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Chapter 1 

The Schrödinger Equation 

 
 
1.1 (a)  F;   (b)  T;   (c)  T.  
 
1.2 (a)  photon /E h hcν λ= = = (6.626 × 10–34 J s)(2.998 × 108 m/s)/(1064 × 10–9 m) =  

1.867 × 10–19 J.  
 (b)  E = (5 × 106 J/s)(2 × 10–8 s) = 0.1 J = n(1.867 × 10–19 J) and n = 5 × 1017. 
 
1.3 Use of photon /E hc λ=  gives 

23 34 8

9
(6.022 10 )(6.626 10  J s)(2.998 10  m/s) 399 kJ

300 10  m
E

−

−
× × ×

= =
×

 

 
1.4 (a)  maxT hν= −Φ =   

(6.626 × 10–34 J s)(2.998 × 108 m/s)/(200 × 10–9 m) – (2.75 eV)(1.602 × 10–19 J/eV) =  
5.53 × 10–19 J = 3.45 eV.  

 (b)  The minimum photon energy needed to produce the photoelectric effect is  
(2.75 eV)(1.602 × 10–19 J/eV) = hν =hc/λ = (6.626 × 10–34 J s)(2.998 × 108 m/s)/λ  
and λ = 4.51 × 10–7 m = 451 nm. 

 (c)  Since the impure metal has a smaller work function, there will be more energy left 
over after the electron escapes and the maximum T is larger for impure Na. 

 

1.5 (a)  At high frequencies, we have / 1b Te ν >>  and the 1−  in the denominator of Planck’s 
formula can be neglected to give Wien’s formula. 

 (b)  The Taylor series for the exponential function is 21 /2! .xe x x= + + +  For 1,x <<  
we can neglect 2x  and higher powers to give 1 .xe x− ≈  Taking /x h kTν≡ , we have for 
Planck’s formula at low frequencies 

 
3 3 3 2

/ 2 / 2 2
2 2 2

1 ( 1) ( / )b T h kT
a h h kT

e c e c h kT cν ν
ν π ν π ν πν

ν
= ≈ =

− −
 

 
1.6 /h mλ = v 137 /h mc= =  137(6.626 × 10–34 J s)/(9.109 × 10–31 kg)(2.998 × 108 m/s) =  

3.32 × 10–10 m = 0.332 nm. 
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1.7 Integration gives 21
0 0 22 ( ) .x gt gt t c= − + + +v  If we know that the particle had position 

0x  at time 0,t  then 21
0 0 0 0 0 22 ( )x gt gt t c= − + + +v  and 21

2 0 0 0 02 .c x gt t= − − v  Substitution 

of the expression for 2c  into the equation for x gives 21
0 0 0 02 ( ) ( ).x x g t t t t= − − + −v  

 

1.8 2 2 2( / )( / ) ( /2 )( / )i t m x V− ∂Ψ ∂ = − ∂ Ψ ∂ + Ψ . For 
2 / ,ibt bmxae e− −Ψ =  we find 

/ t ib∂Ψ ∂ = − Ψ , 1/ 2 ,x bm x−∂Ψ ∂ = − Ψ  and 2 2 1 1/ 2 2 ( / )x bm bm x x− −∂ Ψ ∂ = − Ψ − ∂Ψ ∂  
= 1 1 1 1 2 2 2 22 2 ( 2 ) 2 4bm bm x bm x bm b m x− − − − −− Ψ − − Ψ = − Ψ + Ψ . Substituting into the 
time-dependent Schrödinger equation and then dividing by Ψ, we get 

 2 1 2 2 2 2( / )( ) ( /2 )( 2 4 )i ib m bm b m x V− −− − Ψ = − − + Ψ + Ψ  and 2 22V b mx= . 

 
1.9 (a)  F;   (b)  F.  (These statements are valid only for stationary states.) 
 

1.10 ψ satisfies the time-independent Schrödinger (1.19). 
2

/ cxx beψ −∂ ∂ =
222 cxbcx e−− ; 

22 2/ 2 cxx bcxeψ −∂ ∂ = − −
2 22 34 4cx cxbcxe bc x e− −+  = 

2 22 36 4cx cxbcxe bc x e− −− + . Equation 

(1.19) becomes  
2 22 2 3( /2 )( 6 4 )cx cxm bcxe bc x e− −− − +  + 

2 22 2 2(2 / ) cx cxc x m bxe Ebxe− −= . 
The x3 terms cancel and 23 /E c m= =   
3(6.626 × 10–34 J s)22.00(10–9 m)–2/4π2(1.00 × 10–30 kg) = 6.67 × 10–20 J. 

