —75.584756  —75.585385  —75.585755 —-75.585877 —75.585758  —75.585408

A quadratic polynomial gives a good fit, as shown by the Excel graph on the next page.
The minimum of y = ax® + bx + ¢ is found from dy/dx =0=2ax+b,so x =—b/2a and

the minimum is at %(6.72142 x107)/(3.11042x107°) =108.05° . Since the minimum is
near 108°, it makes more sense to omit the points at 100° and 102° (where deviations from

the harmonic-oscillator potential will be larger), and fit only the five points from 104° to
112°. This gives an R” value of 0.999932 and gives

~b/2a =1(6.48631x107°)/(3.00179x107) = 108.04°.
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15.53 In the following Newman projections, C2 is behind C1.

H6
H7
H4
HS8
staggered

-75.5835

-75.5840 A

-75.5845 -

-75.5850 A

-75.5855 -

-75.5860 -

1

H3

102

H5

106

108

H7~
H4

H6 H3

110

y = 3.11042E-05x? - 6.72142E-03x - 7.52228E+01
R? = 9.99889E-01

H8

H5

eclipsed

Z-matrices for the staggered and eclipsed conformations are

Cl
C2
H3
H4
HS5
Hé6
H7
H8

N = = = N

2

R1
R2
R2
R2
R2
R2
R2

—_— =N NN =

Variables:
R1 1.54
R2 1.09
Al 109.5

Constants:
D1 180.0
-60.0
D3 60.0

D2

Al
Al
Al
Al
Al
Al

AN L W W W

Dl
D2
D3
D1
Dl
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Cl1
C2
H3
H4
HS5
Hé6
H7
H8

Variables:

N = = = N

2

R1

R2 1 Al

R2
R2
R2
R2
R2

R1 1.54
R2 1.09
Al 109.5

Constants:

D1 120.0

D2 -120.0
D3 0.

—_ =N NN

Al
Al
Al
Al
Al

112

whm A W W W

Dl
D2
D3
D3
D3



With the dihedral angles fixed, the optimized HF/6-31G** energies of the staggered and
eclipsed forms are found to be —79.2382341 and —79.2334228 hartrees, respectively. The
energy difference is 0.0048113 hartrees, which is equivalent to 3.02 kcal/mol.

15.54 (a) The SMILE string is CO or OC. The three-dimensional model shows a staggered
conformation. You can either use Jmol to view the coordinates or click on PDB or MOL
to download a file with the Cartesian coordinates and then use Microsoft Word to open the
saved file. For the SMILES string CO, CORINA gives the following coordinates (the
string OC gives the atoms in a different order):

C1  0.737 -0.015 0.000

02 -0.690 0.068 -0.000
H3  1.070 -0.549 0.890
H4 1.070 -0.549 -0.890
H5 1.159 0.990 0.000

H6 -1.133 -0.792 -0.000
(b) The SMILES string is O=CO or OC=0. CORINA gives the conformation with the
D(HCOH) dihedral angle equal to zero (conformer II in Prob. 15.57), which is not the
lowest-energy conformer, and gives these coordinates for the string O=CO:

O1 -1.124 -0.213 0.000

C2 -0.095 0.420 -0.001
O3 1.085 -0.218 0.000
H4 -0.126 1.500 0.003
H5 1.881 0.331 -0.000

15.55 (a) Begin by clicking ChemicalSearch; then choose Text Search or Structure Search and
enter the name or SMILES string; then click the Chemical ID number (3969407 in this
case); choose XYZ-XMol XYZ format in the drop-down list, click on Chemical, and save
the file to your computer. Use Microsoft Word to open the file on your computer. The
result is

-0.01730 1.42480 0.00990
0.00210 -0.00410 0.00200
1.00530 1.80210 0.00210

-0.54450 1.78590 -0.87320

-0.52750 1.77630 0.90670
0.46100 -0.27290 -0.80560

T ET T T OO0
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(b) ChemDB gives the conformation with the two H atoms eclipsing each other (II in
Prob. 15.57), which is not the lowest-energy conformer. The coordinates are given as
C -0.01430 1.20410 0.00870
O 0.00210 -0.00410 0.00200
O 1.13890 1.89100 0.00130
H -0.95680 1.73130 0.01600
H 1.12580 2.85790 0.00670

15.56 (a) Starting with the planar Z-matrix
N1
H2 1 1.0
H3 1 1.0 2 120.0
H4 1 1.0 2 120.0 3 180.0

Gaussian 09 gives the HF/6-31G* optimized geometry as the planar structure with Ryy =
0.988 A, ZHNH = 120.0°, and energy —56.173985 hartrees. A vibrational-frequency
calculation gives one imaginary frequency, indicating that this structure is a saddle point,
rather than a local minimum.

(b) Starting with the nonplanar Z-matrix

N1

X2 1 1.0

H3 1 1.0 2 100.0

H4 1 1.0 2 100.0 3 -120.0
H5 1 1.0 2 100.0 3 120.0

Gaussian converges to a pyramidal structure with the HF/6-31G* values Ryy = 1.002 A,
ZHNH = 107.2°, and energy —56.184356 hartrees. A vibrational-frequency calculation
gives all real frequencies, indicating that the structure is a local minimum.

(c) The HF/6-31G* equilibrium inversion barrier is (—56.173985 + 56.184356) hartrees =
0.010371 hartrees, which is 6.51 kcal/mol. (Experimental values for this barrier lie in the
range 5.1 to 5.4 kcal/mol. )

15.57 (a) The two conformers are
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H
H 0) H O
4 I 0° 3
I 180°
H

where the D(OCOH) dihedral angles are given. A Z-matrix for Conformer I is
Cl
02 1 1.22
O3 1 1.36 2 120.0
H4 1 1.08 2 120.0 3 180.0
H5 3 096 1 109.5 2 0.0

To get the Z-matrix for conformer I, we change the last entry in the last line from 0.0 to
180.0. The HF/6-31G* geometry-optimized results are planar structures with the
following properties:

M ZHC=0 Z0CO ZCOH RCH Rc:o RCO ROH
1 | 1.60D 124.7° 124.9° 118.7° 1.083A | 1.182A | 1.323A | 0953 A
11| 437D 123.1° 123.0° 111.5° 1.090A | 1.176 A | 1.328 A | 0.948 A

The energies are —188.762310 hartrees for [ and —188.752546 for II. The HF/6-31G*
energy difference is £y — E; = 0.009764 hartrees, corresponding to Ej — Ej =
6.13 kcal/mol.

(b) The unscaled frequencies are all real (indicating that these structures are local
minima). For conformer I, the unscaled HF/6-31G* wavenumbers are 692, 715, 1192,
1275, 1440, 1552, 2035, 3320, and 4042 em Using the scaling factor of 0.895, we find
Lhe Y,V geaed = (7278 em ™ Yhe = (7278 em™')(6.6261x 107> T5)(2.9979x10' cm/s) =

1.4457 x 10" J. Multiplication by the Avogadro constant gives a zero-point energy of
87.06 kJ/mol = 20.81 kcal/mol for I. For conformer II, the unscaled HF/6-31G*
wavenumbers are 517, 724, 1179, 1238, 1426, 1583, 2080, 3228, and 4107 cm ' and the
scaled frequencies give a zero-point energy of 20.58 kcal/mol. The zero-point energy
difference is Enzpe — E1zpe = —0.23 kcal/mol. With inclusion of the zero-point vibrational
energy, the HF/6-31G* calculation predicts Ey — E1 = 5.90 kcal/mol at 0 K.

15.58 (a) The anti conformer is
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CH, S
1 10 C - l}‘i
H< H H/ \ ) 3 /
: c—C
8 9 H 1
i H ’ \C H
§H3 I;I e 4 12
13
H

The H's on C4 are staggered with respect to the atoms bonded to C3; the H's on C1 are
staggered with respect to the atoms bonded to C2. Although the Gaussian input procedure
described in Prob. 15.53 could be use to freeze the CCCC dihedral angle D(4321) while
optimizing the remaining geometry, a slightly simpler procedure is to use the keyword
Opt=AddRedundant with the following Z-matrix:

Cl1

C2 1 154

C3 2 154 1 1095

C4 3 154 2 1095 1 180.0
H5 1 1.09 2 109.5 3 180.0
H6 1 1.09 2 109.5 5 -120.0
H7 1 1.09 2 1095 5 120.0
H8 2 1.09 1 109.5 3 -120.0
H9 2 1.09 1 109.5 3 120.0
HI0 3 1.09 4 109.5 2 120.0
HI1 3 1.09 4 1095 2 -120.0
HI12 4 1.09 3 109.5 2 180.0
HI3 4 1.09 3 109.5 12 -120.0
H14 4 1.09 3 109.5 12 120.0
4 321 F

The last line (which is preceded by a blank line) freezes D(4321) at the value entered at
the end of line 4. By varying this line 4 entry from 180.0 to 0.0, we generate the potential-
energy curve of internal rotation. The following HF/6-31G* values are found:

D(4321)

180°

150°

120°

90°

Egr/hartrees

—157.298409

—157.295624

—157.292592

—157.295152

D(4321)

60°

30°

OO

Egyr/hartrees

—157.296793

—157.292618

—157.288547
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15.59

With the addition of points at —30° and 210°, Excel gives the following smoothed graph:

7

(E — E 130)/(kcal/mol)

150
D (4321)

30 60 90 120 180 210

The gauche conformer occurs at slightly more than 60° with a relative energy of a bit less
than 1.0 kcal/mol, the anti is at 180°, and the maximum between them occurs at 120° with
relative energy 3.6 kcal/mol. The gauche — anti barrier is estimated at 2.6 kcal/mol and
the anti — gauche barrier is 3.6 kcal/mol.

(b) Setting the last entry in row four of the Z-matrix in part (a) equal to 60.0, eliminating
the last line, and using the keyword Opt, one finds the optimized gauche energy and
CCCC dihedral angle to be —157.296895 hartrees and 65.4°. The HF/6-31G*

gauche — anti energy difference is 0.001514 hartrees, or 0.95 kcal/mol.

We expect the following two conformations, with the bonds and lone pairs staggered on
the N's, where N1 is behind N2:

[ X ] [ X J
6 5 5
H H H
2
N
4 3 4 7
H H H
(X ) 6

HF/6-31G* calculations give the following equilibrium properties:

/D | Rav/A | Rams/A | Rama/A | ZNNH3 | /ZNNH4 | Z314 | D(5213) | D(6214)
1 [0 1.451 | 1.004 |1.004 |104.8° [104.8° |103.7°|71.1° 71.1°
112241414 0999 |1.003 |107.8° |112.2° |108.1°]150.6° |28.5°

HF/6-31G* energies are —111.1649155 hartrees for [ and —111.1693737 hartrees for II.
With zero-point energy (ZPE) omitted, E; — Ey; = 0.004458 hartrees = 2.80 kcal/mol.
Unscaled wavenumbers for I are 125, 1111, 1165, 1209, 1370, 1641, 1819, 1879, 3692,
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15.60

15.61

15.62

3709, 3769, and 3794 cm ' and for II are 473, 979, 1113, 1225, 1435, 1468, 1854, 1871,

3707, 3718, 3820, and 3826 cm . With a scaling factor of 0.89, we find (using the
procedure in the Prob. 15.57b solution) £} pg =32.16 kcal/mol and Ey; /pr =32.43

kcal/mol, so with zero-point energy included, £1 — Ey; = 2.53 kcal/mol. Since all the
vibrational frequencies are real, I and II are local minima.

The doubly bonded carbons and the four atoms bonded to them will lie in the same plane.
What is unclear is the conformation around the CC single bond. In the following drawing,
H7 might eclipse C1 with H8 and H9 staggered with respect to H6 (as drawn) or H8 might
eclipse H6 with H7 and H9 staggered with respect to C1:

7

\
N/ N
5 / \ 6

H H

HF/6-31G* optimization and frequency calculations starting from a structure with
dihedral angle D(7321) = 0° and from a structure with D(7321) = 60°, show that the 0°

structure is a minimum but the 60° structure is not. Calculated properties of the 0°
conformer are: x =0.31 D, Rc—c = 1.318 A, Re.c=1.503 A, Reus = 1.075 A, Reps =

1.077 A, Reue = 1.079 A, Reny = 1.084 A, Rens = 1.087 A, £512=121.6°, £Z412 =
121.8°, £123 =125.2°, Z126 =118.9°, /237 =111.4°, £238 =110.9°, D(7321) = 0.0°;
unscaled vibrational wavenumbers range from 212 to 3405 cm ™.

There are two basis functions, namely, 1s, and ls, , which we shall abbreviate as a and b.
With two choices for each of the four functions in (s | fu) , there are 16 electron-repulsion
integrals. Because of the symmetry of the molecule, we have (aa | aa) = (bb | bb) . Use of
(14.47) gives (aa |bb) = (bb | aa), (ab|ab)=(ba|ab) = (ab|ba) = (ba|ba),

|(aa | ab) = (aa | ba) = (ab| aa) = (ba | aa)|, |(ab|bb) = (bb|ab) = (ba|bb) = (bb]| ba)| .

b

Because of the molecular symmetry, interchange of a and b does not change the value of
an integral. Hence (aa | ab) = (bb | ba) and all of the integrals in the boxed equations are

equal to one another. Thus only the 4 integrals (aa | aa), (aa|bb), (ab|ab), (aa|ab)

need to be calculated.

For H,s=0and {=1. For He, s =0.30 and {'= (2 — 0.30)/1 = 1.70.
For C, s,; =5,, =3(0.35)+2(0.85) =2.75 and &, =¢&,, =(6-2.75)/2=1.625;
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s;, =030 and &}, =(6-0.30)/1=5.70.

ForN, s,, =s,, =4(0.35)+2(0.85)=3.1 and &5, =¢,, =(7-3.1)/2=1.95;

5, =0.30 and &}, =(7-0.30)/1=6.70.

For O, s,, =s,, =5(0.35) +2(0.85) =3.45 and &, =¢,, =(8-3.45)/2=2.275;

5, =0.30 and &}, =(8-0.30)/1=7.70.

For S with electron configuration 1s* | 2s*2p° | 3s*3p?,

s =53, =5(0.35) +8(0.85) +2(1.0) =10.55 and &3, = &5, =(16-10.55)/3 = 2.1833;
Sys =85, =7(0.35)+2(0.85) =4.15 and ¢, =¢&,, =(16-4.15)/2=6.075;

51, =0.30 and &, =(16-0.30)/1 =15.70.

For Ar, with electron configuration 1s* | 2522 p® | 353 p®,

s =83, =7(0.35)+8(0.85)+2(1.0) =11.25 and &3, =5, =(18-11.55)/3=2.15;
Sys =85, =7(0.35)+2(0.85) =4.15 and ¢, =&, , =(18-4.15)/2=6.925; 5, =0.30
and &}, =(18-0.30)/1=17.70.

The Clementi—Raimondi (CR) values compared with the Slater-rule values are

53

53

¢ values s 2s 2p 3s 3p
He, Slater | 1.70
He, CR 1.6875
C, Slater | 5.70 1.625 | 1.625
C,CR 5.6727 | 1.6083 | 1.5679
N, Slater | 6.70 1.95 1.95
N, CR 6.6651 | 1.9237|1.9170
O, Slater | 7.70 2275 |2.275
0, CR 7.6579 | 2.2458 | 2.2266
S, Slater | 15.70 6.075 |6.075 |2.1833 | 2.1833
S, CR 15.5409 | 5.3144 | 5.9885 | 2.1223 | 1.8273
Ar, Slater | 17.70 6.925 [6.925 |2.15 2.15
Ar, CR 17.5075 [ 6.1152 | 7.0041 | 2.5856 | 2.2547
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16.1

16.2

16.3

Chapter 16

Electron-Correlation Methods

The number of electrons is n =6 + 3 + 14 + 9 = 32. For 6-31G**, each H atom has

1 + 1 + 3 = 5 basis functions; the C atom and the F atom each have 1 +2 +2(3) + 6 =15
basis functions (see the Prob. 15.5¢ and d solution for details); the Si atom has one basis
function for the 1s AO, one for the 2s AO, one for each of the three 2p AOs, two for the
3s AO, two for each of the three 2p AOs, and 6 d-type basis functions, for a total of 19
basis functions. The molecule thus has 5(3) + 15 + 15 + 19 = 64 basis functions. The
number of CSFs is given by (16.1) as 64165!/16!17148!491=1.862x10*®

Multiplication of the relation by y gives % Bny* +(1 - B)y —1=0 and the quadratic
formula gives the positive rootas y = {f —1+[(1 - ﬂ)z + Zﬂn]l/z}/ﬂn . We find the

following values:

n| 20 20 50 50 | 100 | 100 | 200 | 200
A10.015]0.03]0.015]0.03]0.015]0.03]0.015]0.03
71089 1082|078 [0.680.67 |0.55[0.55 |0.44

which indicates, for example, that for a 50-electron molecule, CISD gives 68 to 78% of
the basis-set correlation energy.

Substitution in Eq. (16.2) gives
—76.254549 +76.243772 = (1 - ag)(—76.243772 +76.040542)

and we get g, =0.9731.

16.4 The H, ground state is a 12; state, and only configurations that give rise to a 12; term

can contribute to the ground-state CI wave function. We can use Table 11.3.

(a) Does contribute. (b) By the rule on p. 378, this configuration gives u terms and
cannot contribute. (C) Contributes. (d) This configuration gives u terms and does not
contribute. (e) This gives only IT terms and does not contribute. (f) Contributes.
(g) Contributes.

16.5 Equation (8.54) gives
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16.6

(—2.862 — E)c; +0.2895c, = 0.014¢, +0.2895¢c, = 0
0.2895c; +(3.224 — E)c, = 0.2895¢, + 6.102¢, = 0
The second equation (which has more significant figures) gives ¢, =-0.0474,¢,, so
w = ¢, (D, —0.0474,®,) . Then
1=(y |y) = (c,(D, —0.0474,D,) | ¢,(D, —0.0474,D,)) =
e[ (@, | @) —2(0.0474, (D, | @,) +0.00225 (D, | D,)] =1.00225, |¢;|* and
|e)| =0.9989, ¢, =—0.0474,¢, =—0.0474 . So v =0.9989D, —0.0474D, .