 
1.11 Only the time-dependent equation. 
 
1.12 (a)  2 3 2 2| |/| | (2/ ) x bdx b x e dx−Ψ = =  

9 3 9 2 2(0.90 nm)/(3.0 nm) 92(3.0  10  m) (0.90  10  m)  (0.0001  10  m)e− − − − −× × ×  = 3.29 × 10–6. 
 (b)  For 0,x ≥  we have | |x x=  and the probability is given by (1.23) and (A.7) as 

2 nm 2 nm2 3 2 2 / 3 2 / 2 2 3 2 nm
00 0

| | (2 / ) (2 / ) ( /2 /2 /4) |x b x bdx b x e dx b e bx xb b− −Ψ = = − − −∫ ∫  = 
2 / 2 2 2 nm

0( / / 1/2) |x be x b x b−− + +  = 4/3(4/9 2/3 1/2) 1/2e−− + + +  = 0.0753. 

 (c)  Ψ is zero at x =0, and this is the minimum possible probability density. 

 (d)  
02 3 2 2 / 3 2 2 /

0
| | (2/ ) (2/ ) .x b x bdx b x e dx b x e dx

∞ ∞ −
−∞ −∞

Ψ = +∫ ∫ ∫  Let w = –x in the first 

integral on the right. This integral becomes 
0 2 2 / 2 2 /

0
( ) ,w b w bw e dw w e dw

∞− −
∞

− =∫ ∫  which 

equals the second integral on the right [see Eq. (4.10)]. Hence 
2 3 2 2 / 3 3

0
| | (4 / ) (4 / )[2!/ ( / 2) ]x bdx b x e dx b b

∞ ∞ −
−∞

Ψ = =∫ ∫  = 1, where (A.8) in the 

Appendix was used. 
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1.13 The interval is small enough to be considered infinitesimal (since Ψ  changes negligibly 

within this interval). At t = 0, we have 
2 22 6 1/2 2 2 /| | (32 / ) x cdx c x e dxπ −Ψ = =  

[32/π(2.00 Å)6]1/2(2.00 Å)2e–2(0.001 Å) = 0.000216. 
 

1.14 
1.5001 nm 1.5001 nm2 1 2 / 2 /

1.5000 nm1.5000 nm
| | /2 |

b x a x a
a

dx a e dx e− − −Ψ = = − =∫ ∫ (–e–3.0002 + e–3.0000)/2 =  

4.978 × 10–6. 
 
1.15 (a)  This function is not real and cannot be a probability density. 
 (b)  This function is negative when x < 0 and cannot be a probability density. 
 (c)  This function is not normalized (unless )b π=  and can’t be a probability density. 

 
1.16 (a)  There are four equally probable cases for two children: BB, BG, GB, GG, where the 

first letter gives the gender of the older child. The BB possibility is eliminated by the 
given information. Of the remaining three possibilities BG, GB, GG, only one has two 
girls, so the probability that they have two girls is 1/3. 

 (b)  The fact that the older child is a girl eliminates the BB and BG cases, leaving GB and 
GG, so the probability is 1/2 that the younger child is a girl. 

 
1.17 The 138 peak arises from the case 12C12CF6, whose probability is (0.9889)2 = 0.9779.  

The 139 peak arises from the cases 12C13CF6 and 13C12CF6, whose probability is 
(0.9889)(0.0111) + (0.0111)(0.9889) = 0.02195. The 140 peak arises from 13C13CF6, 
whose probability is (0.0111)2 = 0.000123. (As a check, these add to 1.) The 139 peak 
height is (0.02195/0.9779)100 = 2.24. The 140 peak height is (0.000123/0.9779)100 = 
0.0126. 

 
1.18 There are 26 cards, 2 spades and 24 nonspades, to be distributed between B and D. 

Imagine that 13 cards, picked at random from the 26, are dealt to B. The probability that 
every card dealt to B is a nonspade is 13(12)23 13 624 22 21 14 12

26 25 24 23 16 15 14 26(25) 25 .= =  Likewise, the 

probability that D gets 13 nonspades is 6
25 .  If B does not get all nonspades and D does not 

get all nonspades, then each must get one of the two spades and the probability that each 
gets one spade is 6 6

25 251 13 /25− − = . (A commonly given answer is: There are four 

possible outcomes, namely, both spades to B, both spades to D, spade 1 to B and spade 2 
to D, spade 2 to B and spade 1 to D, so the probability that each gets one spade is 2/4 = 
1/2. This answer is wrong, because the four outcomes are not all equally likely.) 

 



1-4 
Copyright © 2014 Pearson Education, Inc. 

 

1.19 (a)  The Maxwell distribution of molecular speeds;   (b)  the normal (or Gaussian) 
distribution. 

1.20 (a)  Real;   (b)  imaginary;   (c)  real;   (d)  imaginary;   (e)  imaginary;   (f)  real;    
(g)  real;   (h)  real;   (i)  real. 

 
1.21 (a)  A point on the x axis three units to the right of the origin. 
 (b)  A point on the y axis one unit below the origin.  
 (c)  A point in the second quadrant with x coordinate –2 and y coordinate +3. 
 

1.22 2
1 1

1
i i i i

i i i i
= = = = −

−
 

 

1.23 (a)  2 1.i = −    (b)  3 2 ( 1) .i ii i i= = − = −    (c)  4 2 2 2( ) ( 1) 1.i i= = − =     
 (d)  * ( ) 1.i i i i= − =  

 (e)  2(1 5 )(2 3 ) 2 10 3 15 17 7 .i i i i i i+ − = + − − = +  

 (f)  1 3 1 3 4 2 4 14 6 2 14 0.1 0.7 .
4 2 4 2 4 2 16 8 8 4 20

i i i i i i
i i i i i

− − − − − − −
= = = = − −

+ + − + − +
 

 

1.24 (a)  –4   (b)  2i;   (c)  6 – 3i;   (d)  /52 .ie π  
 
1.25 (a)  1, 90°;   (b)  2, π/3;    

(c)  /3 /32 2( 1) .i iz e eπ π= − = −  Since –1 has absolute value 1 and phase π, we have 
/3 (4 /3)2 2 ,i i i iz e e e reπ π π θ= = =  so the absolute value is 2 and the phase is 4π/3 radians.   

 (d)  2 2 1/2 2 2 1/2 1/2| | ( ) [1 ( 2) ] 5 ;z x y= + = + − =   tan / 2 / 1 2y xθ = = − = −  and  
θ = –63.4° = 296.6° = 5.176 radians. 

 
1.26 On a circle of radius 5.  On a line starting from the origin and making an angle of 45° with 

the positive x axis. 
 

1.27 (a)  /21 ;ii e π=    (b)  1 1 ;ie π− =     
(c)  Using the answers to Prob. 1.25(d), we have 1/2 5.1765 ;ie     
(d)  2 2 1/2 1/2[( 1) ( 1) ] 2 ; 180 45 225 3.927r θ= − + − = = ° + ° = ° =  rad;  1/2 3.9272 .ie  

 
1.28 (a)  Using Eq. (1.36) with n = 3, we have 0 1,ie ⋅ =  

(2 /3) cos(2 /3) sin(2 /3) 0.5 3 /2,ie i iπ π π= + = − +  and (4 /3) 0.5 3 /2.ie iπ = − −  
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 (b)  We see that ω in (1.36) satisfies 0* 1,eωω = =  so the nth roots of 1 all have absolute 
value 1. When k in (1.36) increases by 1, the phase increases by 2π/n. 

1.29 cos sin [cos( ) sin( )] cos sin (cos sin )
2 2 2

i ie e i i i i
i i i

θ θ θ θ θ θ θ θ θ θ−− + − − + − + − −
= = = sin θ, 

where (2.14) was used. 

 cos sin [cos( ) sin( )] cos sin cos sin
2 2 2

i ie e i i i iθ θ θ θ θ θ θ θ θ θ−+ + + − + − + + −
= = = cos θ. 

 
1.30 (a)  From ,f ma=  1 N = 1 kg m/s2. 

(b)  1 J = 1 kg m2/s2. 
 

1.31 F =
19 19

1 2
2 12 2 2 13 2

0

2(1.602 10  C)79(1.602 10  C)
4 4 8.854 10  C /N-m )(3.00 10  m)
Q Q

rπε π

− −

− −
× ×

=
( × ×

 = 0.405 N,  

where 2 and 79 are the atomic numbers of He and Au. 
 

1.32 (a)  4 2 3 4 4 5 44 sin(3 ) 2 (12 )cos(3 ) 4 sin(3 ) 24 cos(3 ).x x x x x x x x x+ = +  

 (b)  3 2
1( ) | (8 2) (1 1) 8.x x+ = + − + =  

 
1.33 (a)  T;   (b)  F;   (c)  F;   (d)  T;   (e)  F;   (f)  T. 
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Chapter 2 

The Particle in a Box 
 
 

2.1 (a)  The auxiliary equation is 2 6 0s s+ − =  and [ 1 1 24] / 2 2 s = − ± + = and –3. So 
2 3

1 2 .x xy c e c e−= +  

 (b)  Setting x = 0 and y = 0, we get 1 20 c c= +  (Eq. 1). Differentiation of y gives 
2 3

1 22 3 .x xy c e c e−′ = −  Setting x = 0 and 1,y′ =  we have 1 21 2 3c c= −  (Eq. 2). Subtracting 
twice Eq. 1 from Eq. 2, we get 21 5c= −  and 2 0.2.c = −  Equation 1 then gives 1 0.2.c =  

 