() From p. 533, (@, |H|D,) ={¢g,(1)| H(D)| ¢, (D) +{,(2) | H<(2) | $,(2)) +
(D, 2) |15 |, (D, (2)) = 2(d, () | (1) | 4, (1)) + (5 (DB (2) | 175" | (D (2))

since changing the label on the dummy integration variables from 1 to 2 does not change
the value of a definite integral. From (16.5) with i = j =2 and b =2, we have

(B ()| HE(1) | (1)) = cHHE™ +2¢1500, HE™ + 2, HST™® |, since the coefficients are
real. From (16.6) with i = j =k =/=2 and b =2, we have
(B (142 113 | 4, (1D5(2)) =
ey (LT T1) + ¢yeyy (1T 12) + ey (11 21) + €565, (1] 22) + ey (12| 1) +
C1aCaCinCn (12112) + 012052012 (12121 + Clzcgz (12122)+
ey (RT11) + €5ty (21112) + €00€15620¢15 (21| 21) + 6561565, (21] 22) + ey (22 1) +
€190y (22 12) + ¢3y¢15 (22| 21) + ¢5,(22 | 22) . From (14.47), we have
(11]12)=(12[1D) =(11|21)=(21|11), (12]12) =(12]21) =(21|12) =(21]|21),
(11]22)=(22[11), (12]22)=(22]12)=(21|22)=(22]|21). So
(B2 112 | (D (2) =y (1111 +4chen (11]12) +

4ctye3, (12112) + 2¢he3, (11| 22) + depyc5, (12 22) + €5, (22] 22)

Substitution of the boxed equations gives the desired result for (@, | H | D,).

(b) (@ | H | @) =gy (D (D) | H" () + H*™(2) + 113 | 4D (2) =

(B [H=(1) [ 4 DX (2) | 4(2)) +(by (2) | H(2) | (DN (D) | (D) +

(B (A |15 | ADAQ) . Since (¢ (2) |4 (2)) =0 = (g,(1) | (1)) , we have

(@, | H | D))= (gD (2)| 7' | (DA (2) . Equation (16.6) with i = j=2, k=1=1,
and b =2 gives (just change the second subscript from 2 to 1 on the second and fourth
coefficients in each term of the result in part (a) for (¢4,(1)¢,(2) | rl_zl | &, (D), (2)))

(D, 2) |15 | (DG (2) = (D, | H | D)) =
cireti (L1 11) + ey ey (11]12) + ¢ppey capey (1] 21) + €y eppeyy (11]22) +
C12C21C12C1 1 (U2 11) + €15C01€19C2 (12 [ 12) + €15C5 (€25 (12 ] 21) + ¢15051Cpp05 (12 22) +
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16.7

16.8

16.9

01112011 (21 TD) +€00611€1961 (21]12) + €351 1€02611 (1] 21) + €9€11655¢5,(21] 22) +
CC21€12611 (22 | 11) + €29€21¢12€91 (22 [12) + Cyp¢y1000611 (22| 21) + 5565, (22| 22) .

Use of the integral identities in part (a) gives (¢, (1)¢,(2) | rlgl | (D@ (2)) =

chheti (LU 11) +2(cthey a1 + et AT 12) +(cihea) + 2611612001620 + €12, )(12]12)

211122102 (11]22) + 2(€15¢5563) + 3p001611)(12 ] 22) + ¢35¢51(22] 22).

From Table 13.1, the homonuclear diatomic MOs that arise from the 2s and 2p AOs are

2ag, 20,,1x,,, 17ruy, 30'g, 17Z'gx, 1z 29 30, . The inactive electrons are the 4 electrons in

the 1o, and 1o, MOs.

(@) C; has 12 electrons and there are 12 — 4 = 8 active electrons. The 8 valence electrons
in C; occupy the 20,, 20, 17,,, 17,, MOs, leaving the 3o, 17,,, 17,,, 30, MOs

ux?> gx°
available to move active electrons into. We can move as many as 8 electrons into these 4
vacant MOs, so the maximum number of electrons excited into vacant MOs is 8.

(b) N; has 14 electrons and there are 14 — 4 = 10 active electrons. The 10 valence

electrons in N, occupy the 20, 20, I7,,, 17,,, 30, MOs, leaving the 17, 17,,, 30,

MOs available to move active electrons into. We can move as many as 6 electrons into
these 3 vacant MOs, so the maximum number of electrons excited into vacant MOs is 6.

(c) Oy has 16 electrons and there are 16 — 4 = 12 active electrons. The 12 valence
electrons in O, occupy the 20'g, 20,17, 17 oy 36 MOs and half fill each of the 17r

ux?>
and 17,, MOs, leaving the 30, MO and one vacancy in each of the 17, and 17,, MOs

available to move active electrons into. We can move as many as 4 electrons into these
MOs, so the maximum number of electrons excited into vacant or partly vacant MOs is 4.

(d) F,has 18 electrons and there are 18 — 4 = 14 active electrons. The 14 valence

electrons in F> occupy the 20, 20,, 17,,, 17,,, 30,, 174, 17,, MOs, leaving the 30,
MO available to move active electrons into. We can move as many as 2 electrons into this

MO, so the maximum number of electrons excited is 2.

617! 6(5)4(7)6(5)

a) N= = =5(7)5=175
@®) 3141314 6(24) ™
115!
() i = 48! _ 14020 DI0OSAAAI2ADI0O) _ 760615
71817181 5040(40320)

From (15.10), ﬂz—%Zin—ZiZ (Zy 1)+ 2 2 i Ty ' From (16.9) and (16.8),
=%, f() = 3%,V =%, X, (Z, /1) + . 2,1, () = k; ()] So
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H-H'=%%.
relabeled.

-2 2, [, U k (1)], which is (16.11) with dummy variables

J>i l/

16.10 (a) In the ground state, each of the n electrons is in a different spin-orbital (the Pauli
exclusion principle). The occupied spin-orbitals are numbered 1 to n (which are the

smallest and largest values that occur in the sums over i and ). In CDU , two electrons are

excited from the occupied spin-orbitals i and j to the unoccupied spin-orbitals @ and b. The
spin-orbitals i and j must be different, and having j > i in the sum ensures that this
requirement is met. Also, having j > i ensures that we do not count the same double
excitation twice. Thus, we include ®% but do not include @47, which is the same as

@ If b = a, then two electrons have been excited to the same spin-orbital, which makes

the Slater determinant zero and violates the Pauli exclusion principle. The numbering of
the vacant spin-orbitals starts at n + 1 and goes to infinity, and these are the smallest and
largest values that occur in the sums over a and b. Having b > a, ensures that we do not
put the two excited electrons into the same spin-orbital and ensures that we do not count
the same excitation twice.

(b) From (16.11), we have

WV H | @) =( O3 |2y X, 1y = X Tl (m) =k (m)] | D) =

(DL L) Ly i | ®) = X (LS ] (m) — k()] | @) . The operators j,(m) and
léj(m) are one-electron operators, and since @, and CDZ.I’ differ by two spin-orbitals, the
Condon-Slater rules in Table 11.3 give (d)“b Py 1]] (m)| ®y) =0 and

(CDZ-I’ P k (m)|®y) =0. The Condon-Slater rules for the two-electron operator il
give

(OF [ 2 i | @) = Caty (D1t (2) | 75" [0, (D (2)) = Caty (D (2) | 175 |4, (D (2))
Therefore (y® | H'| ) = (ut, (2)u, ()| 73" 1, )ty (D) = Gaty (e, (D) 753" 116, (1)
where the dummy variables 1 and 2 were interchanged. Substitution in (16.12), use of the
summation ranges discussed in part (a), and use of the E(()O) — ES(O) expression in the

paragraph preceding Eq. (16.13) gives Eq. (16.13).
16.11 True. As noted on p. 542, MP calculations are not variational.

16.12 (a) A Z-matrix is given in Prob. 15.41a. The MP2(FC)/6-31G* geometry is found to be a
bond length of 1.180 A and a bond angle of 180°. The HF/6-31G* results are 1.143 A and
180°. The experimental values are 1.162 A and 180°. The calculated and experimental
dipole moments are zero. The calculated equilibrium unscaled and scaled vibrational
wavenumbers and the experimental fundamental vibrational wavenumbers in cm ' are

(see the Prob. 15.45a solution for sources of data)
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HF/6-31G* 746 | 746 | 1518 | 2585
MP2(FC)/6-31G* 636 | 636 | 1333 | 2448
scaled HF/6-31G* 664 | 664 | 1351 | 2301
scaled MP2(FC)/6-31G* | 604 | 604 | 1266 | 2326
experimental 667 | 667 | 1333 | 2349

The MP2(FC)/6-31G* energy is —188.1077474 hartrees. (In Gaussian, this energy is
found after EUMP2 = in the last cycle of calculation preceding the listing of the optimized
geometry and after MP2 = in the calculation summary at the end of the output.) The
MP2(FC)/6-31G* energies of C and O are found to be —37.7329745 and —74.8800367
hartrees, respectively. The calculated MP2(FC)/6-31G* D, is

(=37.7329745) + 2(-74.8800367) — (—188.1077474) = 0.614700 hartrees = 16.727 eV. To
calculate D, we estimate the zero-point vibrational energy as

I3 v, =1heX, v, = 1(6.626x107 J5)(2.998 x 10" cm/s)(604+604+1266+2326)cm ™" =

4.768 x 102 T = 0.2976 eV. So the MP2(FC)/6-31G* dissociation energy is
D, =16.727 eV —0.298 eV =16.43 eV, not far from the 16.56 eV experimental value.

(b) The MP2(FC)/6-31G* bond length and bond angle are found to be 0.969 A and
103.9°. The HF/6-31G* results are 0.947 A and 105.5°. The experimental values are 0.958
A and 104.5°. Dipole moments are 2.24 D for MP2(FC)/6-31G*, 2.20 D for HF/6-31G*,
and 1.85 D experimental. The calculated equilibrium unscaled and scaled vibrational
wavenumbers and the experimental fundamental vibrational wavenumbers in cm ' are

HF/6-31G* 1827 | 4070 | 4188
MP2(FC)/6-31G* 1736 | 3775 | 3917
scaled HF/6-31G* 1626 | 3622 | 3727
scaled MP2(FC)/6-31G* | 1649 | 3586 | 3721
experimental 1595 | 3657 | 3756

The MP2(FC)/6-31G* energy is —76.1968475 hartrees. The MP2(FC)/6-31G* energies of
H and O are found to be —0.498233 and —74.8800367 hartrees, respectively. The
calculated MP2(FC)/6-31G* D, is (—74.8800367) + 2(—0.498233) — (-76.1968475) =

0.320345 hartrees = 8.717 eV. To get D, , we estimate the zero-point vibrational energy
as

I3 v, =Lhe X, v, =1(6.626x107 7 )(2.998 x10'? cnv/s)(1649+3586+3721)em ™' =
8.895 x 10 J =0.5552 ¢V. So D, =8.717 eV —0.555 eV = 8.16 ¢V, compared with the
9.51 eV experimental value (p. 499 of the text).
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16.13 In the Thermochemistry section of the Gaussian output (which occurs after the vibrational
frequency listing), the quantity listed as E (thermal) is the sum of the molar zero-point
vibrational energy and the molar translational, rotational, and vibrational energy
differences between 298 K and 0 K. Therefore, subtraction of the molar zero-point
vibrational energy (which is listed in the Gaussian thermochemistry section) from

E (thermal) gives Usoq — U, . (Click on Raw Output to see the Gaussian output in
WebMO.)

(@) 0.934 A, 2.01 D,—100.182171 hartrees, 4041 cm™', (7.26 — 5.78) kcal/mol = 1.48
kcal/mol, 41.54 cal/mol-K.

(b) 0.935 A, 2.01 D, —100.188436 hartrees, 4009 cm ', (7.21 — 5.73) kcal/mol = 1.48
kcal/mol, 41.54 cal/mol-K.

HF/6-31G* results are 0.911 A, 1.97 D, —100.002907 hartrees, 4357 cm ™', (7.71 — 6.23)
kcal/mol = 1.48 kcal/mol, 41.44 cal/mol-K.

Experimental results are 0.917 A (for R,), 1.83 D, 4138 cm ' (for the harmonic
frequency), 1.46 kcal/mol, 41.51 cal/mol-K (at 1 atm). The CCCBDB or the NBS Tables
of Thermodynamic Properties, D. D. Wagman et al., 1982, give for HF:

Hygg — Hy = Usgg + R(298.15 K) — U, = 8.60 kJ/mol, s0 Uyes —U, = 6.12 kJ/mol = 1.46

kcal/mol.

16.14 (a) 3CH4 + C3H¢ — 3C,Hg. and CH4 + CH;CHO — C,Hg + H,CO
(b) To save time, rather than deal with the individual vibration frequencies, it is simplest
to look at the zero-point energy (ZPE) reported by, for example, WebMO. HF/6-31G*

results in hartrees for the electronic energies, ZPEs, and scaled ZPEs (using the scale
factor 0.895) are

CH4 CH;CHO C,He H,CO
—40.195172 —152.915966 —79.228755 —113.866331
0.047777 0.059933 0.079762 0.029203
0.042760 0.053640 0.071387 0.026137

The computed energy change in hartrees for the 0 K reaction (including ZPE) is

—113.866331—79.228755 +152.915966 + 40.195172 + 0.026137 + 0.071387 — 0.053640 — 0.042760
=0.017176 hartrees, which is 10.8 kcal/mol.

(c) MP2(FC)/6-31G* results in hartrees for the electronic energies, ZPEs, and scaled ZPEs
(using the scale factor 0.943 given by the CCCBDB) are

CH4 CH;CHO CyHe H,CO

16-6
Copyright © 2014 Pearson Education, Inc.




—40.332552 —153.346919 —79.494741 —114.167748

0.046330 0.056955 0.077164 0.027283

0.043689 0.053709 0.072766 0.025728

The computed energy change is 0.018078 hartrees, which is 11.3 kcal/mol.

16.15 Use of (16.15) and equations in the paragraph after (16.20) gives

16.16

16.17

(W | D) = (efd)o (D) = (D +TD, + %]A"ZCDO +--|®,) . As discussed in the paragraph
after (16.20), all the excited Slater determinants are orthogonal to @, so

(y |Dy) =(D,|D,) =1. [This equation is similar to Eq. (9.15).] We have

(W |y) = (€ Dy T Dy) = (D + TDy +LT7D +--| Dy +TDy + 177D +---) . We have
(®,|D,) =1, but there is no reason for an integral like (f@o |f®0) to be zero, so

W ly)#1.

(a) If the molecule has only two electrons, then triple excitations are not possible and the
CCSD and CCSD(T) energies are equal. An example is H,.

(b) If the molecule has only two valence electrons but more than two electrons, then the
frozen-core CCSD and CCSD(T) energies are equal, but the full CCSD and CCSD(T)
energies differ. An example is Li,.

(c) If the molecule has only two electrons, then #n =2 in (16.15) and (16.17) and the CBS
CCSD energy is the exact nonrelativistic energy. H» is an example.

(a) We have (®%|H | P, = (@ |H |1+ T, +1T7 + 17 +--)®,) , where (16.16)
with 7 replaced by f’z was used. The determinant (D?jb is doubly excited. The quantity
f; @, contains only sextuply excited determinants. Hence <q);b | H | %f’; ®,) is zero since

the matrix elements of H between Slater determinants differing by four (or more) spin
orbitals are zero (Table 11.3). The integrals involving powers of T higher than 3 involve
Slater determinants differing by more than four spin-orbitals and so are zero. Thus

(@ | H | "0y) = (O | H | (1+T, + 1 T7)Dy).

ab | ol = (PP |1+T, +L1T2 +170 +--. . The determinant @:" is doubly
b) (D" D) =(D |1+ T, +177 + 177 +--)®;) . The d @ is doubl
excited. @, is unexcited. 7,®, contains only doubly excited determinants. 7;®,

contains only quadruply excited determinants; etc. Because of the orthogonality of Slater
determinants having different degrees of excitation (this follows from Table 11.3 if %, f;

is replaced by 1), we get (d)fjb | ef2d>0> = <®fjb | f2®0> :
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16.18 Multiplication of (16.31) by n’ gives n’ E™ = n? E<™ + 4. Replacement of n by n—1 in
this equation gives (1 —1)° EST = (n —1)° E°" + A . Subtracting the second equation from
q gives ( P o g q
the first, we have n° E" — (n — 1)’ E®F =[n® — (n—1)*1EX", so

[1’13E20rr _(n _1)3E,(;S€r]/[n3 _(n _1)3] _ E;orr.

16.19 (a)
E =E, + and E, , = E, + so E,—E, ,=B|(n+H)* —(n-H™*
(n+3)° (n-* [+ V]
and B = 1Ef4_ Enat —
(n+3) " —-(n—7)
_ En _En—l 14 _ En _En—l
E,=E, ~———"—" e (n +4) =B,
(n+3)" —(n—3) [(n+3)/(n—73)]
(b) For n=5, we get E, = 76370298 - 021028+ 710363388 _ 54 37574
1-(5.5/4.5)
For n=6, E, =—76372559— —10:372359 % 76370298 = —76.374937
1-(6.5/5.5)
For n=7, E, =-76.373672 - 76.373672 % 76"2725 3 76375113
1-(7.5/6.5)

16.20 (a) The results are 0.934 A, 4024 cm™', 1.93 D, ~100.186601 hartrees, (7.23 —5.75)
kcal/mol = 1.48 kcal/mol, 41.54 cal/mol-K (where Usogq —U, is found as in Prob. 16.13).

(b) 0.935 A, 4003 cm ', 2.02 D, —100.188327 hartrees, (7.20 — 5.72) kcal/mol =
1.48 kcal/mol, 41.54 cal/mol-K.

(c) See Prob. 16.13.

16.21 (a) The indefinite integral of a function is another function, whereas a functional converts
a function to a number, so the indefinite integral is not a functional.

(b) The definite integral converts a function to a number and is a functional.