2.2 For 0,y py qy′′ ′+ + =  the auxiliary equation is 2
1 20 ( )( ),s ps q s s s s+ + = = − −  where 1s  

and 2s  are the roots. Comparison with Eq. (2.8) shows that 1 2s i= +  and 2 2 ,s i= −  so 

the auxiliary equation is 20 ( 2 )( 2 ) 4 5.s i s i s s= − − − + = − +  Therefore 4p = −  and 
5.q =  The differential equation is 4 5 0.y y y′′ ′− + =  

 
2.3 (a)  The quadratic formula gives the solutions of the auxiliary equation 2 0s ps q+ + =  

[Eq. (2.7)] as 2( 4 ) / 2.s p p q= − ± −  To have equal roots of the auxiliary equation 

requires that 2 4 0p q− = . Setting 2 /4q p=  in the differential equation (2.6), we have 
2( /4) 0y py p y′′ ′+ + =  (Eq. 1). The auxiliary-equation solution is /2.s p= −  Thus we 

must show that /2
2

pxy xe−=  is the second solution. Differentiation gives 
/2 /2

2 /2px pxy e pxe− −′ = −  and /2 2 /2
2 /4.px pxy pe p xe− −′′ = − +  Substitution in Eq. (1) gives 

the left side of Eq. (1) as /2 2 /2 /2 2 /2 2 /2/4 /2 /4px px px px pxpe p xe pe p xe p xe− − − − −− + + − + , 
which equals zero and completes the proof. 

 (b)  The auxiliary equation 2 22 1 ( 1) 0s s s− + = − =  has roots s = 1 and s = 1. From part 
(a), the solution is 1 2 .x xy c e c xe= +  

 
2.4 In comparing Eqs. (1.8) and (2.2), y in (2.2) is replaced by x, and x in (2.2) is replaced by 

t. Therefore x and its derivatives in (1.8) must occur to the first power to have a linear 
differential equation.   (a)  Linear;   (b)  linear;   (c)  nonlinear;   (d)  nonlinear; (e)  linear. 

 
2.5 (a)  F;   (b)  F;   (c)  T;   (d)  F (only solutions that meet certain conditions such as being 

continuous are allowed as stationary-state wave functions);   (e)  T. 
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2.6 (a)  Maximum at x = l/2. Minimum at x = 0 and x = l, where the ends of the box are at x = 
0 and l. 
(b)  Maximum at l/4 and 3l/4. Minimum at 0, l/2, and l. 
(c)  Minimum at 0, l/3, 2l/3, and l. Maximum at l/6, l/2, 5l/6. 

 

2.7 (a)  /4/4 2 /4 2
0 0 0| | (2 / ) sin ( / ) (2 / )[ / 2 ( /4 )sin(2 / )] |ll ldx l n x l dx l x l n n x lψ π π π∫ = ∫ = −  =  

1 / 4 (1/2 )sin( /2),n nπ π−  where (A.2) in the Appendix was used. 
 (b)  The (1/2 )nπ  factor in the probability makes the probability smaller as n increases, 

and the maximum probability will occur for the smallest value of n for which the sine 
factor is negative. This value is n = 3. 
(c)  0.25. 
(d)  The correspondence principle, since in classical mechanics the probability is uniform 
throughout the box. 
 

2.8 (a)  The probability is 2 2 2| | (2 / )sin ( / ) (1/Å)sin ( 0.600 / 2) (0.001 Å)dx l x l dxψ π π= = ⋅ ⋅  
= 6.55 × 10–4. The number of times the electron is found in this interval is about  
106(6.55 × 10–4) = 655. 
(b)  The probability ratio for the two intervals is 

2 2sin [ (1.00 / 2.00)] sin [ (0.700 / 2.00)]π π  = 1.260 and about 1.260(126) = 159 
measurements will be in the specified interval. 

 
2.9 (a)  The number of interior nodes is one less than n.  

-1

0

1

0 0.25 0.5 0.75 1

0

1

0 0.25 0.5 0.75 1

 
 

n = 4(l/2)1/2ψ 

x/l 

n = 4

x/l 

(l/2)ψ2
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-1

0

1

0 0.2 0.4 0.6 0.8 1

0

1

0 0.2 0.4 0.6 0.8 1
 

 (b)  2 2(2 / )sin (4 / )l x lψ π=  and 2( )/ (4 / )(4 / )sin(4 / ) cos(4 / ).d dx l l x l x lψ π π π=   
At x = l/2, 2( )/ (4 / )(4 / )sin(2 )cos(2 ) 0.d dx l lψ π π π= =  

 
2.10 (a)  2 2 2 2

upper lower (2 1 ) / 8E E h ml− = − =   

3(6.626 × 10–34 J s)2/8(9.109 × 10–31 kg)(1.0 × 10–10 m)2 = 1.81 × 10–17 J. 
 (b)  | | /E h hcν λΔ = =  and / | |hc Eλ = Δ =   

(6.626 × 10–34 J s)(2.998 × 108 m/s)/(1.81 × 10–17 J) = 1.10 × 10–8 m =110 Å. 
 (c)  Ultraviolet. 
 
2.11 2 2 2/8E n h ml=  and 1/2(8 ) /n mE l h= . We have 2 /2E m= v  = ½(0.001 kg)(0.01 m/s)2 =  

5 × 10–8 J, so n = [8(0.001 kg)(5 × 10–8 J)]1/2(0.01 m)/(6.626 × 10–34 J s) = 3 × 1026. 
 
2.12 upper lowerE E hν− = =  (52 – 22) 2 2/8h ml  and 1/2(21 /8 )l h mν= =  

[21(6.626 × 10–34 J s)/8(9.1 × 10–31 kg)(6.0 × 1014 s–1)]1/2 = 1.78 × 10–9 m =1.78 nm. 
 
2.13 2 2 2 2

upper lower ( 1 ) /8 ,E E h n h mlν− = = −  so 2 2 21 8 / 8 /n ml h ml c hν λ− = = =   

8(9.109 × 10–31 kg)(2.00 × 10–10 m)2(2.998 × 108 m/s)/[(8.79 × 10–9 m)(6.626 × 10–34 J s)] 
= 15.  So 2 16n =  and n = 4. 

 
2.14 2 2 2 2( ) /8 ,b ah n n h mlν = −  so ν is proportional to 2 2.b an n−  For n = 1 to 2, 2 2

b an n−  is 3 and 

for n = 2 to 3, 2 2
b an n−  is 5. Hence for the 2 to 3 transition, ν = (5/3)(6.0 × 1012 s–1) =  

10 × 1012 s–1. 
 
2.15 2 2 2 2( ) /8 ,b ah n n h mlν = −  so 2 2 28 /b an n ml hν− = =  

8(9.109 × 10–31 kg)(0.300 × 10–9 m)2(5.05 × 1015 s–1)/(6.626 × 10–34 J s) = 5.00.  
The squares of the first few positive integers are 1, 4, 9, 16, 25,…, and the only two 
integers whose squares differ by 5 are 2 and 3. 

n = 5 n = 5(l/2)ψ2(l/2)1/2ψ 

x/l 

x/l 
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2.16 1 1 2 2 2 2 2

upper lower( ) ( /8 )( ) ( /8 ) ,uh E E h h ml n n h ml kν − −= − = − =A  where k is an integer.  
For 1un n− =A  and 1, 2, 3, ,n =A …  we get the following k values: 

2 2 2 2 2 22 1 3; 3 2 5; 4 3 7; 9,11,13,15, etc.k k k k= − = = − = = − = =    
For 3un n− =A  and 1, 2, 3, ,n =A …  we get 

2 2 2 24 1 15; 5 2 21;k k= − = = − = 2 26 3 27; 33, 39, etc.k k= − = =  
For 5un n− =A  and 1, 2, 3, ,n =A …  we get 35, 45, 55, etc.k =  
The smallest k that corresponds to two different transitions is 15k =  for the 1 to 4 
transition and the 7 to 8 transition. 

 
2.17 Each double bond consists of one sigma and one pi bond, so the two double bonds have 4 

pi electrons. With two pi electrons in each particle-in-a-box level, the 4 pi electrons 
occupy the lowest two levels, n = 1 and n = 2. The highest-occupied to lowest-vacant 
transition is from n = 2 to n = 3, so 2 2 2 2| | / (3 2 ) /8E h hc h mlν λΔ = = = −  and 

2 31 10 2 8

34
8 8(9.109 10  kg)(7.0 10  m) (2.998 10  m/s)

5 5(6.626 10  J s)
ml c

h
λ

− −

−
× × ×

= =
×

 = 73.2 10  m−×  =  

   320 nm 
 
2.18 Outside the box, 0.ψ =  Inside the box, ψ is given by (2.15) as 

1 1/2 1 1/2cos[ (2 ) ] sin[ (2 ) ].a mE x b mE xψ − −= += =  Continuity requires that ψ = 0 at /2x l= −  
and at /2,x l=  the left and right ends of the box. Using (2.14), we thus have 

 1 1/2 1 1/20 cos[ (2 ) /2] sin[ (2 ) /2]a mE l b mE l− −= −= =    [Eq. (1)]   
1 1/2 1 1/20 cos[ (2 ) /2] sin[ (2 ) /2]a mE l b mE l− −= += =    [Eq. (2)]. 

Adding Eqs. (1) and (2) and dividing by 2, we get 1 1/20 cos[ (2 ) /2],a mE l−= =  so  

         either  a = 0  or  1 1/2cos[ (2 ) /2] 0mE l− ==    [Eq. (3)].  