(c) This is a functional. (d) This is not a functional. (e) This is a functional.

16.22 If we assume that the ground-state wave functions  , and y , of H, and H, are the
same, then I-Alawo’a = Ey Vo, and H wWo.a = EopVoq - Subtraction gives
(H, - H)Wo, = (Ey, — EopWo. But H, and H, differ only in v(r;), so
H, = Hy = X[V, (1) = v, (1)) and we have X[V, (1) = V4 ()W o0.0 = (Eo.o = EopWoa
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and |20 [V, () =V, ()] = E,, — E,|. By hypothesis, v,(r;) and v, (r;) differ by more

than a constant. Since [V, (I;) — V,(I;)] does not equal a constant, and since
[v,(r;)—V,(r;)] for j#i depends on different variables than does [Vv,,(r;) — V,(r;)], the
sum on the left side of the boxed equation does not equal a constant. But £, , — £, , does

equal a constant. Hence the boxed equation cannot be true. We were led to this erroneous
equation by the assumption that the ground-state wave functions v, , and v, of H, and

H, are the same. Hence this assumption must be false.

16.23 (a) We use Eq. (16.51). Comparison of (16.61) with the equation preceding (16.51) gives
g= —(9/8)(3/7[)1/305,04/3 . Here, g depends on p butnoton p,, p,, or p,, so

SEX?/6p = Sg/dp =—(3/2)(3/7) P ap'”.

(b) Here g = p 'Vp-Vp = p ' [(8p/ex)’ +(0p/dy)’ +(0p/02)"1= p” (0} + p} + p2)
where Egs. (5.31) and (5.23) were used. Equation (16.51) gives

SFI8p==p 2 (p; + py + p2) = (010x)2p ™ p,) = (0/ay)(2p 7' p,) ~(8/02)2p ™' p.) . We
have (8/8x)(2p_1px) =2p7 (Oop/ox)p, + 2p_1(8px/8x) = —Zp_zpf + Zp_lpxx , Where
P =0°plox’ . S0 SF16p = p (P + py + p2) =20 (P + Ppy + P2) =

P2 (pﬁ + pi + ,022) — 2,0*1V2p , Where (3.46) was used.

16.24 The operator W% in (16.49) is given by the terms in brackets in Eq. (16.47). The first two
terms in these brackets match the first two terms in the right side of Eq. (16.8) (except
that different labels are used for the electron). The third term in brackets in (16.47) is

given by (16.45) to be [, p(ry)dr, = X, [|055(r,) * ;' dr, (Eq. 1). From (16.8) and
(14.28), 2" J m)y=2" [ ¢,(2) > 75 dv, (Eq. 2). [The summation over the spin
coordinates of electron j that is mentioned after (16.8) gives 1 for each | ; term.] The

right sides of Eq. 1 and 2 are the same, except that different letters are used for the
dummy summation variables and the Kohn—Sham orbitals are used in Eq. 1 instead of the
Hartree—Fock orbitals used in Eq. 2. Thus the only difference between the Hartree—Fock
operator (16.8) and the Kohn—Sham Hamiltonian in (16.47) is that — ;’.:1 k ;(m) is

replaced by v, .(m).

16.25 Use of (16.54) in (16.52) gives E-"*[p] = [(pe, + ps,)dr . From (16.50) and (16.51),

LEPA = SEXPA 15p = (0/6p)(pe, + pe,) = &, + p(0s,10p) + &, + p(Ds,/0p) . Let
VP =g+ p(0s,/0p) and VA =g, + p(de./0p). So LEPA = LEPA + IPA | Then
OIPA = ¢+ p(de,10p) = —(B314)(3/ )" p' + p(=3/4)3/m) 2 (113)p 7 = -B/m) p'3,
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16.26

16.27

16.28

where (16.55) was used. Also UCLDA =g, + p(0g,/0p) = gCVWN + p(Ge:CVWN /0p) = UCVWN ,
where (16.56) was used. Finally, ExLDA = [ pe, dr = —O.75(3/7r)”3 fp4/3dr , where (16.55)

was used.

The Hartree—Fock exchange energy E, yp is given by the K;; terms in (14.22) and is
E yr = Z"/ 2 Z”/ 2 K; (Eq. 1), where each sum goes over the »/2 different occupied

spatial orbitals of the n-electron molecule, and the exchange integrals are defined by
(14.24). If, instead of summing over the n/2 occupied MOs, we sum over the n electrons,
then each sum will have n (instead of n/2) terms, with each MO occurring twice in each
sum, since each MO is occupied by two electrons. We thus want to consider the relation
between the double sum 27, > K;; (Eq. 2) and the double sum in Eq. 1.

In the double sum in Eq. 1, we have two types of terms: those that involve only one
MO and those that involve two different MOs. Consider first the terms that involve only
one MO. Let r be a particular MO in the sums in Eq. 1. In each sum in Eq. 2, the MO r

will occur twice, once for each electron that occupies MO r. Let ra and rb denote these
two occurrences of MO r. In place of the term K, in Eq. 1, we will get the four terms

K K K

raras K, - Since ra and rb are the same MOs as each other, these four
terms are each equal to K, and their sum equals 4K, .

ra,rb> *>rb,ra>

Now consider terms that involve the two different MOs » and p. In the Eq. 1 double
sum, these terms give the contribution K, + K, . In the Eq. 2 double sum, these terms

give the contribution K + K, + K

rb,pa + Krb,pb +K

+K 0+ K +K -

ra,pa pa,ra pb,ra

Since ra and rb are the same MOs and pa and pb are the same MOs, we have
Kra,pa + Kra,pb + Krb,pa +K b T Kpa,ra + Kpa,rb + Kpb,ra + Kpb,rb = 4(Krp + Kpr) [Wthh
could be simplified using (11.84)].

Thus we see that the double sum in Eq. 2 is four times the double sum in Eq. 1, which
justifies the factor 1/4 in Eq. (16.60). Changing the upper limits to » in Eq. 1 and
multiplying by 1/4 to compensate, and replacing the Hartree-Fock MOs by the Kohn—
Sham MOs in the exchange integrals (14.24), we get Eq. (16.60).

rb,p

The electron density is the sum of the densities due to the spin-« electrons and the spin-f
electrons: p = p* + p”. If p* = p”, then p=2p% and

(P +(p”)*7 =2(p")*" =2(1 p)** =277 p** and the right side of (16.65)
becomes —(3/4)(6/7)2(1/2)"3 [ p*3 dr = —(3/4)3/7)" | p* dr , which is (16.58).

@ nw |8 —r)lw)=nZyp, [l G 0 my e, my, )P S(r = 1) dry dry ---d,
where the vector notation for spatial variables (Sec. 5.2) is used. In the integral over I
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(which is really a triple integral), the Dirac delta function S(r —r,) has the same effect as
o(r; —r) (this will be proved below), so use of (7.91) to do the r; integration gives

W |SC = )IW) = 1T [+ JW (O Uy my, ) dr, -+, (Eq. 1). Equation
(14.5) then gives n(w|o(r —r)|y) = p(r) (EQ. 2). To verify the statement made about the
delta function, we start with Eq. (7.91): f(a) = IO_OOO f(x)o(x—a)dx.Let w=—x. Then
dw=—dx and f(a)=—-[, f(-w)d(~w—a)dw=][", f(-w)d(—a—w)dw.Let b=—a .
Then f(-b)=[", f(-w)8(b—w)dw (Eq. 3). Let g(w) = f(-w). [For example, if
f(w)= 2w? +w, then f(=w)= 2w? —w and gw)= 2w? —w.] Then Eq. 3 becomes
g(b)= IO_OOO gw)o(b—w)dw= fo_ooo g(x)0(b—x)dx , where the dummy integration variable

was changed to x. Comparison with (7.91) shows that 6(b —x) in the integrand has the
same effect as o(x—b).

Also, (w |2, 0(r—r)|y)y=2"(w|5(r—r,)|w) (EQ. 4). When 1, is changed to T,
in Eq. 1, we get an integrand on the right side of the equation in which r; (instead of ;) is

replaced by r. As discussed after Eq. (14.4), the location of the r in y does not affect the
value of the integral, so (y|5(r —1;)|y) =(w|o(r —n)|y) and Eq. 4 becomes

(W X o(r=r)ly) =2 w|o(r—n)ly) = n(y|o(r —r)lw) = p(r) (EQ. 5), where Eq.
2 was used.

(b) Starting with Eq. 5 and using Eq. (11.78) with D =y and fl =o(r—r;), we get
p(r) =W 8(r=r)ly) = ZL(GD)| 6(r—1) [ 6,(1) = X 16,(r)F.

16.29 (a) The following results are found

Rco/A v,/em™! Eco,/Ey Ec/Ey Eo/E,

SVWN/6-31G* | 1.171 | 624, 624, 1359, 2459 | —187.616774 | —37.566160 | —74.643343
BLYP/6-31G* | 1.183 | 601, 601, 1304, 2346 | —188.563058 | —37.832017 | —75.046947
B3LYP/6-31G* | 1.169 | 640, 640, 1372, 2436 | —188.580940 | —37.846279 | —75.060611

where E, =1 hartree and the equilibrium bond angle is 180° in all cases. (A spin
multiplicity of 3 must be entered for C and for O in the input.) The calculated D, values
are found from E¢ +2E, — Eq, . The D, values are found by adding the zero-point

energy E,pp = %h 2,;V; to D,, as in Prob. 16.12a. Using the conversion factor in Table

A.2, we find the atomization energies AE,, from the D, values. We find

D,/E, | D,/eV | Ezpe/eV | Dy/eV | AE, /(kcal/mol)

SVWN/6-31G* | 0.763928 | 20.79 0.314 20.47 472
BLYP/6-31G* | 0.637147 | 17.34 0.301 17.04 393
16-11
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B3LYP/6-31G*

0.613437

16.69

0.315

16.38

378

The experimental AE,, found from thermodynamic data is 382 kcal/mol.

(b) The results found for H,O are

Row/A | ZHOH v./em™ Eyo/Ey | Ey/E,
SVWN/6-31G* | 0.975 | 103.7° | 1649, 3673, 3805 | —76.040301 | —0.493937
BLYP/6-31G* | 0.980 | 102.7° | 1682, 3567, 3689 | —76.388543 | —0.495446
B3LYP/6-31G* | 0.969 | 103.6° | 1713, 3727,3849 | —76.408953 | —0.500273

(A spin multiplicity of 2 must be entered for H when doing the calculations.) The
calculated D, values are found from E, +2Ey — Ey . We find

D,/E, | D,/eV | Eyxp/eV | Dy/eV | AE,, /(kcal/mol)
SVWN/6-31G* | 0.409085 | 11.132 0.566 10.566 243.7
BLYP/6-31G* | 0.350704 | 9.543 0.554 8.989 207.3
B3LYP/6-31G* | 0.347796 | 9.464 0.576 8.888 205.0

The experimental AE,; found from thermodynamic data is 219.4 kcal/mol.

16.30 Figures and Z-matrixes for the two conformers are given in Prob. 15.57. The
B3LYP/6-31G* geometry-optimized structures are planar with the following properties:

u | ZHC=0 | ZOCO | ZCOH| Recu | Rco Rco Ron
| | 143D | 125.5° | 125.2° | 106.6° | 1.100 A | 1.205A | 1.347 A | 0.977 A
I1]3.87D | 123.8° | 122.7° | 109.5° | 1.108 A | 1.198 A | 1.353 A | 0.972 A

The energies are —189.755456 hartrees for I and —189.747166 for 1I. The B3LYP/6-31G*

electronic energy difference is En — E1 = 0.008290 hartrees, corresponding to Ey — Ey =

5.20 kcal/mol. The vibrational wavenumbers are 626, 707, 1055, 1147, 1326, 1423, 1855,

3086, and 3666 cm ' for I and 533, 658, 1041, 1132, 1299, 1450, 1901, 2978, and 3722

cm ' for II. The CCCBDB gives the scale factor for B3LYP/6-31G* frequencies as 0.96.
7, scated = (7148 cm™ e =

(7148 cm™1)(6.6261x107* 1 5)(2.9979x10" cm/s) =1.420x107"° J. Multiplication by
the Avogadro constant gives a zero-point energy of 85.51 kJ/mol = 20.44 kcal/mol. For

For conformer I, we find 4 hc Y,

conformer II, we find a zero-point energy of 20.19 kcal/mol. With inclusion of zero-point
energies, we have Ey — E; = 4.95 kcal/mol.

16.31 B3LYP/6-31G* results in hartrees for the electronic energies, ZPEs, and scaled ZPEs
(using the scale factor 0.960 given by the CCCBDB) are

16-12
Copyright © 2014 Pearson Education, Inc.



CHy CH;CHO CyHe H,CO
—40.518389 —153.830119 —79.830417 —114.500472
0.045224 0.055825 0.075234 0.026837
0.043415 0.053592 0.072225 0.025764

16.32

16.33

The computed energy change in hartrees for the 0 K reaction (including ZPE) is 0.018601
hartrees, which is 11.7 kcal/mol.

(@) With the definition 7 =it/h, we write (7.100) as ¥ =2, cne_E"Tl//n (q) , where the
c,'s are constants. In the computer simulation, ris considered as a real variable. The

ratio of the coefficient of an excited-state (es) wave function with energy £, to the

_(Ees _Egs )T

coefficient of the ground-state (gs) wave function in the sum is (c,,/c,, )e . Since

E, > E,, this ratio goes to zero as 7 — o0, so the contributions of terms involving

excited states become negligible as 7 — oo . From Prob. 4.52, the addition of -V, to H

changes each energy from E, to E, =V, .

(b) Equation (7.97) with V... subtracted from H is —(h/i)0¥/dt = (T +V —V..;)¥ . We
have —(7/i)0¥/ot = —(h/i)(0Y/0r)(Ot/0t) = —(h/i)(OY/O7)(i/h) = —(0¥/07) , from
which the equation given in the problem follows. Atomic units are used, so 7 and m, are

missing from the kinetic-energy operator.

(a) The Pauli exclusion principle allows us to put two electrons (with opposite spins) into
the n =1 particle-in-a-box orbital and one electron into the n = 2 orbital. Let the notation
1(1) and 2(1) denote electron 1 in the n =1 orbital and electron 1 in the n = 2 orbital,

respectively. From (10.48) (which is the expansion of a Slater determinant), we have

Wy =6 2(D2(2)13) - 1(D1(2)23)]B(Da(2)a(3) +

6~ [1(D1(2)2(3) - 2B a(DA(2)ar(3) +

6~ 212)13) - 12BN a(Da(2) AB3)

=afDHa)a3)+ba())a(3) +ca(DHa(2)A(3)

(b) Multiplication of
Hy o, = (Ha) f)a(D)a () + (Hb)a() f(Q)a3) + (Ho)a(Ha(2)5(3) =
E [apDa2)aB)+ba(l) f(2)a3) + ca(Da(2)f(3)] by f(Da(2)a(3) followed by
summation over all the spin variables gives Ha = E s@ » Where orthogonality of different
spin functions was used. The nodes of a are where a =1(1)2(2)1(3) - 1(1)1(2)2(3) =0.
Since the function 1(1) = (2/1)""? sin(zx,/l) is never zero for 0 < x; </, we can divide by
1(1), and the nodes of a are where 2(2)1(3) —1(2)2(3) = 0. This equation is
sin(27x, /1) sin(zrx; /1) = sin(zrx,/1)sin(2zx;/1) . Use of sin2z = 2sinzcos z| gives
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2sin(7zrx, /1) cos(zwx, /1) sin(zxy /1) = 2sin(zrx, /1) sin(zxy /1) cos(zx, /1) and

cos(zx,/l) = cos(zx;/l) . The cosine functions in this equation decrease from 1 to —1 as
x, and x; go from 0 to /. Only when x, = x; is this equation satisfied, and this defines
the location of the nodal surface.

(c) The heavy dashed line in the figure shows the nodal plane where x, = x;. With use of
the boxed identity for sin 2z, the equation a =1(1)[2(2)1(3) —1(2)2(3)] becomes

a = (2/1)** sin(zrx, /1) 2[sin(7x, /1) cos(7rx, /1) sin(x; /1) — sin(zx, /1) sin(zx; /1) cos(rrx; /1)]
a = (2/1)** sin(zrx, /12 sin(zx, /1) sin(7rx;/1)[cos(x, /1) — cos(zx;/1)] . The sine functions
in a are never negative in the range 0 to /, and the cosine functions continually decrease as
x, and x; increase from O to /. Hence a is positive when x, > x; (above the nodal plane)
and a is negative below the nodal plane, where x, < x;. If x, and x; in a are

interchanged, « is multiplied by —1.

P ]

X3

16.34 (a) The isotropic shielding constants in ppm are: 159.91 for the methyl carbon, 4.26 for
the carbonyl carbon, 22.17 for the carbonyl hydrogen, and 30.41, 30.18, 30.18 for the
methyl hydrogens. Because of the nearly free rotation about the CC single bond, we
average the methyl shielding constants to get 30.33 ppm. (If you are using WebMO, first
run a geometry optimization; then click on New Job Using This Geometry; then click the
right arrow, choose Gaussian, and choose NMR as the Calculation.)

(b) Subtraction [see (16.73)] gives the shifts in ppm as 29.87 for the methyl C, 185.52 for
the carbonyl C, 10.01 for the carbonyl hydrogen, and 1.85 for the methyl hydrogens.

(c) Clicking on Scaling Factors, we get Table 1a, which gives for gas-phase
B3LYP/6-31G* calculations the following values. For 'H , m=-0.9957, b=32.288; for
BC, m=-0.9269, b =187.474. Therefore the equation &, = (o, —b)/m in Sec. 16.9 gives
as the predicted BC shifts: —(159.91-187.47)/0.9269 = 29.73 ppm for the methyl C and
—(4.26—-187.47)/0.9269 =197.66 ppm for the carbonyl carbon. The predicted proton

shifts are —(22.17 —32.29)/0.9957 =10.16 ppm for the carbonyl H and
—(30.33-32.29)/0.9957 =1.97 ppm for the methyl hydrogens. The database at
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16.35

16.36

16.37

16.38

sdbs.riodb.aist.go.jp gives carbon shifts in chloroform as 30.89 and 199.93 and gives the
proton shifts as 9.79 and 2.21.