 Subtracting Eq. (1) from (2) and dividing by 2, we get 1 1/20 sin[ (2 ) /2],b mE l−= =  so  

                  either  b = 0  or  1 1/2sin[ (2 ) /2] 0mE l− ==    [Eq. (4)]. 

    If a = 0, then b cannot be 0 (because this would make ψ = 0), so if a = 0, then 
1 1/2sin[ (2 ) /2] 0mE l− ==   [Eq. (5)]  and 1 1/2sin[ (2 ) ].b mE xψ −= =  To satisfy Eq. (5), we 

must have 1 1/2[ (2 ) /2] ,mE l kπ− ==  where k is an integer. The wave functions and energies 
when a = 0 are  
         sin[2 / ]b k x lψ π=  and 2 2 2(2 ) /8E k h ml=   , where k = 1, 2, 3,…. [Eq. (6)]  
(For reasons discussed in Chapter 2, k = 0 is not allowed and negative values of k do not 
give a different ψ.)  
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     If b = 0, then a cannot be 0 (because this would make ψ = 0), so if b = 0, then 
1 1/2cos[ (2 ) / 2] 0mE l− ==   [Eq. (7)]  and 1 1/2cos[ (2 ) ].a mE xψ −= =  To satisfy Eq. (7), we 

must have 1 1/2[ (2 ) / 2] (2 1) /2,mE l j π− = +=  where j is an integer. The wave functions and 
energies when b = 0 are  
         cos[(2 1) / ]a j x lψ π= +  and 2 2 2(2 1) / 8E j h ml= +   , where j = 0, 1, 2, 3,… [Eq. (8)]  
(As discussed in Chapter 2, negative values of j do not give a different ψ.)  

   In Eq. (8), 2j + 1 takes on the values 1, 3, 5,…; in Eq. (6), 2k takes on the values  
2, 4, 6,… . Therefore 2 2 2/8 ,E n h ml=  where n = 1, 2, 3,…, as we found with the origin at 
the left end of the box. Also, the wave functions in Eqs. (6) and (8) are the same as with 
the origin at the left end, as can be verified by sketching a few of them. 
 

2.19 Using square brackets to denote the dimensions of a quantity and M, L, T to denote the 
dimensions mass, length, and time, we have [E] = ML2T–2 = [h]a[m]b[l]c = [E]aTaMbLc = 
(ML2T–2)aTaMbLc = Ma+bL2a+cT–a. In order to have the same dimensions on each side of 
the equation, the powers of M, L, and T must match. So 1 = a + b,   2 = 2a + c,   –2 = –a. 
We get a = 2,  b = 1 – a = –1, and c = 2 – 2a = –2. 

 

2.20 From Eqs. (1.20) and (2.30), 
1/2 1/2/ (2 ) / (2 ) /

1 2( )iEt i mE x i mE xe c e c e− −Ψ = += = = . 

 
2.21 (a)  Let 2 1/2 1/2

0(2 / ) ( )r m V E≡ −=  and 2 1/2 1/2(2 / )s m E≡ = . Then I
rxCeψ =  and 

II cos sin .A sx B sxψ = +  We have I
rxCreψ ′ =  and II sin cos .sA sx sB sxψ ′ = − +  The 

condition I II(0) (0)ψ ψ′ ′=  gives Cr sB= , so 1/2 1/2
0/ / ( ) /B Cr s Ar s A V E E= = = − , since  

C = A, as noted a few lines before Eq. (2.33). 
 (b)  III

rxGeψ −=  and III .rxrGeψ −′ = −  From (a), II sin ( / ) cos .sA sx s Ar s sxψ ′ = − +  The 

relations II III( ) ( )l lψ ψ′ ′′=  and II III( ) ( )l lψ ψ=  give sin cos rlsA sl rA sl rGe−− + = −  and 

cos ( / )sin .rlA sl Ar s sl Ge−+ =   Dividing the first equation by the second, we get 

1
sin cos

cos sin
s sl r sl r

sl rs sl−
− +

= −
+

  and  2 22 cos ( )sin .rs sl s r sl= −  Substitution for r and s gives 

2 2 1/2 1/2 2 1/2
0 02(2 / )( ) cos[(2 ) / ] (2 / )(2 )sin[(2 ) / ]m V E E mE l m E V mE l− = −= = = = , which is 

(2.33). 
 
2.22 (a)  As 0 ,V →∞  2E on the left side of (2.33) can be neglected compared with V0, and E2 

on the right side can be neglected to give 1/2 1/2
0 0tan[(2 ) / ] 2( ) /mE l V E V= − ==  

1/2
02( / ) .E V−  The right side of this equation goes to 0 as 0 ,V →∞  so 

1/2tan[(2 ) / ] 0.mE l ==  This equation is satisfied when 1/2(2 ) / ,mE l nπ==  where n is an 



 
Copyright © 2014 Pearson Education, Inc. 