(a) The isotropic shielding constants in ppm are: 175.24 for the methyl carbon, 25.84 for
the carbonyl carbon, 22.19 for the carbonyl hydrogen, and 29.93, 29.81, 29.81 for the
methyl hydrogens. Because of the nearly free rotation about the CC single bond, we
average the methyl shielding constants to get 29.85 ppm. (If you are using WebMO,
choose Other as the Basis Set and enter the desired basis set; see also Prob. 16.34a.)

(b) Subtraction [see (16.73)] gives the shifts in ppm as 14.54 for the methyl C, 163.96 for
the carbonyl C, 9.99 for the carbonyl hydrogen, and 2.33 for the methyl hydrogens.

(c) Clicking on Scaling Factors, we get Table 1a, which gives for gas-phase GIAO
MP2/6-31+G(d,p) calculations the following values. For "H, m=-1.0565, b=32.019;

for °C, m=-0.9077, b =202.752. Therefore the equation &, = (5, —b)/m in Sec. 16.9

gives as the predicted °C shifts: —(175.24 —202.75)/0.9077 = 30.31 ppm for the methyl
C and —(25.84-202.75)/0.9077 =194.90 ppm for the carbonyl carbon. The predicted
proton shifts are —(22.19 -32.02)/1.0565 =9.30 ppm for the carbonyl H and
—(29.85-32.02)/1.0565 = 2.05 ppm for the methyl hydrogens. The database at

sdbs.riodb.aist.go.jp gives carbon shifts in chloroform as 30.89 and 199.93 and gives the
proton shifts as 9.79 and 2.21.

From (14.76), (6.94), and (6.63),

(T) = (% uv*y =—E = 7%* 18reqa = 72 e’ 187g, (47r50)h2 , where we use the reduced
mass pin (T, since it is x that occurs in the kinetic-energy part of the Hamiltonian for
internal motion; (7') is the kinetic energy of the electron's motion relative to the nucleus.

We get (0°) = Z%e* /(47g))* h* and (0*)?/c = Ze* 14 mgyhc =
7(1.6022x107"° C)?27/47(8.854x107"2 C2 / N-m?)(6.626 x 10>* J §)(2.9979x10° m/s)
=0.0072974Z = Z/137.04.

From the p. 583 definition, 2, n, =X, ¢* X ¢;S; =22, ¢*c;S;. We have y =%, ¢, ®;
2n =1.

M N
Wehave @y =N |[---p,p.sis,|=
Nl"'pypzSISZ‘_N‘”'pypzSISZ‘_N"”pypz S1S2‘+N"”pypzsls2‘ =
N|-p,p.sisy|+N[--psip. sy |+ N[ pysy p.sy |+ N |- p,p,sis, |,
where Theorem II on in Sec. 8.3 was used. Adding this equation to (16.74), we get
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O+ @y =N pysips; |+ N[ pysipsy | +N |y posiss| +N [ pyp.siss |
Also @ =N |---p,s,p.s;| =

N[+ p,5yp.5 | =N+ sy p.si| =N |-+ p,s,p.s [+ N |- p,s, p.sy | Let the last four
columns of each determinant in @ be numbered 1, 2, 3, and 4. We now interchange
columns 2 and 4 of the first determinant in @, interchange columns 2 and 3 of the
second determinant in @ and then interchange columns 3 and 4 in the resulting
determinant, interchange columns 2 and 3 of the third determinant in @, and then

interchange columns 3 and 4 in the resulting determinant, and interchange columns 2 and
4 of the last determinant in @ . This gives

O =N py5ip.sy | =N |- p, 15153 =N |-+ P, p.5isy | =N |-+ pys psy |, which i

seen to equal —(® , + Dy).

16.39 Using (16.78), we have

where each diagram stands for a bond eigenfunction.

16.40 The types of singly polar VB structures are
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VI VII VIII
+ + +
| J [ L )
I |
. ]
| J | J
IX X XI

There are 12 individual structures of the form VI, since the plus sign can be put on each of
6 carbons and the minus sign can be put on the preceding or following carbon. Similarly,
there are 12 individual structures of the form VII, 12 of the form VIII, and 12 of the form
IX. There are 6 of the form X and 6 of the form XI.

16.41 (a) There are 4 7 AOs (one on each C) to be paired. Equation (16.77) gives 4!/2!3!=2
canonical covalent VB m-electron structures.

(b) If we put the four carbons on a ring, the pairings with no lines crossing are 1-2 3-4
and 4—1 2-3, so the canonical covalent structures are

| |
CH,=CH—CH==CH, CH,—CH=CH—CH,

(c) The singly polar structures are

+ — — + + =
CH,—CH—CH==CH, CH,—CH—CH==CH, CH,==CH—CH—CH,
+ + - +

CH,—~CH—CH—CH, CH,—CH—CH—CH,  CH,—CH—CH—CH,
| | | |

— + - - _ +
CH,—CH—CH—CH, CH,—CH—CH—CH, CH,—CH—CH—CH;
I I
+ + +

CH,—CH—CH—CH,  CH,—CH=—CH—CH,  CH,—CH=—CH—CH,

16.42 (a) For naphthalene, there are 10 7 AOs (one on each C) to be paired, and (16.77) gives
10!/516! = 42 canonical covalent z-electron structures.
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(b) There are only the following three ways to draw 5 pairs of double bonds between
adjacent carbons in naphthalene:

(c) The 1-2, 34, 5-6, and 7-8 bonds (see Fig. 17.6 for the numbering) are double bonds
in two of the three Kekulé structures, so these bonds are predicted to be the shortest.

16.43 Let the maxima of these hybrids lie in the xy plane, as follows:

y

The direction cosines of lines 1, 2, and 3 are the cosines of the angles each line makes
with the positive halves of the x, y, and z axes. These angles and their cosines are

a o] y | cosa | cosf | cosy
linel| 90° | 0° [90°| 0 1 0
line2 | 210° | 120° | 90° | —1y3 | -3 0
line 3 | 330° | 240° [ 90° | 143 | -1 0

From the discussion after (16.81), the coefficients of the 2p AOs in the hybrids are
proportional to the direction cosines, and the sp” hybrids 41, /,, 3 have the forms:

b =b(C2s)+c(C2p,), h =b(C2s)+ c[—%\/g(Cpr) - %(C2py )]

hy = b(C2s) + {3V3(C2p,) ~$(C2p,)]

The orthonormality conditions give b* + ¢ =1 and b? —%cz =0.Weget b= 1/3"2 and
¢ =(2/3)""? and substitution in the preceding equations gives the hybrids.

16.44 Let the maxima of these hybrids lie on the z axis as follows:
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[

‘ z

The direction cosines of lines 1 and 2 are the cosines of the angles each line makes with
the positive halves of the x, y, and z axes. These angles and their cosines are

a | pB 4 cosq | cosf | cosy
line 1 | 90° | 90° | 0° 0 0 1
line 2 | 90° | 90° | 180° 0 0 -1

From the discussion after (16.81), the coefficients of the 2p AOs in the hybrids are
proportional to the direction cosines, and the sp hybrids 4, /, have the forms:

h, =b(C2s)+c(C2p,)

hy, =b(C2s) +c[-(C2p,)]
The orthonormality conditions give b* +¢> =1 and b> —¢* =0. We get b =1/2"* and
¢ =1/2"%. Substitution in the preceding equations gives the hybrids as
Iy =27"2[(C2s) +(C2p,)] hy =27"[(C25) - (C2p,)]

16.45 (a) To avoid the 180° angle in the Z-matrix, we use a dummy atom, as in Prob. 15.41a.
The HF/6-31G* geometries are found to be Rcyy = 1.059 A, Ren = 1.132 A, ZHCN = 180°
for HCN; Rni = 0.985 A, Rye = 1.154 A, ZHNC = 180° for HNC.

(b) The HF/6-31G* transition-state structure is found to be Rcy = 1.155 A,
Ren=1.169 A, ZHCN = 77.5°.

16.46 (a) HF/6-31G* calculations give the stable conformers as the following planar structures:

02 0
5
C /H C
H /1\0 H - \o
4 L e 2 /
Il 180°
H

where the D(OCOH) dihedral angles are given. A Z-matrix for Conformer I is given in
Prob. 15.57. A good starting pointing for the search for the transition state is to take
D(OCOH) equal to 90°. One finds the following HF/6-31G* properties for the conformers
and the transition state (TS):
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4 | «HC=0|.,0CO| /COH| Rei | Reo | Rco Ron
| |1.60D | 124.7° | 124.9° | 108.7° | 1.083 A | 1.182 A | 1.323 A | 0.953 A
Il [437D] 123.1° | 123.0 | 111.5° | 1.090 A | 1.176 A | 1.328 A | 0.948 A
TS|320D| 123.0 | 123.9 | 112.0 | 1.087A | 1.174 A | 1.351 A | 0.950 A

D(OCOH) | Eyg/hartrees

| 0° —188.762310
1 180° —188.752546
TS 96.0° —188.740756

The energy difference between the more-stable conformer I and the transition state is
0.021554 hartrees (zero-point energies omitted), corresponding to a 13.5 kcal/mol barrier.
The energy difference between I and II is predicted to be 6.1 kcal/mol.

(b) HF/6-31G* calculations give the following two stable planar conformers:
H

EI O H \O
\C—C/ \H \C—C/
A N

I 180° H
y 80 !

where the D(CCOH) dihedral angles are given. A good starting point for the search for the
transition state is to take D(CCOH) equal to 90°. One finds the following HF/6-31G*
properties for the conformers and the transition state (TS):

D | ZH5C=C | ZHCH | ZCCO | ZHCO | ZCOH | Reua/A | Reus/A | Re—c/A

I 12.09| 121.4° | 118.5° | 122.7° | 115.6° | 110.7° | 1.073 | 1.074 | 1.315

I ]1.06 | 1223° 117.5 | 126.9° | 110.6° | 110.3° | 1.073 | 1.077 | 1.318

TS | 1.76 121.5 118.1° | 123.7 | 114.1° | 110.2 | 1.074 | 1.075 | 1.314

Rene/A | Reo/A | Row/A | D(CCOH) | Eyp/hartrees
I 1.077 | 1.354 | 0.945 180° | —152.885390
Il | 1.074 | 1.347 | 0.948 0° —152.888887
TS| 1.077 | 1.368 | 0.948 | 85.7° | -152.881576
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Although conformers I and II are predicted to be planar, the six atoms CH,CHO of the
transition state are slightly nonplanar; for example, D(OCCHS) is —1.3°. The energy
difference between the more-stable conformer II and the transition state is 0.007311
hartrees (zero-point energies omitted), corresponding to a 4.6 kcal/mol barrier.
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Chapter 17

Semiempirical and Molecular-Mechanics
Treatments of Molecules

17.1 (a) The carbons are numbered 1, 2, and 3, with 1 bonded to 2 and 2 bonded to 3. The
assumptions (17.11) to (17.13) give Hfl' = HEY = HS =, HE = HE = B, HE' =0.
The secular equation (17.10) is

o—e B 0
B a-e B |=0
0 B a-e
Division of each row by £ gives
x 1 0
1 x 1/=0
0 1 x

where x = (a —¢,)/ . Use of (17.21) gives H_'j’.zl [x—2cos(jz/4)]=0 and
x=2cos(jzl4), j=1,2,3; x=1414,0,-1.414. The energies (lowest first) are
e =a—pPx=a+14148, a, a—-1.4145.

The equations for the HMO coefficients are
xXCy; + ¢y =0

¢ +xcy;+c3; =0
Cpj+xCy; = 0

For the root x = —-1.414, we get ¢, = —x¢; =1.414¢,,
¢y =—c,/x=0.707c, =0.707(1.414¢,) = ¢; . Normalization gives
1=cf +c+c5=cf +(1.414)° ¢t +c¢f =4t and ¢, =0.5. S0 ¢, =0.707 and ¢, =0.5.
For the root x = 0, we get ¢, =0 and ¢; = —¢;. Normalization gives 1= c? + ¢ = 2¢Z, so
¢, =0.707, ¢, =0, and ¢, =—0.707..
For the root x = 1.414, we get ¢, = —x¢; = —1.414¢,
¢3 =—c,/x =-0.707¢, = -0.707(-1.414¢;) = ¢, . Normalization gives
1=cf +c2+c2 =c? +(1.414)%c2 + 2 =4ct and ¢, =0.5.50 ¢, =-0.707 and ¢; =0.5.
The HMOs from lowest to highest are
¢ =057, +0.707f, +0.5f;
¢, =0.707 f, —0.707 £,

¢, =05 —0.707f, + 0.5,
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17.2

17.3

(b) We use (17.54): p,, =2, n,c,;c,; for real HMOs. This species has three z electrons,
two of which are in ¢ and one in ¢,. So p;, =2(0.5)0.707 +1(0.707)0 = 0.707 = po,.

(c) Use of (17.53) gives g, = 2(0.5)% +1(0.707)% =1, ¢, = 2(0.707)? +1(0) =1,
g = 2(0.5)% +1(-0.707) =1.

d)y F=3"2-p,=32-0707=1.025. F,=3"2—p, - p,; =32 -0.707-0.707 =
0.318. F;=1.025.

(e) The z-electron energy is due to the two electrons in ¢, and the one electron in ¢,, and
IS 2(a +1.41408) + o = 3a + 2.828 4 . The Huckel energy of a nonconjugated double bond
is a + £ and the Hiickel energy of a nonconjugated electron on a carbon atom is [see

(17.11)] a, so the nonconjugated Hiickel z-electron energy is 2(x + ) + « , and the
delocalization energy is 3a +2.8283 — (3a +23) =0.828/5 .

(2) The conjugated-carbon structure is the same for these ions as for the allyl radical, so
the HMOs and HMO energies are the same as in Prob. 17.1a.

(b) The cation has two z electrons and these go in the HMO ¢, . The anion has four =
electrons, two in ¢ and two in ¢,. For the cation, p;, =2(0.5)0.707 = 0.707 = p,5. For
the anion, p,, =2(0.5)0.707 + 2(0.707)0 = 0.707 = p,5.

(c) For the cation, ¢, = 2(0.5)> =0.5, ¢, = 2(0.707)* =1, ¢, = 2(0.5)> =0.5. For the
anion, ¢, = 2(0.5)* +2(0.707)* =1.5, ¢, = 2(0.707)%* + 2(0) =1,

g3 = 2(0.5)? + 2(-0.707)* =1.5.

(d) py, and p,5 are the same for neutral allyl, for the cation, and for the anion, so the

free valences of the ions are the same as in Prob. 17.1d.

(e) For the cation, the z-electron energy is 2(a +1.414) = 2« + 2.828 and the
nonconjugated Huckel z-electron energy is 2(« + ), so the delocalization energy is
20 +2.828 — 2 — 25 = 0.828 3 . For the anion, the z-electron energy is

2(a +1.41408) + 2a = 4 + 2.828 4 and the nonconjugated Huckel z-electron energy is
2(a + ) + 2a , so the delocalization energy is 4a +2.8285 —4a — 23 =0.828/ . The

stabilities are predicted to be the same.

For the polyenes (17.28), nc = 25+ 2. Equation (17.31) gives
Ao = {4(37300 cm Y sin[z/(4s + 6)]}_1 = (67.0 nm)/sin[z/(4s + 6)]. We find

s o | 1] 23| 4|5 |6 7] 9

JowerINM | 162.5 | 217 | 268 | 303 |334 | 364 |390 | 410 | 447

Ao 134 |217 301 | 386 | 471 | 556 |641 | 726 | 897
17-2
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17.4

17.5

HMO error | -18% | 0 12% | 27% | 41% | 53% | 64% | 77% | 101%

The average absolute error is 44% for the HMO method.

For x =—0.618, the first equation of (17.25) gives ¢, = 0.618¢, ; the second equation
gives ¢; = —¢; +0.618¢, = —¢; + 0.618(0.618)¢; = —0.618¢; ; the fourth equation gives

¢, = ¢310.618 = —¢, . Normalization gives 1= ¢ + ¢ + ¢ +cf =

¢ +(0.618)%c? + (0.618)%¢f + ¢f = 2.76¢% and ¢, = 0.602. Then ¢, = 0.618¢; = 0.372;
¢y =—0.618¢; =-0.372; ¢, = —¢; = —-0.602.

For x = 0.618, the first equation of (17.25) gives ¢, = —0.618¢; ; the second equation
gives ¢; = —¢; —0.618¢, = —¢; —0.618(-0.618)c; = —0.618¢;; the fourth equation gives

¢, =—¢310.618 = ¢, . Normalization gives 1= cZ +¢5 +¢2 + ¢ =

¢ +(0.618)%¢? +(0.618)%cZ + ¢ = 2.76¢2 and ¢, = 0.602. Then

¢, =—0.618¢; =—0.372; ¢; =-0.618¢; =-0.372; ¢, = ¢, =0.602.

For x =1.618, the first equation of (17.25) gives ¢, = —1.618¢; ; the second equation gives
¢y =—¢; —1.618¢, = —¢; —1.618(-1.618)¢; =1.618¢; ; the fourth equation gives

¢, = —c311.618 = —¢,. Normalization gives 1= ¢ +¢5 +c% + ¢} =

¢ +(1.618)% ¢ + (1.618)%¢f + ¢ = 7.24¢% and ¢ = 0.372. Then ¢, = —1.618¢; = —0.602 ;
¢;3 =1.618¢; =0.602; ¢, =—¢; =-0.372.

(a) Similar to the first equation in (17.25), the first equation satisfied by the coefficients is
xcy; +c,; = 0. Substitution of (17.30) and the equation preceding (17.29) gives

] 5 1/2 ) 5 1/2 5
~2cos—2% sin—2%_ 4 sin=/Z_—¢
ne +1\ ne +1 ne+1 (nc+1 ne +1

Use of sin28 = 2sindcosé gives

) 12 ) 5 12 ) )
—2c0s—% sin—2%_ 2sin—"_cos—L%_ =0
ne +1\ ne +1 ne+1 (nc+1 ne+1  ng+1
0=0
Similar to the second and third equations in (17.25), equations that are not the first or last

have the form ¢, ; +xc,; +¢,,; ; = 0. Substitution of (17.30) and the equation preceding
(17.29) gives
) 1/2 ) 0 ) ) 1/2 ] ) 12 ) 1
_2 | sin DT s I sin2"_+ sin /U7 g
ne +1 ne +1 ne +1\ ng +1 ne+1 \nc+1 ne +1
17-3
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Use of the identity in the problem to combine the first and last terms on the left side gives

) 12 ) ] ) ) 12 )

2sin S cos J7 —2co0s J7 sin S =0
ne +1 nc+1  ng+1 ne +1\ ne +1 ne +1
0=0

Similar to the last equation in (17.25), the last equation satisfied by the coefficients is
ne1,; + X, ; =0. Substitution of (17.30) and the equation preceding (17.29) gives

2 1/2 ( 1) 2 1/2 .
- SinM 2Cc0S—2— ]7[ - SinM:O
ne +1 ne +1 ne +1\ ne +1 ne +1

Division by [2/(nc +1)]"? and use of sin Acos B = 3[sin(4 + B) +sin(4 — B)] gives
sin J(nc -z _sin J(nc + )7 _sin J(nc -z

=0
ne +1 ne +1 ne +1
—sin jz =0
0=0
12
(b) From (17.8) and (17.30), ¢, = 3" ¢, . = 37| —2— | [sinZ| 1. and
L r=Lr = ne +1 ne+1)7"
5 12 2 172 .
* n, ]1”72' n . A2
0. dr = c sin ¢ sin dr =
J¢j¢j T er_l(nc"'l] ( ne +1 jfz ( +1J ( nc+1jfs ‘
2 ne e | . JYT . Jsm
sin dr =
ne +1 Zr:l S=1[ nc+1J( ne +1 jf s
2 Dy I sin 2 Nsin-L22 |5, =
ng +1)=rt&=s=l " pe +1 ne +1
. 2 .o . .. 2
2 Z 2 sin 27| 2 iznc exp ijrre _exp _ijrm _
ne +1)<=r= ne +1 ng+1)4<r ne +1 ne +1

1 e 2ijrr n 2ijrr
- 2+ > Cexp| - =
ks Ee 22z 5 e -2

1
2ng +2

[Z:fl(ew)r —2n¢ + fol(e_w)’} where w = 2i jz/(n; +1)

where a formula in Prob. 1.28 was used. The formula for the sum of a geometric series is

n b _ bn+1
Db = T Taking b =e" and then b=¢", we get
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17.6

17.7

[#79;dr=-

The definition of w gives w(n; +1) = 2i jz, SO

e"eD) = Q2007 — cos(2j7) +isin(2jz) =1+0 =1. Similarly, e *"*) =1. So

—2n- +
2nc +2 ¢ W

1 ew . ew(nc +1) e—w . e—w(nc +1)
1-e" l-e

* 1 e’ -1 eV -1 1
. dr =— —2n- + =— -1-2n~--1)=1
j¢]¢] |:1—€W nc 1_e_w:| ch+2( nc )

From Fig. 17.1, the first excited state has two electrons in ¢, one electron in ¢,, and one
electron in ¢,. From (17.53) and (17.26), ¢, = 2(0.372)% +1(0.602)? +1(0.602)? =1.00;
g, = 2(0.602)* +1(0.372)* +1(0.372)* =1; g5 =1; g, =1. From (17.54) and (17.26),
P = 2(0.372)0.602 +1(0.602)(0.372) +1(0.602)(~0.372) = 0.448; p;o' =1.448;

Py = 2(0.602)0.602 +1(0.372)(~0.372) +1(~0.372)(-0.372) = 0.725; pi =1.725;

P =1.448.

(a) We have 522 = E and the symmetry species are

ile
A1 |1
Bl |-1

(b) The éz symmetry rotation interchanges C; and C,4 and interchanges C, and Cs, so the
normalized symmetry orbitals and their symmetry species are

g =2"2(f+ 1) (4), g=2"2(/-1) (B),

g =22 (f+ f3) (A), g =2"*(f- f3) (B)

As on p. 612, the secular equation is det[(g, | Hef lg,»—(g,lg,e]=0.We have
(Gl A | gy =LA+ Ll H| fi+ fi) =L (a+a) =a;

(Gl B g2) =1 fi+ fu H | fy+ 3y =1(B+ B) = B

(G| H |2y =3 fo+ | H" | fy+ oy =1 (a+ B+ f+a)=a+B;

(g3l H" | g) =3(f— fi H | fi- fi) =2 (a+a) =a;

(g5l H" | gy == Ll H | fo— fo) = 1(B+ B) = B;

(8l H |2y =3 fo — S| H | fy - f3) =% (@ - B~ B+a) =a - B;

(@12) =2+ fal fo+ [0 =05 (g3l =L(fi—ful fo—f2) =0.

The secular determinant for the 4 symmetry orbitals is
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17.8

<g1|1:1eﬁ|g1>—ek <g1|fleﬁ|g2> _ =a—ek p
<81|Heff|gz> <82|H6ﬁ|g2>—ek p a+f—e
X 1 )
=0=x“4+x-1 and x=-1.618, 0.618
1 x+1

For the first root, the equations for the coefficients are
-1.618¢; +¢, =0 and ¢ —0.618¢, =0, so ¢, =1.618¢;. Normalization gives

1=c¢ +c2 = +(1.618)%¢? =3.618¢7 and ¢; = 0.526, ¢, =0.851. So the HMO is
g+ gy =0526(272)(f + £,) +0.85127 %) (f, + f3) =
0.372f, +0.602f, +0.602 f, + 0.372f,.

For the second root, the equations for the coefficients are
0.618¢; +¢, =0 and ¢ +1.618¢, =0, so ¢, = —0.618¢;. Normalization gives

1=cf +c5 =c¢f +(0.618)%¢? =1.382¢% and ¢, = 0.851, ¢, = —0.526 . So the HMO is
g1+, = 0.85127"2)(fy + £2) ~ 0.526(272)(/ + f3) =

0.602 1, —0.372f, —0.372 f; + 0.602 1, .

The secular determinant for the B symmetry orbitals is

(@l HM g —e,  (@lHM g |_ |a-a B
(gl H gy (el H | gs)— ¢ B a-F-e
X 1 2
—0=x*>-x-1 and x=1.618, —0.618
1 x-1

For the first root, the equations for the coefficients are
1.618¢3+c¢, =0 and ¢3+0.618¢, =0, so ¢, =—1.618c;. Normalization gives

1=ch +cZ =c5+(1.618)%c5 =3.618¢5 and ¢; =0.526, ¢, = —0.851. So the HMO is
c3gs + a8y = 0.526(27%)(f, ~ £4) ~ 0.85127"*)(f ~ f3) =
0.372, —0.602f, +0.602 f; — 0.372, .

For the second root, the equations for the coefficients are
—0.618¢3+¢, =0 and ¢;-1.618¢, =0, s0 ¢, = 0.618¢;. Normalization gives

1=ck +c2 =c5 +(0.618)%c2 =1.382¢% and ¢; = 0.851, ¢, =0.526. So the HMO is

€385 + 484 =0.851272)(f, — f4) +0.526(272)(f, - f3) =
0.602fl + 0.372f2 — O.372f3 - 0.602f4 )

Imagine that we set up an xy coordinate system with origin at the center of each circle in

Fig. 17.5, with the positive direction of the x axis pointing downward (going through the
lowest apex, which lies at & — 2| £ ), and with the positive y axis pointing to the right.

Let points in this plane represent the complex numbers z = x +iy (as in Fig. 1.3). If each
circle had a radius of 1, then, as noted in Prob. 1.28b, the z values of the points at each
apex (the dots) would be the » nth roots of 1, where n, the number of apexes, is the
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17.9

number of carbons, nc. Since the radius of each circle is 2| £ |, rather than 1, the x and y
coordinates are multiplied by 2| £ |, and the z values of the apex points are 2| £ | times
the ncth roots of unity. Use of (1.36) for these roots gives z = 2| g | exp(i2zk/ng) ,
k=0,1,...,n; -1, as the z values of the apexes. The energy scale in Fig. 17.5 is in the

vertical direction with energy increasing going upwards. Thus the energy scale is in the —x
direction (as we have defined the x axis), and because the energy scale is set up with
energy « occurring at the level of our coordinate origin, the energy of each apex point is «
minus the x value of the apex point. The x value of a number in the complex plane is the
real part of the number. Hence the energy of each apex point is

e, =a—Re[2| g |exp(i27kin:)], where Re denotes the real part of a complex number.

The real part of ¢ =cos@ +isiné equals cosé, so e, =a—2|p|cos(2zklng) . Since
p<0,wehave |f|=-p,and ¢, =a+ 2 cos(2xk/n:) asin (17.43).

(a) The harmonic-oscillator potential-energy function is %k(R - Re)z. The energy to
compress three single bonds is 2 (500 N/m)(1.397 —1.53)*(10*° m)® = 1.3x107° J. The
energy to stretch three double bonds is 2 (950 N/m)(1.397 —1.335)*(107*° m)® =

=5.5x1072° J. The sum of these energies is 1.8; x107*° J, and multiplication by the
Avogadro constant gives 111 kJ/mol = 27 kcal/mol.
(b) Consider the gas-phase processes

benzene cyclohexane

I /|

nonconjugated benzene 3 nonconjugated benzene
with equal bond lengths — with unequal bond lengths

We have AE, =—-49.8 kcal/mol, AE, =2| S|, AE; =27 kcal/mol,

AE, = 3(—28.6 kcal/mol) = —85.8 kcal/mol. Substitution in AE; = AE, + AE; + AE, gives
2| p|=(-49.8+ 27 +85.8) kcal/mol = 63 kcal/mol and | 8| = 31% kcal/mol , which
corresponds to 1.3;7 eV per molecule.
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17.10 Consider the following gas-phase processes:

1
benzene 6C(g) + 6H(g)
Iz /|
nonconjugated benzene 3 nonconjugated benzene

with equal bond lengths —— with unequal bond lengths

We have AE, =1323kcal/mol, AE, =2| S|, AE; =-27 kcal/mol (see Prob. 17.9),

AE, =~ 6(99 kcal/mol) + 3(83 kcal/mol) + 3(146 kcal/mol) = 1281 kcal/mol . Substitution in
AE, = AE, + AE; + AE, gives 2| f| = (1323 + 27 —1281) kcal/mol = 69 kcal/mol as the
"experimental™ delocalization energy with allowance for strain energy. (This gives

| A= 34% kcal/mol, which corresponds to 1.5 eV per molecule.) If the strain energy is

omitted, then AEj is taken as zero and we get the delocalization energy as
2| B | =(1323-1281) kcal/mol = 42 kcal/mol .

17.11 (a) The Lewis structure is

2
CH>

| <—> etc.
C
/ 1\
‘CH,  -CHy
3 4
where "etc." denotes two resonance structures with the double-bond position changed.
With carbon 1 bonded to carbons 2, 3, and 4, the HMO secular equation in the notation of
Egs. (17.19) and (17.20) is

x 1 1 1
1 x O x 1 1
1 x 00 x O 1 1 x 1
=0=-11 0 x|+x{1 x O]|=- +x|1 +Xx =
1 0 x O X x 0 1 x
1 00 1 0 x
1 0 0 «x

—x? 4 x(=x) +x2(x* =1) =x* —3x® = xx(x? =3) =0

where the first determinant was expanded using the elements of the fourth column. The
secular equation has two x = 0 roots. The other two roots are found from x? -3 =0, so
x=0,0, 3% -3"2 and ¢, = +3Y%8, a, a, a —3"2 . The HMO-energy-level

pattern and ground-state orbital occupancy are
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N

For the lowest MO, which has x = —3Y2, the equations for the coefficients are
—31/201 +cy+cyg+c,; =0
Cl - 31/2C2 - 0

- 31/203 =0

Cl - 31/204 = 0

37"2¢,. Normalization gives 1=cf +c5 +c5 +cf = cf(1+1+1+1) and

612

SO C2 = C3 = C4 =
Cl = 2_1/2 . Then CZ = C3 = C4 =
Similarly, for the highest MO (with x = 3Y%), we get ¢, =272, ¢, =¢; = ¢, =672,

For the MOs with x =0, the coefficients satisfy
Cz + C3 + C4 = 0

CJ_:O
cl:O
C:L:O

Normalization gives | ¢, |> +| ¢; |* +] ¢, |* =1. Because of the degeneracy, there are
infinitely many possibilities that satisfy the two equations for c,, ¢;, c,. Since this
diradical has a C; symmetry axis, we can, if we like, take the degenerate HMOs to be

eigenfunctions of the operator (363 . The eigenvalues of 5C3 are the cube roots of 1,

namely ¢?"*3 where k = 0,1, 2. Proceeding as was done for benzene, we can use the

equations (17.37) and (17.38), except that ¢>*’® is replaced by ¢?"*/3, éCe is replaced

2rikl3

by 5C3 , and the sums go from » =2 to » =4. Thus (17.38) becomes c,,; ; =e Cpj-

This equation shows that | ¢, |=]| ¢3| =] ¢, |, SO the normalization condition becomes

3|c,P=1and |c,| =32, We shall take ¢, =372, In the equation c,., ; = "¢

k

I/jl
cannot be zero, because this would give ¢, = ¢ = ¢, , and these coefficients would not

27ikl3

satisfy ¢, +c; +c, =0. With k=1, use of c,; ; =e*™°c,; gives ¢, =37,

3—1/2627ri/3

r+l,j

L ¢y =37Y243 Use of ¢ = cos@+isin@ shows that these coefficients

_ 27ikl3 -
ri1) =€ c,; gives

e, =37Y2, ¢y =372 o = 37V2 BT yse of ¢ = cosd +isin@ shows that these

C3:

satisfy ¢, +c3+¢, =0. With k=2, use of ¢
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coefficients satisfy ¢, + ¢; + ¢, = 0. We thus can use these two sets of coefficients to get
two complex HMOS @, compiex 8N &5 compiex fOr the two HMOs with energy .

To avoid dealing with complex MOs, we can (as was done for benzene) take the two
linear combinations 271/2 (¢2,complex + ¢3,complex) and 271/2(:|-/i)(¢2,complex - ¢3,c0mplex) to get
real MOs with the coefficients

¢, = (213)Y%, ¢; =67Y% . 2c0s(27/3) = 672, ¢, =672 . 2cos(47/3) = 6712 and

¢, =0, ¢; =6Y2.2sin(27/3) = 27Y2, ¢, =67Y2. 2sin(47/3) = —27Y2 . This gives
¢2,real = (2/3)1/2f2 - 671/2f3 - 671/2f4 and ¢3,rea| = 271/2f3 - 271/2](4 :

We use (17.54) to get the bond orders, and to avoid any ambiguities due to the partial
occupation of the degenerate MOs, we shall use the complex coefficients. We have
P =227%)6"?+1:2(0-372+37%.0)+1. (0.3 +37%.0) =372 = 0.577.
From (17.53), ¢, = 2(2Y?)? +1(0)* +1(0)? =1,

g, =2(67%)7 +1(37%)? +137%)* =1=g5 = 4,

Fy =32~ py =37 -3 =1.185 = p3) = pyy.

The orbital occupancies and energies give

E, =2(a+3"%B)+1(a) +1(a) = 4a + (12)Y? B.. The energies of two « electrons in an

isolated double bond and two = electrons each localized on a C add to
E\ocatized = 2(a+ f) +a+a =4a +2 [, so the delocalization energy is

da+ 122 B~ (4o +28) =1.464 .

(b) This diradical is linear with the Lewis structure H—C=C==C—H. If the

1 2 3
molecular axis is the z axis, then the 7 bond between carbons 1 and 2 is formed by overlap
of 2p, AOs and the = bond between carbons 2 and 3 is formed by overlap of 2p,, AOs.
The unpaired electron on carbon 3 isina 2p, AO and interacts with the electrons of the =
bond between carbons 1 and 2. The unpaired electron on carbon Lisina 2p, AO and
interacts with the electrons of the z bond between carbons 2 and 3. Thus we have two sets
of z electrons; one set consists of three 7, electrons and one set consists of three 7,
electrons. The conjugated carbon framework is linear with three carbons, and is the same
framework as for the allyl radical of Prob. 17.1, so the HMO secular equation, the HMO

energies, and the HMO coefficients are the same as for allyl. Thus the energies (lowest
first) are ¢, =a +1.4145, a, a—1.4144; the HMOs from lowest to highest are

¢ =05, +0.707f, +0.5f,
¢, =0.707 f, — 0.707 £,
¢, =05 —0.707f, + 0.5/,
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17.12

17.13

With three electrons in each set of z MOs, the orbital occupancy is

i) i)

™M N
In using (17.54), we sum over all four of the occupied =z MOs, so
Prp = 2, mcycy; = 2(0.5)0.707 + 2(0.5)0.707 +1(0.707)0 +1(0.707)0 = 1.414 = p,, .
From (17.53), ¢, = 2(0.5)% + 2(0.5)% +1(0.707) +1(0.707)* = 2 = gs;
g, = 2(0.707)% + 2(0.707)? +1(0) +1(0) = 2.
From Prob. 17.19, F; =3"? — p;, =1.732 -1.414 = 0.318;
F, =32 p, - py; =1.732-1.414-1.414 = -1.096.

The orbital occupancies and energies give
E, =2(a+2"2p)+2(a +2Y% ) +1(a) +1(a) = 6a + (32)2 5. The energies of four z

electrons in two isolated double bonds and two = electrons each localized on a C add to
Elocalized =4+ f)+a+a =6a+4p, so the delocalization energy is

6a +(32)V2 B —(6c:+48) =1.6575.