 

2-6

integer. Solving for E, we get 2 2 28 .E n h ml=  (Zero and negative values of n are 
excluded for the reasons discussed in Sec. 2.2.) 

 (b)  ψI and ψIII are given by the equations preceding (2.32). In ψI, x is negative, and in ψIII, 
x is positive. As 0 ,V →∞  ψI and ψIII go to 0. To have ψ be continuous, ψ in (2.32) must 
be zero at x = 0 and at x = l, and we get (2.23) as the wave function inside the box. 

 
2.23 V0 = (15.0 eV)(1.602 × 10–19 J/eV) = 2.40 × 10–18 J.   1/2

0(2 ) /b mV l= ==   
[2(9.109 × 10–31 kg)(2.40 × 10–18 J)]1/22π(2.00 × 10–10 m)/(6.626 × 10–34 J s) = 3.97 and 
b/π = 1.26. Then N – 1 < 1.26 ≤ N, so N = 2. 

 
2.24 With b = 3.97, use of a spreadsheet to calculate the left side of (2.35) for increments of 

0.005 in ε shows that it changes sign between the ε values 0.265 and 0.270 and between 
0.900 and 0.905. Linear interpolation gives ε ≡ E/V0 = 0.268 and 0.903, and E = 
0.268(15.0 eV) = 4.02 eV and 13.5 eV. 

 
2.25            
 
 
 
 
2.26 (a)  The definition (2.34) shows that b > 0; hence b/π > 0. If the number N of bound states 

were 0, then we would have the impossible result that b/π ≤ 0. Hence N cannot be 0 and 
there is always at least one bound state. 

 (b)  The Schrödinger equation is 2(2 / )( ) .m E Vψ ψ′′ = − −=  Since V is discontinuous at  
x = 0, the Schrödinger equation shows that ψ ′′  must be discontinuous at x = 0. 

 
2.27 0/E Vε = =  (3.00 eV)/(20.0 eV) = 0.150. Equation (2.35) becomes 

0.700 tan(0.387 ) 0.714 0,b− − =  so tan(0.387 ) 1.02.b = −  From the definition (2.34), b 
cannot be negative, so 0.387 0.795 2.35b π= − + =  and b = 6.07. (Addition of integral 
multiples of π to 2.35 gives 0.387b values that also satisfy Eq. (2.35), but these larger b 
values correspond to wells with larger l values and larger values of N, the number of 
bound levels; see Eq. (2.36). In these wider wells, the 3.00 eV level is not the lowest 
level.) Equation (2.34) gives 1/2

0(2 )l b mV= =  =  
34

31 19 1/2
6.07(6.626 10  J s)

2 [2(9.109 10  kg)(20.0 eV)(1.602 10  J/eV)]π

−

− −
×

× ×
 = 2.65 × 10–10 m = 0.265 nm. 

 



 
Copyright © 2014 Pearson Education, Inc. 

 

2-7

2.28 Equation (2.36) gives 2π < 1/2
0(2 ) /mV l =  ≤ 3π, so 1/2

02 (2 )l mVπ> =  =  
(6.626 × 10–34 J s)/[2(9.109 × 10–31 kg)(2.00 × 10–18 J)]1/2 = 3.47 × 10–10 m = 3.47 Ǻ.  
Also, (3 /2 )l π π≤ (3.47 Ǻ) = 5.20 Ǻ. 

2.29 (a)  From Eq. (2.36), an increase in V0 increases b/π, which increases the number N of 
bound states. 

 (b)  An increase in l increases b/π, which increases the number N of bound states. 
 
2.30 (a)  From I II(0) (0)ψ ψ= , II III( ) ( )l lψ ψ= , and 0,E = we get C = b  (Eq. 1)  and 

2 1/2 1/2
0(2 / )m V lal b Ge−+ = =   (Eq. 2). The conditions I II(0) (0)ψ ψ′ ′=  and II III( ) ( )l lψ ψ′ ′=  give 

2 1/2 1/2
0(2 / )C m V a==   (Eq. 3)  and 

2 1/2 1/2
0(2 / )2 1/2 1/2

0(2 / ) m V la m V Ge−= − ==   (Eq. 4). 

 (b)  If C > 0, then Eqs. 1 and 3 give b > 0 and a > 0. Equation 4 then gives G < 0 and Eq. 
2 gives G > 0, which is a contradiction. If C < 0, then Eqs. 1 and 3 give b < 0 and a < 0. 
Equation 4 then gives G > 0 and Eq. 2 gives G < 0, which is a contradiction. Hence C = 0. 