To ionize the molecule by removing an electron from the HOMO of energy o — fx
requires an energy input of fSx — e« , the ionization energy. The x values are known, and
we have four pieces of data to be fit by varying two parameters « and 5. We use the Excel

Solver (with the constraint that £ is negative) to minimize the sums of the squares of the
deviations of the calculated values gx —« from the experimental values. With the initial

guesses a =0 and g =-1 eV, the Solver converges to the values o = -6.146 eV,
p =-3.316eV. The fit is pretty good, with the predicted ionization energies of the first

four molecules being 9.46, 8.20, 7.52, and 7.12 eV. The predicted ionization energy for
pentacene with x =—-0.220 is (-3.316)(-0.220) eV + 6.146 eV = 6.88 eV.

(@ In CH,=CH—CH=CH,, there are two CH,=CH bonds and one CH—CH
bond, so 2., n,E, , = 2(2.00003) +0.46605 = 4.466 5 .

(b) Benzene has three CH=CH bonds and three CH—CH bonds, so

2y mE,, =3(2.0699) +3(0.46604) = 7.6077 5 . The Hickel £ of benzene is given by
(17.51) as 6 +84, and is 8 with o omitted. Hence the Hess—Schaad resonance energy
of benzene is (7.6077 — 8) 5 =-0.3923 = 0.3923| 4|. The REPE is 0.3923|4//6 = 0.065|4].
(c) In cyclobutadiene, there are two CH=CH bonds and two CH—CH bonds, so

2, mE, , =2(2.06995) +2(0.46604) = 5.0718 . The Hiickel E . of cyclobutadiene is
given by Fig. 17.5as 2(a +2f) + 2a =4a + 44, and is 44 with o omitted. Hence the

17-11
Copyright © 2014 Pearson Education, Inc.



Hess—Schaad resonance energy of cyclobutadiene is (5.0718 —4) 5= 1.07185=-1.0718|4.
The REPE is -1.0718|4|/4 = -0.268| | (antiaromatic).

Planar [8]annulene has four CH=CH bonds and four CH—CH bonds, so
2, myE, , =4(2.0699) + 4(0.4660 ) =10.1436 5 . The HMO energies with « omitted
are given by (17.43) as 23, 2V2 8, 223, 0, 0, =22, =22 3, 23 and the Hiickel E,
of [8]annulene is 2(2/3) + 2(2Y2 B) + 2(2Y2 B) +1(0) +1(0) = 9.6569 3 . The Hess—Schaad
resonance energy of [8]annulene is (10.1436 — 9.6569) 5= 0.4867 3 =-0.4867|4|. The
REPE is —0.4867|4|/8 = -0.061| 4| (antiaromatic).

Planar [18]annulene has 9 CH=CH bonds and 9 CH—CH bonds, so
2 mE,, =9(2.06993) +9(0.46603) = 22.8231/3 . The HMO energies with « omitted

are given by (17.43) as
2/, 187943, 1.8794 5, 1.5321p3, 1.53215, B, f, 0.34734, 0.3473p,

—0.34733, —0.34734, — B, — B, —1.53213, —1.563213, —1.8794 3, —-1.8794 3, -2 3
and the Huckel E_ of [18]annulene is 2(2/5) + 2(1.87945) + 2(1.87945) +
2(1.53213) +2(1.53218) + 28+ 28+ 2(0.34735) + 2(0.34733) = 23.0352 3 . The Hess—
Schaad resonance energy of [18]annulene is (22.8231 — 23.0352) 5= -0.21214 =
0.2121|4]. The REPE is 0.2121|//18 = 0.0118| 5| (aromatic).

Azulene has 3 CH=CH bonds, 2 CH=C bonds, 3 CH—CH bonds, 2 CH—C
bonds, and one C—C bond, so
2, myE, , =3(2.06994) +2(2.108345) + 3(0.46605) + 2(0.43623) + 0.4358 8 = 13.132513..
There are 10 z electrons and the Hiickel £, with o omitted is 2(2.31034) + 2(1.65163) +
2(1.3557 ) +2(0.88705) + 2(0.47738) =13.3638 5 . The Hess—Schaad resonance energy
of azulene is (13.1325 — 13.3638) = —-0.23134 = 0.2313| A|. The REPE is 0.2313|5//10 =
0.0231| 4| (aromatic).

17.14 (a) The conjugated carbon framework and the HMOs of C;H; are the same as for C5Hs.
The Lewis structure of C;Hg has four z electrons in double bonds and two z electrons as
a lone pair on the C that has no double bonds. The six z electrons in CsH5 fill the lowest

three HMOs in the middle figure in Fig. 17.5. The HMO energies are given by (17.43) as
a+2p (k=0), a+0.6184 (k=1), « +0.6184 (k =4), « —1.6188, (k = 2),
a—1.6184, (k=3). Thusthe k£ =0, 1, 4 HMOs are occupied. (See also the comment

after Eq. (17.45).] For each of these three HMOs, we use (17.44) to calculate the

COfoiCientS Clk and CZk . We get cllo = CZ,O = 5_1/2 , cl,l = 5_1/2, CZ’l = 5_1/2€2ﬂi/5 ,

4 =57, cp4 =525 From (17.54),
plz — 2(%)(5—1/25—1/2 + 5—1/25—1/2) + 2(%)(5—1/25—1/26272'1/5 + 5—1/26—272'i/55—1/2) +

2(3)(57 Y257V 815 4 57127878512 = 0.4 1 0.2[2cos(27/5) + 2c08(877/5)] = 0.6472.

17-12
Copyright © 2014 Pearson Education, Inc.



By symmetry, this is the mobile bond order for all the C-C bonds. From (17.57),

Ry, =(1.521-0.186-0.6472) A =1.401A .

(b) The conjugated carbon framework and the HMOs of C,H7 are the same as for
C,H, . The Lewis structure of C;H7 has six z electrons in three double bonds and a C

that has no double bonds. The six = electrons in C,H; fill the lowest three HMOs. From
the comment after Eq. (17.45), the lowest three HMOs have k£ =0, 1, 6. For each of these
three HMOs, we use (17.44) to calculate the coefficients ¢;;, and c,, . We get

c]_‘o — 62‘0 — 7—1/2; Cl,]_ — 7—1/2’ Czyl — 7—1/26277.'1'/7 : Clye — 7—1/2’ Czy(; — 7_1/2612”i/7 _Erom
(17.54)’ P = 2(%)(7—1/27—1/2 +7_1/27_1/2)+2(%)(7_1/27_1/2€2m/7 +7—1/Ze—27n‘/77—1/2)+
2(1)(7VETVRLHIT 7 Y2 2A T2 2 2 4 L9 cos(27/7) + 2c0s(127/7)] = 0.6420.

By symmetry, this is the mobile bond order for all the C-C bonds. From (17.57),
Ry, = (1.521-0.186-0.6420) A =1.402 A .

(c) The conjugated carbon framework and the HMOs of CgHg™ are the same as for

CgHg. The ten z electrons in CgHg™ fill the lowest five HMOs. From the comment after
Eq. (17.45), the lowest five HMOs have £ =0, 1, 7, 2, 6. For each of these five HMOs,
we use (17.44) to calculate the coefficients ¢, and ¢,, . We get

Clo=Cp0 = 8_1/2; = 8_1/2, Cp1 = 8_1/262””8; 7= 8_1/2, 7 = 8_1/2614””8,
1o =8_1/2, Crp = 8_1/2647[i/8, Cre 28_1/2, Crp = 8_1/2612”i/8. From (17.54)’

Do = 2(%)(8_1/28_1/2 +8—l/28—1/2) + 2(%)(8_1/28_1/262””8 +8—1/2e—2m'/88—1/2) +
2(%)(8_1/28_1/2614””8 +8—l/2e—14m‘/88—1/2) + 2(%)(8_1/28_1/264””8 +8—1/Ze—4m‘/88—l/2) +
2(%)(8_1/28_1/2612””8 +8—l/2e—12m'/88—1/2)

=0.25+ %[2 cos(zz/4) + 2cos(14x/8) + 2cos(z/2) + 2cos(127/8)] = 0.6036.

By symmetry, this is the mobile bond order for all the C-C bonds. From (17.57),
Ry, = (1.521-0.186-0.6036) A =1.409 A .

17.15 (a) For the a, HMOs,
(Gl HM | gy =+ i~ fa+ fs— S| H | = fa+ fs— fo) =% (a+a+a+a)=a,
(@l H | g5) = 3 (h—fat fo =Sl H | o= fa+ fo = 1) = 5(B+ B+ B+ )= B,
<g5|Heﬁ|g5>=%<f2—f3+f6—f7|Heﬁ|f2_f3+fe_f7>
=t(a-p-pra+a-p-p+a)=a-p.
The symmetry orbitals are orthonormal, and the a, secular equation is
a—e B x 1

p 5 ) = 0=x’>-x-1, x=-0618,1.618
a_ _ek .x_

=0,
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For the b,, HMOs,

(gl H™ | go) =2(fi—fa—fo+ fel H" | i- fu— fo+ f) =2 (@ +a+a+a)=a

(el H | gy =i~ fa—fo+ S| H | fo— fs— fo+ 1) =2 (B+ B+ B+ B) =

(el H™ | gg) =2 ¥%(fi— fu— fo + Sl H™| fo = fi0) =272 (B+ B+ B+ B)=2"" B

(g | H | &) =2 fo— fo—fo+ LI HM | fo = fs— fo + 1) =
Ha-p-pra+ra-p-p+a)=a-p

(87| H | gg) =272 fy = fy— fo+ Fy | H | fo— fio) =0

<gs|ﬁeﬁ|g8>=%<fg_ﬂo|}}eﬁ|ﬂa_f10>:%(05—,5—,5+a)=05—,3

The secular equationis | S a—pF—e, 0 =0, |1 x-1 0 |=0
2V2 3 0 a-pf-e, 22 0 x-

Expansion using the last row gives (x —1)(x? — x —3) = 0 with the roots
x =1, 2.303, —1.303.

For the 5, HMOs,

(0| H" | go) =i+ fa— fs— RIHT | fi+ fa—fs - fy) =2 (@ +a+a+a) =«

(2ol H | @10) =4 hi+ fa— fo — I H | o+ f3— fo = 1) =5(B+ B+ B+ B) =

<810|Heﬁ|g10> =%<f2 +J%_f6_ﬁ|Heﬁ|f2+J%_J%_f7>=

La+p+pra+ra+p+pfra)=a+p

The secular equation is

a—e B x 1
p a+pf—e, 1 x+1

The HMO energies « — Sx (including those found on pages 612—613) are

a+2.30383, a+1.6184, a+1.3034, a+ S, a+0.6184,

a—0.6184, a -, a—-1.3038, a -1.6188, o —2.303p3

(b) The lowest HMO energy o« +2.3034 corresponds to the b;, root x = —2.303. Use of

this x value and the elements of the secular determinant on p. 612 gives as the equation for
the coefficients of the symmetry orbitals g, g,, g3

—2.303¢; + ¢, +2¥%¢5 =0
¢, —1.303c, =0
2Y2¢, —1.303¢;=0
So ¢, =0.7675¢;, ¢3 =1.085¢;. Normalization gives
1=c? +c5+c% =cf(1+0.5891+1.177) and ¢, = 0.601,, ¢, = 0.4615, c5 = 0.652;. SO
$ =018 + 8y + 383 =
0.301(f, + fa + f5+ f3) +0.231(f, + f5+ fo + f7) + 0.461( fy + f10) -

=0, x>+x-1=0, x=0.618, -1.618
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17.16 We have E_ =2, ne;, where the sum goes over the HMOs and »; is the number of

17.17

17.18

it

electrons in the ith HMO. Use of (17.8) gives

e =1 H |4 =, i, | H | E e /) =,y eI HT| f,) (Eq. 1)

In the sums in Eq. 1, the following kinds of terms occur. For those terms with s =, we
have (f.| He | f,) =a,and these terms contribute a2, | ¢,; * to the double sum. For
those terms with atom s not bonded to atom r, we have (f, | He | fy =0, and these

terms contribute zero. For those terms with atom s bonded to », we have
fil HE | f,» = . There are two terms in the double sum in Eq. 1 for each pair of

bonded atoms. For example, if carbons 2 and 3 are bonded, then Eq. 1 has the terms
¢y B and cgr ey 8. Thus, the contribution of terms from pairs of bonded atoms to the

double suminEq. lis B>, (c,f¢c c.). Addlng the contributions from the various
kinds of terms, we have ¢, = a2, |c,l| +8%, , (¢Fc

ri Sl S'l Vl

¢..) . Substitution into

i Sl Sl Il

E Z n;e; glVeS E Z, n; |:0!Z |C”| +/Bzv r(crz Csi TCsi Vl)] =

aY, Yon|c. P +pY, Y n(cre, +exe)=aY, q +28Y, . p., where (17.53) and
(17.54) were used and >, denotes a sum over carbon—carbon bonds.

(a) For p' equal to 1 and to 3, Eq. (17.57) gives 1.521 A and 1.149 A, respectively. The

typical carbon—carbon single-bond length is 1.53 to 1.54 A, and the typical carbon—carbon
triple-bond length is 1.20 A.

(b) We use the numbering in the figure in Prob. 17.20 part (c). The HMO bond orders,
the bond lengths found from (17.57), and the experimental lengths [given as the averages
of three determinations of azulene bond lengths listed in J. M. L. Martin et al., J. Phys.
Chem., 100, 15358 (1996)] are

r—s 1-2 | 1-9 | 9-10 | 8-9 | 7-8 | 6-7
p 1.656 | 1.596 | 1.401 | 1.586 | 1.664 | 1.639

R s63/A | 1.399 | 1.410 | 1.446 | 1.412 | 1.397 | 1.402
Ry exper /A | 1.395 | 141y | 1.49, | 1.385 | 1.40, | 1.39;

An online HMO calculator is at www.chem.ucalgary.ca/SHMO/

Equation (17.58) gives E, = a(q +q + 43 +q4) + 2B(p1a + Pos + P3g) =
a(L+1+1+1) +23(0.894+ 0.447 +0.894) = 4t + 4.47 8.
From (17.27) and Fig. 17.1, E, = 2(c +1.618/8) + 2(c + 0.618/8) = 4cx + 4.4723 .
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17.19

17.20

17.21

F=3"2_p,=1732-0.894=0.838=F,.
Fy =32 —(pget py;) =1.732-0.894 - 0.447 = 0.391 = F;. The larger value for carbon 1
indicates that an end carbon is preferentially attacked by free radicals.

() *

(b)

(c) Itisimpossible to do this for azulene:

For example, if we star carbons 1, 3, 4, 6, and 8, this leaves the unstarred atoms 9 and 10
bonded to each other

Equations (17.9) and (17.14) give > [(H* -6, .e)c,1=0, r=1,2,..., nc. From (17.11)
to (17.13): when s = r, the sum has the term (« —¢;)c,,; ; atoms s that are bonded to »
contribute the terms %, _,, Sc,;; atoms s not bonded to » contribute 0. Thus (17.9)
becomes (« —e¢;)c,; + 2, Pc,; = 0. Division by gand use of (17.20) gives

XC+ 2,0 =0, r=L2...,nc.

i S—r “si

(b) Let the two sets of carbons (starred and unstarred) be called A and B. Let the carbon
atoms in set A be numbered 1, 2,..., 4 and those in set B be numbered 2+ 1, 2 + 2,..., nc.

Then the set of equations in part (a) consists of the two sets
17-16
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17.22

17.23

17.24

XCy+ 2, ¢ =0, r=L2... h(setl)and x.c,, +2,,,¢c,; =0, r=h+1 h+2,..., nc
(set 2). Since the atoms r in the equations of set 1 belong to set A, the atoms s bonded to
each r in the set 1 equations belong to set B. In the equations of set 2, the atoms » belong
to B and the atoms s belong to A. We now make the following changes in all the equations

of sets 1 and 2. We replace x; by —x; and replace the coefficients of the atoms of set A by

their negatives. The set A atoms are the » atoms in set 1 and are the s atoms in set 2.
Hence the set 1 equations become (—x;)(—c,;)+2,,,¢; =0, r=1,2,...,h. These

S—r Usi

equations are unchanged from their previous forms and so are satisfied. The set 2
equations become (—x;)c,; +2,_,,(-¢c,;) =0, r=h+1 h+2,...,nc . The left side of each
equation has been multiplied by —1, and since the right side is zero, these equations are
still satisfied.

(a) From Fig. 17.5, the HMO energies are a + 24, a, a, a —2f . The molecule has four
melectronsand £, =2, ne =2(a+20)+Ua)+La) =4a + 4/ . The energy of the four
z electrons in two isolated double bonds is [as noted after E. (17.50)] 4a + 4/ .
Subtraction gives the delocalization energy as 0.

(b) As noted after Eq. (17.45), the lowest MO has k& = 0 and the next two MOs have
k=1 and k£ =3. From (17.44), the coefficients of the carbon 1 and 2 AOs in the occupied
l€2m/4 1 leG”i/4 __1:

_1 _1. _1 - ;- _1 -
MOsare cjo =3, 20 =37 G1=7 C21=73 =20 Q3=7%, 6373 2L

Then (17.54) gives pr, = ()33 +33) +3 QG 4i-3id) + 2O (-30) + 1141 =05

and p;3 =1.5. By symmetry, pyy = piot = pit =1.5.

From (17.53), X, ¢, =%, >, n; | ¢,F =X, n ¥, | ¢,,* =X, n; = n_, where we used the
normalization condition (17.16) and the fact that the sum of the numbers of z electrons in
the various HMOs gives the total number of z electrons.

(a) With the overlap integral for each pair of bonded carbons taken as S and the
assumptions (17.11) to (17.13) used, the HMO secular equation (17.9) for benzene is
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17.25

a—e f—Se 0 0 0 p-5e

pB—Se a-e [—Se 0 0 0
0  fp-S¢ a-¢ pf-S¢ 0 o
0 0  pB-S¢ a-¢ [-Se 0 |
0 0 0 B—Se a-e p-—Se

P —Se, 0 0 0 p—Se oa—e

w 1 0 0 0 1

1 w1 0 0 O

0 L w100 =0 where each row of the first determinant was divided by

0 01 w1l O

0 001 w1

1 00 0 1 w

L —Se,s0 w=(a—e)l(B-Se).

(b) Solving the definition of w in part (a), we get

o — a—-wp _ a—wp + Swa — Swa _ all-Sw) w(f-Sa) O/

To1-Sw 1-Sw 1-Sw 1-Sw 1-Sw

where y = - Sa .

(c) As noted in part (a), the w values are the same as the x values found without overlap.
Hence from (17.35), w = -2, -1, -1, 1, 1, 2. The formula in (b) with S = 0.25 gives ¢, =
a—(-2)yl[1-0.25(-2)] = +1.33y, +0.80y, ¢ +0.80y, « —1.33y, a« -1.33y, a -4y

(d) Use of the orbital-energy formula of part (b) gives

hc wuY Waol
el _, _go |, WHo!
2 “tumo T ¢Homo 1-Sw, ( 1— Swig

i:lWHO(l_SWLU)_WLU(l_SWHO) _r YHo — WLy
A he (1-Sw y)A—Swyo) he 1+ S%w yWio = S(WLy + Who)

The w values are the same as the x values found without overlap, and for an alternant
hydrocarbon, x;; = —xyo. SO Wy = —Wyo With overlap included. Hence wy ; + wyo =0.

and (Aw)? = 4w, SO w W =—wly =—1(Aw)?. The equation for 1/4 becomes

N b4 D\
A he 1-18%(Aw)®

From (17.60) and (17.63) with r =, F, . = Hoow + 30 X0 B, [(rr|tu) = (ru|tr)] =

TT,rr TT,Ir

Fp,=HZ0+ Zf:l Z2:1 BBy — %é‘rué‘tryrt) =Hpw + Zf:l(Pttyrt - %Ptré‘tryrt) =

T, rr T, rr T, rr

core b 1
H +Zt=l])tt7rt _fprr?/rr :

T, Ir
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17.26

From (17.60) and (17.63) with r = s, F, , = H % + 30 30 ) P, [(rs|tu) — 4 (rults)] =

TS TS

HE + 30 50 1 Py (0,587 —38,04570) = HSs + 04l B (0)7,, =3 B,6,7,,] =

TTrs TS

HP% %Py, where 6,  was replaced by 0, since r #s.

IS

There are two valence AOs, 1sa and 1sg, so the sum in (17.66) contains two terms and the
secular determinant in (17.68) has order 2. From (17.70), H{i' = HSY = -13.6eV . From
(17.71), Hfy =1@.75)(HS] + H3y )S), =-1.75(0.5)(13.6 +13.6)S), eV = —23.85), €V
The secular equation (17.68) is
Hlef -6 Hle;f — €51
Hlezff — €51 Hlef —¢
. Hif +Hy _ (-13.6723.8S;,)eV
’ 1+ 8, 1+ 8,
where R is in atomic units (bohrs). From (17.67), E,,; = 2e;. We set up a spreadsheet with
R values in column A, S;, values in column B, one E,, value in column C and the

second E,, in column D. The results are

i 2 ff 2 it i
=0, (Hy —¢)" —(H; —eS,)° =0, Hf] —e¢; =+(Hy, —eS;,)

where Sy, =e “(1+R+1R?)

-6

-11 4

161 Eva|/ev

-21 4

-26

.31 -

“‘::::::.

41 -

For all values of R, the E,,, found using the lower signs in the formula lies above the
other E., . The ground state E,, continually decreases as R decreases and the excited-
state E,, continually increases as R decreases. The EHT method (which omits

internuclear repulsion) fails completely, predicting a bond distance of 0.

If symmetry orbitals are used, then the unnormalized symmetry orbitals are
(@l Hert| &1) = (Hils + Hols| Hoge [Hils + Hols) = AT + HE) + 21 = 2(Hyf +Hyy')
and (g;|g;) = (H;Ls + H,1s|H,1s + H,1s) = 2+ 2S5,, . The symmetry orbitals g; and g,
belong to different symmetry species, so the secular equation for the ground electronic

17-19
Copyright © 2014 Pearson Education, Inc.



17.27

=0.So

state is ‘(gllHeff | &) —elalgw
¢ = (@l Her| 81 g1l @) = (Hil' + Hyy' )/(L+Sy,) = as above.

() We number the valence AOs as follows:

1 2 3 4 | 5| 6 7 8
Hils | Hpls | Hals | H,ls | C2s | C2p, | C2p, | C2p,

From (17.70), HST = g — & = BT = —13.6eV; HE = -208eV,

HE = S = g — _11.3eV. The molecule is tetrahedral with R.,, =1.09, A = 2.06;
bohr. The distance between two H's is given by the law of cosines as

R/ A =[(1.094)% + (1.094)2 — 2(1.094)(1.094) c0s109.47°T2 = 1.094(8/3)2 =1.786 and
Ry =3.376 bohr. Equation (13.60) with k£ =1 gives S;, = Sj3 =--- =S5, =0.2795.
Orthogonality gives Sgg = Sg; = Ssg = Sg7 = Sgg = S75 = 0. Slater's rules give the orbital
exponents as 1.625 for C2s and C2p and 1 for Hls.

For S5 = (H,1s| C2s) , the parameters defined in the Prob. 15.24 solution have the
values p = %(1+1.625)2.067 =2.713, t =(1-1.625) / (1+1.625) = —0.238.. Interpolation
in the MROO reference of Prob. 15.29 gives S;5 = 0.568 = S,5 = S35 = Sys5.

To evaluate S;5 =(H;1s|C2p,), we express C2p. as a linear combination of a 2p
AO on an axis that points to H; (a 2po AO) and a 2p AO on an axis perpendicular to the
C-Hq line (a 2pz AQ), as was done in Prob. 15.24. The x axis and the C-H; line in Fig.
15.9 are in the directions (1, 0, 0) and (1, 1, 1), respectively. Use of the vector dot product
shows that the angle « between these directions satisfies 1(1) + 0(1) + 0(1) = 1(31’ 2Ycosa,
s0 cosa =3Y2 and « =54.736° . We use modified versions of Fig. 15.6 and Eq. (15.40)
in which zand z" are changed to x and x', respectively. The 2p, and 2p, AOs are
proportional to x and y, respectively, and multiplication of the modified equations in

(15.40) by the exponential part of a 2p AO gives
2py=2po=2p,cosa+2p,sina and 2p,=2pr=-2p sina+2p, cosa.

(Note that the y direction in these equations is not the same as the y direction in Fig. 15.9.)
From these two equations, we get (using Cramer's rule)
2p, =2pocosa—2prsina =0.5773(2po) —0.8165(2 pr)
Then (H,1s| C2p,) = 0.5773(H,1s| C2po) — 0.8165(H,1s| C2px) . The overlap of the
negative half of C2pz with H;1s cancels the overlap of the positive half of C2pz with
Hils, so (H,1s| C2pz) = 0. For (H;1s|C2po), p = 2.713 and ¢ = —0.238. Interpolation in
the MROO tables gives (H;1s|C2po) = 0.464, so (H,1s|C2p,) =0.5773(0.464) = 0.268
= Si-

The angle between the C-H, line and the y axis (or the z axis) in Fig. 15.9 is the same
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as that between C-H, and the x axis, so (H;1s|C2p,) =(H,1s|C2p ) = (H,1s[C2p,) =
The angle g between the C-H, line and the positive side of the y axis in Fig. 15.9 is

found (using the dot product) to have cos 8= -3, and the same procedure used for
(H1s[C2p,) gives (H,1s|C2p,) =-0.268 = Sy, . (This is clear from Fig. 15.9, where

we see that whereas Hils overlaps mainly the positive half of C2p,, H,1s overlaps
mainly the negative half of C2p,.) Similarly, (H,1s|C2p,) =-0.268 = S,. Also,
Sys = 0.268, Sy =—0.268, S, = 0.268, S,g = —-0.268, S, =—0.268, S,; = —0.268,
S, = 0.268.

Equation (17.71) gives Hf2ﬁ =0.5(1.75)(-13.6 eV —-13.6eV)0.2795 = —6.65eV =
HE = g = g8 BET = 0.5(1.75)(-13.6 eV — 20.3eV)0.568 = —16.8 eV =
Hys = Hys = Hyg,
H = B = B2~ 0.5(1.75)(-13.6 eV —11.3eV)0.268 = -5.84 eV ;
HE = HS —=5.84eV, etc.

The secular equation det(H#" — ¢S

1 rs) = O IS

a-e d—-Sye, d-Sye, d-Spe. f-Sge k—Sge k—Sge k—Sge
d - Spe; a-e d—-Spe, d-Spe, f—Sge k—Sge —k+Sge —k+Sge
d—Spe, d—Sp,e a-—e d—Spye, f—Sse —k+Sge k—Sge. —k+Spge
d-Spe, d—Spe d—Spye a-e f—=Sie, —k+Sge —k+Sge  k—Sge

=0
f—Sse. f-Sse [f—-Sse f—S55se b-e 0 0 0
k—Sgee; k—Sge, —k+Sge —k+Spge 0 c—g 0 0
k—Sge; —k+Sge, k—Sge, —k+Sge 0 0 c—e 0
k—Syge. —k+Sge —k+Sge k-Sge 0 0 0 c—e

where a =-13.6eV, b=-208eV, ¢=-11.3eV, d =-6.65eV, f=-16.8eV,
k =-5.84eV, and the S values are given earlier in this solution.

(b) The unnormalized symmetry orbitals for the hydrogens are given by (15.42) to
(15.45). The C2s, C2p,, C2p,,, C2p, AOs are symmetry orbitals. Let the symmetry

orbitals (15.42) and C2s, which belong to symmetry species «;, be numbered 1 and 2. Let
the #, symmetry orbitals be numbered as follows:

(15.43) | C2p, | (15.44) | C2p, | (15.45) | C2p.

&3 &4 &s &6 &7 &8
The matrix elements for the g, orbitals are

(g1 Heg | 1) = (Hyls + H,ls + Hyls + HyLs| Hyge |[HyLs + HyLs + Hals + H,1s) =

HE + HE + HE + HEY + 2HE + 2HE 4 2T 4 20T + 2HS + 2HS =

4H{"If +12Hf§f =4a+12d (where the notation and AO numbering of part (a) are used);
(g1l Hegr | €20 = (Hyls + HyLs + Hols + H,ls| Hyg |C25) = 4HE = 4f
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(95| Hegr | £2) = (C25| Hoge | C25) = HEY = b;
(g1lg1) = (Hils + HyLs + Hals + H s |H s + Hyls + Hals + Hyls) = 4 +128,, ;
(g1lg,) = (H{Ls + H,yls + Hyls + H, 15| C2s) = 48,5 (g, g,) = (C25|C2s) =1.
The g, secular equation is
4a+12d — (4+12S,,)e; 4f —4S;ce;
4f - 48, b—e |

0

The matrix elements for the ¢, orbitals are
(g3l Hyt | g3) = (Hyls + Hyls — Hals — H,ls| Ho |Hyls + H,ls — Hals — H,ls)
—H 1S B g omS _opS ot o _op St 4o
—4H 4l = 40— 4d;
(23l Hetr | 84) = (Hyls + Hyls — Hyls —H,1s| Ho [C2p,) = Hig' + H3{ — H — Hifl = 4k
(galHy | g5) = (Hyls + Hyls — Hals — H,ls| H o |Hyls — HoLs + Hyls — H,s)
= Hf —H3; —Hg3 +Hg +--=0;
(23l Hetr | 86) = (Hils + Hols — Hyls —H,1s| Hy [C2p,) = HY' + HyY — Hgy — HiY =0;
(g3 Hor | g7) = (Hils + H,yls — Hyls — HLs | H o |Hyls — Hyls — Hyls + H, sy = 0;
<g3|I:Ieff | gg) = (HiLs + Hpls — Hgls - H415|I:Ieff |IC2p,) = Hlegf +H§g —H??sfaf _Hig =0;
(24| Hett | 4) = (C2p, | Hyt |C2p,) =
<g4|I:Ieff | gs) = <C2px|1:[eff |Hils — Hpls + Hgls — Hyls) = Hlegf _Hze(fsf +H3eefsf —Hfg =0
(g4l Het | 86) =(C2p, | Hy IC2p,) =0;
<g4|[:1eff | g7) = <C2px|1:1eff |Hyls —Hyls — Hals + Hyls) = Hlegf _Hgg _He?gf +H§g =0;
(84| Hegr | g5) =(C2p, | He |C2p.) = 0;
(gs|Heo | g5) = (Hyds — HyLs + Hals — H Ls| H o |Hyls — Hyls + Hyls — H,Ls)
= 4HE —aHE = 40 - 44;
(25| Herr | g6) = (Hils = Hyls + Hyls —H,1s| Hy |C2p, ) = HYY' — H3Y + HSY — HEY = 4k
(gs|Het | g7) = (Hyls — HyLs + Hals — HyLs| Hogr [Hyds — Hols — Hyls + H, sy = 0;
<g5|f}eff | gg) = (Hyls —H,1ls + Hyls — H4:|-S|I:Ieff |IC2p,) = Hlegf _Hzeg +H36g _Hig =0;
(g6 Herr | g6) =(C2p, | Hys IC2p,) = ¢
(g6 Hett | 27) =<C2py|l:leff |HyLs —H,Ls —Hyls + H,ls) = H' — Hyy — Hiy +Hgy =0;
(g6 Herr | g5) = (C2p, | Hys IC2p.) = 0;
(g7|Heu | g7) = (Hyls — Hyls — Hals + HyLs| Hoge | Hyds — HoLs — Hals + H,1s)
= 4H —4aH = 40 - 44;
(87| Hegr | 5) = (Hyls —Hyls — Hyls + H,ls| Hot C2p.) = Hyy — Hyg — Hig + Hyy =4k
(gs|Hotr | g5) = (C2p. | Hy IC2p.) =
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(g3lgs) =(Hls + H,1s — H3ls — H,1s|H 15 + H, s — Hyls — H,1s) = 4 - 48,
(g3184) = (HiLls + Hyls — Hgls = H,1s|C2p, ) = Sig + Sy — Sz — Sag = 4516 ;
(g3lgs) =(Hils + H,1s — Hyls — H,1s|H s — H,1s + Hyls — H,1s) =0
(g3186) = (Hils + HyLls —H3ls —H,1s[C2p, ) = S17 + 857 — Sg7 = S47 =0
(g3lg7) = (H{ls + H,yls — Hyls — H,1s|H; s — H,1s — Hils + H,1s) = 0;
(g3lgs) =(Hils + Hyls —Hgls —H,1s|C2p,) = Sy + Sy — S35 — Sag = 0;
(g4lg4) =(C2p,|C2p,) =1,
(84185) =(C2p, |Hils —H,ls + Hyls — Hyls) = S5 — Spg + S35 — Sss = 0;
(g4126)=(C2p,|C2p,)=0
(84lg7) =(C2p, [Hils —Hyls —Hjls + H,ls) = Sjg — Sp6 — S35 + 54 =0
(84lgs) =(C2p,|C2p.) =0;
(gs5]gs) = (Hils —Hyls + Hyls — H,1s|H s — H,Ls + Hyls — H,1s) = 4 - 48,5,
(8s1ge) = (Hils —Hjls + Hyls —H,1s[C2p,, ) = Sy7 = Sy7 + S37 — Sa7 = 45465
(gs]g7) =(H;ls —H,1s + Hyls — H,1s|H; s — H,1s — Hyls + H, Ls) = 0;
(8s1gg) = (Hils —Hyls + Hyls = H,1s|C2p, ) = S15 — Spg + S35 — Sag =0;
(gslgs) =(C2p,|C2p,) =1;
(gslg7) =(C2p,[Hils —H,ls — H3ls + Hyls) = 817 = Sp7 = S37 + 47 =0;
(gelgs) =(C2p,|C2p,)=0;
(g71g7) =(HLs —H,L1s —H3ls + H,1s|H,1s — H,1s — Hyls + H,Ls) =4 - 4S5,,;
(g718g) =(Hils —HyLs —H3ls + Hy1s[C2p, ) = S5 — Spg — Szg + Sug = 456
(gslgs) =(C2p.|C2p,) =1.

The secular equation is

A B O 0 0 0

B c—-¢ O 0 0 0

0 0 4 B O 0

0 0 B oc-e 0 0|70
0 0 0 0 A4 B

0 0 O 0 B c-g

where 4 =4a—-4d —(4-4S),)e;, B =4k —4S5¢;, and the notation is as in part (a).

17.28 In the ZDO approximation (17.62) and (17.63), (rs|tu) equals J,.0,,7,, and is zero

unless » = s and ¢ = u. The CNDO method uses the ZDO approximation for all electron-
repulsion integrals, and so neglects all integrals with » = s and/or with ¢ = u . Thus
CNDO neglects integrals b, d, e, f, and g. INDO neglects fewer integral than CNDO, in
that the ZDO approximation is not applied when r, s, ¢, and u are all centered on the same
atom. The AOs in integral b are all on the same atom, so INDO does not neglect b but
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still neglects d, e, f, and g. MNDO uses the NDDO approximation, in which the ZDO

approximation f*(1) £, (1) dv,=0 is used only when f. and f, are on different atoms.
Hence in NDDO, (rs|tu) in (14.39) is zero only if either » and s are on different atoms or

t and u are on different atoms. Hence MNDO does not neglect integrals b and f, but
neglects d, e, and g. AM1 neglects the same integrals as MNDO, namely, d, e, and g.

17.29 Substitution in the equation on p. 627 gives AH;’ZQ&HZO(g) =

(6.02214 x10% mol)(~493.358 +144.796 + 2-11.396 + 316.100) eV +

[2(52.102) + 59.559] kcal/mol =
—(5.82341x10%* eV)(1.602177 x107° J/eV) +163.763 kcal/mol =

—933.013 kJ/mol + 163.763 kcal/mol = -59.232 kcal/mol

17.30 (a) The results are (where C; is an end carbon)

propane | #/D AHS$ o5, | RoolA| RoplA | RoplA | ZCCC | ZHCiH | ZHCoH

AM1 0.004 | —24.3 kcal/mol | 1.507 | 1.117 1.122 111.8° | 108.4° | 107.1°
PM3 0.005 | —23.6 kcal/mol | 1.512 | 1.098 1.108 111.8° | 107.4° | 105.6°
exper. | 0.083 | —25.0 kcal/mol | 1.526 | 1.09; 1.096 112.4° | 107.;° | 106.1°

(b)

HeS | #ID | AHS o, | RuslA | ZHSH

AM1 | 1.98 |4.0kcal/mol |1.317 | 98.8°
PM3 | 1.77 | -0.9 kcal/mol | 1.290 | 93.5°
exper. | 0.97 | -4.9 kcal/mol | 1.328 | 92.2°

(©)

benzene AH;ngg ReclA | RenlA

AM1 22.0 kcal/mol | 1.395 | 1.110
PM3 23.5 kcal/mol | 1.391 | 1.095
exper. | 19.8 kcal/mol | 1.397 | 1.084
17.31 The differences between AH;‘ZQ& o for the geometry-optimized eclipsed and staggered

forms give a barrier of 1.25 kcal/mol in AM1 and 1.4 kcal/mol in PM3. These results are
in poor agreement with the experimental value 2.9 kcal/mol.

17.32 The results are

CH,O | #/D | ReplA | ReolA | ZHCH
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AM1
exper.

2.32
2.33

1.110
1.111

1.227
1.205

115.6°
116.1

wavenumbers/cm™ | b b, a | @ | @ | b

AM1

1155*

1162*

1443

2053

3121

3083

experimental

1167

1249

1500

1746

2783

2843

where the symmetry species of the vibrations are listed. (*One finds that different
programs running AM1 give somewhat different wavenumbers for the two lowest
frequencies.)

17.33 Partial results are (where the carbons are numbered 1, 2, 3, 4 starting at one end)

butane AM1 | /D AH'; 5o R,IA | Ry/A | D(4321) | 123
gauche 0.005 | =30.5 kcal/mol | 1.507 | 1.515 | 74.7° 112.7°
anti 0 —31.2 kcal/mol | 1.507 | 1.514 | 180° 111.6°

17.34 Results are (where the conformers | and Il are shown in the Prob. 15.57 solution)

AM1 U /HC=0 | L0OCO | «COH RCH RC:O Rco ROH
| |148D| 130.1° | 117.6° | 110.6° | 1.103A | 1.230 A | 1.357 A | 0.971 A
Il |4.02D| 127.3° | 114.1 | 109.6° | 1.105A | 1.227 A | 1.366 A | 0.966 A

The predicted AH;’zg8 values are —97.4 kcal/mol for | and -90.0 kcal/mol for II.

17.35 (a) Use of MOPAC in WebMO to first optimize the geometry and then find the

vibrational wavenumbers gives the following PM6 results: 249, 1003, 1074, 1137.5,
1250.3, 1250.6, 1321, 1354.5, 2556, 2674, 2683, 2759 cm™.
(b) With anharmonicity neglected, the zero-point energy (ZPE) per molecule is

Lhey, v, =0.5(6.6261x107** J5)(2.9979x10° m/s)(19311 cm™)(100 cm)/(1 m) =

1.918x107%° J. The ZPE per mole is
(1.918x107 J)(6.0221x10%® mol™) =115.5 kJ/mol = 27.6 kcal/mol.

(c) 1138 cm™ for CO stretching; 2556 cm™ for OH stretching; 249 cm™ for CO torsion;
1355 cm™ for COH bending; 2759 cm™ for symmetric CH stretching.

(d) The Tables of Molecular Vibrational Frequencies Consolidated Volume I, T.
Shimanouchi, at www.nist.gov/data/nsrds/NSRDS-NBS-39.pdf gives the following
fundamental wavenumbers in cm™: 1033 for CO stretching, 1060 for CH; rocking, 1165
for CH3 rocking, 1345 for OH bending, 1455 for CH3 symmetric deformation, 1477 for
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CH3; deformation, 1477 for CH3 deformation, 2844 for symmetric CHj stretching, 2960
for CHg stretching, 3000 for CHg stretching, 3681 for OH stretching. Because of
interaction between torsion (internal rotation) and molecular rotation, the torsional
frequency is not well defined, but this reference lists two related quantities as 200 and 295
cm . The PM6 OH stretching shows a huge error.

Use of MOPAC in WebMO to first optimize the geometry and then find the vibrational
wavenumbers gives the following RM1 results in cm™: 308 (CO torsion), 1011, 1094,
1257, 1260, 1280, 1381 (COH bending), 1461 (CO stretching), 2957, 2977, 3018
(symmetric CH stretching), 3332 (OH stretching).

17.36 Results are

AM1 Ruc/A | RentA | Run/A | ZHCN
HCN 1.069 | 1.160 180°
transition state | 1.298 | 1.216 | 1.398 | 67.5°
HNC 1.178 | 0.967 | 180°

17.37 (a) F3COH has 5 bonds and so has 5 bond-stretching terms. There are %(4)3 =6 different

ways to select two of the four atoms bonded to C, so there are 6 bond angles centered at C.
There is one bond angle at O. Thus there are 7 bond-bending terms. There are three 1,4
atom pairs, namely, F,-H, F, -H, F.-H, where the subscripts label the F atoms bonded to

C. Hence there are 3 torsion terms. With three 1,4 atoms and no 1,5 atoms, there are 3 van
der Waals terms and 3 electrostatic terms.

(b) CI3CCCI,OH has 8 bonds and so has 8 bond-stretching terms. There are 6 bond angles
centered at the end C, 6 centered at the second C, and one at the O, giving 13
bond-bending terms. There are 9 pairs of 1,4 atoms that have the two carbon atoms as
atoms 2 and 3 (as in ethane), and 3 pairs of 1,4 atoms that have C and O as atoms 2 and 3,
so we have 12 torsion terms. Besides these twelve 1,4 atom pairs, there are three 1,5 atom
pairs, each such pair consisting of an H and one of the Cl atoms on the end C. Thus there
are 15 van der Waals terms and 15 electrostatic terms.

17.38 (a) Setting ¥ =0 at R = o, we have 0 =a/c™® —blo® and a = bo® . Substitution of this
expression for a into V gives ¥ = bo®/R? —bIR®.

(b) At the minimum, we have dV/dR =0 = -12bc°/R* + 6b/R" . Solving this equation
for R, and calling the result R*, we get R*=2"°%5 .
(c) Use of the V" expression found in part (a) gives V() =0 and

V(R*) = bo®1(2Y8 )% — b1(2Y% 5)® = —bl4c®. S0 & =V (00) =V (R*) = bl4c® and
b=4c".
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17.39

17.40

17.41

(d) Substitution of b = 4c°¢ into V =bo®/RY —bIR® gives V = 4e[o?/R* —®/R®].
Substitution of o = 2% R* into the last expression for ¥ gives
V = e[(R*)2IRY - 2(R*)°IR®].

Spartan Student Version 5.0 (which has the MMFF94s force field) gives these results for
the two planar conformers shown in the Prob. 16.46a solution:

ZHC=0

£0CO

ZCOH

Ren

Rc=0

Rco

Ron

126.7°

121.8°

104.3°

1.100 A

1.217 A

1.342 A

0.980 A

124.6°

124.3

112.0°

1.101 A

1.217 A

1.346 A

0.976 A

The steric energies are —0.040756 hartrees or —107.005 kJ/mol for | and —0.0329555
hartrees or —86.525 kJ/mol for 1l, so E,, — E, = 20.48 kJ/mol = 4.89 kcal/mol.

If we choose Comprehensive-Mechanics in the Clean-Up menu in the Editor in
WebMO Version 13.0 (www.webmo.net), we get (to view a bond length or angle, click on
the Adjust arrow icon and then click and shift-click on the relevant atoms to select them)

Z/HC=0 | Z0CO | LCOH Rch Rc=o0 Rco Ron
| | 127.1° | 121.8° | 102.3° | 1.116 A | 1.206 A | 1.344 A | 0.972 A
11| 124.9° | 1257 | 108.4° | 1.115A | 1.209A | 1.348 A | 0.971 A

The steric energies are —3.348 kcal/mol for | and 3.608 kcal/mol for I, so E,, — E, = 6.96
kcal/mol.

Spartan Student 5.0 (which has the MMFF94s force field) gives the steric energy as —
19.809 kJ/mol for the staggered conformation and —6.358 kJ/mol for the eclipsed
conformation, for a barrier of 13.45 kJ/mol = 3.21 kcal/mol. Comprehensive-Mechanics in
the Clean-Up menu in the Editor in WebMO Version 13.0 (www.webmo.net) gives 0.816
kcal/mol for the eclipsed and 3.548 kcal/mol for the staggered, for a barrier of 2.73
kcal/mol. (See the online manual for how to adjust a dihedral angle.)

Spartan Student 5.0 gives the steric energy as —21.24 kJ/mol for the anti conformer and
-17.97 kJ/mol for the higher-energy gauche conformer, for an energy difference of 3.27
kJ/mol = 0.78 kcal/mol. The CCCC dihedral angle in the gauche conformer is predicted to
be 65.3°. The predicted CC bond distances are C1C2 = 1.520 A, C2C3 = 1.527 A in the
anti conformer and C1C2 = 1.521 A, C2C3 = 1.529 A in the gauche conformer.

Comprehensive-Mechanics in the Clean-Up menu in the Editor in WebMO
(www.webmo.net) gives 2.172 kcal/mol for the anti conformer and 3.035 kcal/mol for the
gauche conformer, for an energy difference of 0.86 kcal/mol. The gauche CCCC dihedral
angle is predicted to be 65.2°. The CC bond distances are predicted to be C1C2 = 1.534 A,
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C2C3 =1.537 A in the anti conformer and C1C2 = 1.534 A, C2C3 = 1.538 A in the
gauche conformer. (To view a bond length or angle or dihedral angle, click on the Adjust
arrow icon and then click and shift-click on the relevant atoms to select them.)

17.42 Use of Tinker in WebMO to first optimize the geometry and then find the vibrational
wavenumbers gives the following MM3 wavenumbers in cm™: 263 (torsion), 1053 (CO
stretching), 1087, 1107, 1288 (COH bending), 1432, 1447, 1485, 2874 (symmetric CH
stretching), 2972, 2977, 3680 (OH stretching). These are in much better agreement with
experiment than the semiempirical results. (These is also a 10 cm™ wavenumber listed,
but when viewed this is seen to involve rotational, not vibrational, motion.) The ZPE is
found to be 2.152x107° J per molecule and 129.6 kJ/mol.

17.43 Spartan Student 5.0 (which has the MMFF94s force field) gives the following geometries
for the two conformers shown in the Prob. 16.46 solution:

/H5C=C | Z/ZHCH | Z/CCO | ZHCO | ZCOH | Rcpa! A | Reps/A | Re=c/A
| | 120.7° | 118.2° | 121.7° | 114.5° | 108.2° | 1.084 | 1.085 | 1.331
11| 122.4° | 1175 | 1245° | 111.5° | 108.7° | 1.086 | 1.084 | 1.333

RenslA | ReolA | RoplA | D(CCOH)
| | 1.082 | 1.365 | 0.973 180°
11| 1.084 | 1.365 | 0.973 0°

The steric energies are 6.337 kJ/mol for | and 0.343 kJ/mol for Il, for an energy difference
of 5.99 kJ/mol = 1.43 kcal/mol with 1l more stable at 0 K.

Comprehensive-Mechanics in the Clean-Up menu in the Editor in WebMO gives
2.113 kcal/mol for conformer | and —0.516 kcal/mol for conformer 11, for an energy
difference of 2.63 kcal/mol. Bond lengths are 1.340 A for CC and 1.357 A for CO in
conformer 1, and 1.339 A for CC and 1.357 A for CO in conformer 1.

17.44 (a) Spartan Student 5.0 (which has the MMFF94s force field) gives these results

/FCC | ZHCC | RcelA | RewlA | Re=clA Esteric

cis CHFCHF 121.9° | 126.6° | 1.345 | 1.079 | 1.327 8.73 kJ/mol
trans CHFCHF | 121.7° | 126.4° | 1.345 | 1.079 1.326 2.12 kJ/mol
The trans isomer is predicted to be more stable by 6.61 kJ/mol = 1.6 kcal/mol.
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Comprehensive-Mechanics in the Clean-Up menu in the Editor in WebMO Version
13.0 (www.webmao.net) gives

/FCC | ZHCC | RcelA | RewlA | Re=clA Esteric
cis CHFCHF | 121.8° | 119.9° | 1.323 | 1.102 | 1.343 | 1.552 kcal/mol
trans CHFCHF | 121.0° | 120.2° | 1.323 | 1.102 | 1.342 | 2.509 kcal/mol

The cis isomer is predicted to be more stable by 0.96 kcal/mol. (For the experimental
results, see part (c) below.)

(b) Comprehensive-Mechanics in the Clean-Up menu in the Editor in WebMO gives

ZCICC | ZHCC | Rccl/A | Row/A | Re=c/A Esteric
cis CHCICHCI 124.9° | 122.0° | 1.722 | 1.102 1.340 | 2.661 kcal/mol
trans CHCICHCI 122.0° | 124.1° | 1.721 | 1.102 1.339 | 2.716 kcal/mol
The cis isomer is predicted to be more stable by 0.06 kcal/mol.
(c) Comprehensive-Mechanics in the Editor in WebMO gives
ZICC | ZHCC | Rc/A | RewlA | Re=clA Esteric
cis CHICHI 127.4° | 120.7° | 2.079 | 1.102 1.339 | -0.19 kcal/mol
trans CHICHI 122.9° | 123.7° | 2.077 | 1.102 1.339 | -0.19 kcal/mol

The isomers are predicted to be of equal stability.
Experimental data show that for CHFCHF, the cis isomer is more stable than the
trans by 1.1 kcal/mol and for CHCICHCI, the cis isomer is more stable by 0.7 kcal/mol
[N. C. Craig etal., J. Phys. Chem., 75, 1453 (1971)]. For CHICHI, the cis—trans energy
difference is 0.0 kcal/mol [S. Furuyama et al., J. Phys. Chem., 72, 3204 (1968)].
In view of electrostatic and steric repulsions between the cis halogens, the greater
stability of many of the cis isomers is surprising and not yet fully explained.

17.45 (a) For CH3CH,CHjs, AH;"298 = 2.05 kcal/mol + 8(—4.590 kcal/mol) + 2(2.447 kcal/mol)
+ 4(0.001987 kcal/mol-K)(298.1K) + 2(1.045 kcal/mol) =-25.32 kcal/mol.

(b) For (CH3)sCH, AH ; yo5/(kcal/mol) = 3.18 + 10(-4.590) + 3(2.447) +
4(0.001987)(298.1) + 3(1.045) — 2.627 = —32.50.

(c) For CaHs, AH § p5 /(kcal/imol) = 32.63 + 8(~4.590) + 4(2.447) + 4(0.001987)(298.1)

-1.780=6.29.

(d) Three; two gauche conformers that are mirror images of each other and one anti

conformer.
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17.46 (a) CH,=CHCH=CHCH==CHj, has 6 x electrons, so the HOMO is the third lowest and
has two nodes (not counting the node in the plane of the carbons), as follows:

+ - .+

OO

C CiCc CciC C

— : + ° _

The 7= AOs on the two end carbons have the same signs for their upper lobes, so a figure
like Fig. 17.12 but with the signs reversed for one of the end AOs shows that a disrotatory
path produces a bonding interaction. The reaction path is predicted to be disrotatory.

(b) For the photochemical reaction, a photon excites an electron from the HOMO shown
in part (a) to an MO with three nodes, and the HOMO is now

OO0

[The signs of the AOs can be found from Eq. (17.30).] The # AOs on the two end carbons
have opposite signs for their upper lobes, so the reaction path is predicted to be
conrotatory.

(c) The polyene (17.28) has 2s + 2 carbons and has n, = 2s + 2 = electrons. These

electrons fill the lowest s + 1 MOs. The highest-occupied 7 MO has s nodes. As we go
from one end of the molecule to the other, each node produces a sign change. If s is an
even number, then an even number of sign changes gives the sign of the upper lobe on the
last carbon as the same as the upper lobe on the first carbon. Hence, as in parts (a) and (b),
if s is even, the thermal reaction proceeds by a disrotatory path and the photochemical
reaction goes by a conrotatory path. If s is an odd number, an odd number of sign changes
gives the sign of the upper lobe on the last carbon as the opposite of the upper lobe on the
first carbon. Hence, if s is odd, the thermal reaction proceeds by a conrotatory path and the
photochemical reaction goes by a disrotatory path.
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17.47 (a) The HOMOs (shaded) and LUMOs are

o ls ogls
G D@ wm

The overlap is not positive and a high activation energy is predicted for a broadside path.
(b) From Sec. 13.7, the N, HOMO is o, 2p and the N, LUMO is ﬂ;‘2p . The O, HOMO
is 7;2p and the O, LUMO is also z;2p . (Each of the two z;2p MOs in O is half-

20,
OO DE™

JIoN
@@@ 7 % %ﬂzzp

The overlap between the N, HOMO and the O, LUMO is not positive. The overlap
between the O, HOMO and the N, LUMO is positive, but flow of electrons out of the O,
HOMO, which is antibonding, would strengthen the oxygen—oxygen bond. Hence a high
activation energy is predicted for a broadside path. (The phase of a wave function is
arbitrary, and in the figure, the O, HOMO and the N, LUMO have been given opposite
phases.)

(c) Although the following figures show some positive overlap, flow of electrons out of
antibonding HOMOs would strengthen a bond that needs to be broken, so a high
activation energy is predicted. [Since the HOMOs are antibonding, one should also
consider electron flow out the highest-occupied bonding MO (whose shape is shown by
the o,2p MO in Fig. 13.11) of one species into the LUMO of the other. These MO pairs

do not have positive overlap.]
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2
Br@@BrQ:4p @ @zg@
Fi i 732p ,2p
OQ .

(d) The ethylene HOMO is a z, MO and the LUMO is a ﬂ;‘ MO (see Sec. 15.9). In the

following figures, the plane of the ethylene molecule is perpendicular to the plane of the
paper. A high activation energy is predicted.

D0 -
o8 TS
@ o CHE
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