 (c)  With C = 0, Eqs. 1 and 3 give b = 0 and a = 0. Hence II 0.ψ =  

 
2.31 Although essentially no molecules have enough kinetic energy to overcome the 

electrostatic-repulsion barrier according to classical mechanics, quantum mechanics 
allows nuclei to tunnel through the barrier, and there is a significant probability for nuclei 
to come close enough to undergo fusion. 

 
2.32 (a)  F;   (b)  F;   (c)  T (Fig. 2.3 shows ψ ′  is discontinuous at the ends of the box.);    

(d)  F;   (e)  T;   (f)  F (See Fig. 2.4.);   (g)  T;   (h)  F;   (i)  T. 
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Chapter 3 

Operators 
 
 

3.1 (a)  2 2ˆ ( / ) cos( 1) 2 sin( 1);g Af d dx x x x= = + = − +     
(b)  ˆ 5̂sin 5sin ;Af x x= =     
(c)  2ˆ sin ;Af x=     
(d)  lnexp(ln ) ;xx e x= =     
(e)  2 2 2( / ) ln 3 ( / )3[1 (3 )] 1/ ;d dx x d dx x x= = −     
(f)  2 2 3 3( / 3 / )(4 ) 24 36 ;d dx x d dx x x x+ = +  
(g)  2 2( / )[sin( )] 2 cos( ).y xy xy xy∂ ∂ =  

 
3.2 (a)  Operator;   (b)  function;   (c)  function;   (d)  operator;   (e)  operator;   (f)  function. 
 
3.3 2ˆ 3 2 ( / ).A x x d dx= ⋅ +  

 
3.4 2 21̂, ( / ), ( / ).d dx d dx  

 
3.5 (a)  Some possibilities are (4/x) × and d/dx. 
 (b)  (x/2) ×, (1/4)(    )2. 
 (c)  (1/x2) ×,  (4x)–1 d/dx,  (1/12) d2/dx2. 
 
3.6 To prove that two operators are equal, we must show that they give the same result when 

they operate on an arbitrary function. In this case, we must show that ˆ ˆ( )A B f+  equals 
ˆˆ( ) .B A f+  Using the definition (3.2) of addition of operators, we have 

ˆ ˆˆ ˆ( )A B f Af Bf+ = +  and ˆ ˆ ˆˆ ˆ ˆ( ) ,B A f Bf Af Af Bf+ = + = +  which completes the proof. 
 
3.7 We have ˆ ˆˆ( )A B f Cf+ =  for all functions f,  so ˆ ˆˆAf Bf Cf+ =  and ˆ ˆ ˆ .Af Cf Bf= −  Hence 

ˆ ˆ ˆ.A C B= −  
 
3.8 (a)  2 2 2 3 4 3( / ) ( / )5 20 ;d dx x x d dx x x= =  

 (b)  2 2 2 3 2 3( / ) (6 ) 6 ;x d dx x x x x= =  

 (c)  2 2 2 2 2( / )[ ( )] ( / )(2 ) 2 4 ;d dx x f x d dx xf x f f xf x f′ ′ ′′= + = + +  
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 (d)  2 2 2 2( / ) .x d dx f x f ′′=  

 
3.9 3 3ˆ ˆ ( / )ABf x d dx f x f ′= = , so 3ˆ ˆ / .AB x d dx=  Also 3 2 3ˆˆ ( / )( ) 3 ,BAf d dx x f x f x f ′= = +  so 

2 3ˆˆ 3 /BA x x d dx= ⋅ +   

 
3.10 ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ[( ) ] ( )( ) [ ( )],AB C f AB Cf A B Cf= =  where (3.3) was used twice; first with Â  and B̂  in 

(3.3) replaced by ˆ ˆAB  and Ĉ , respectively, and then with f in (3.3) replaced with the 
function ˆ .Cf  Also, ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ[ ( )] [( ) ] [ ( )]A BC f A BC f A B Cf= = , which equals ˆ ˆˆ[( ) ]AB C f . 

 

3.11 (a)  2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )( ) ( )( ) ( ) ( )A B f A B A B f A B Af Bf A Af Bf B Af Bf+ = + + = + + = + + +    
(Eq. 1), where the definitions of the product and the sum of operators were used. If we 
interchange Â  and B̂  in this result, we get 2ˆˆ( )B A f+ = ˆ ˆ ˆˆ ˆ ˆ( ) ( ).B Bf Af A Bf Af+ + +  Since 
ˆ ˆˆ ˆ ,Af Bf Bf Af+ = +  we see that 2 2ˆ ˆˆ ˆ( ) ( ) .A B f B A f+ = +   

 (b)  If Â  and B̂  are linear, Eq. 1 becomes 2ˆ ˆ( )A B f+  = 2 2ˆ ˆ ˆˆ ˆ ˆA f ABf BAf B f+ + + . If 
ˆ ˆˆ ˆ ,AB BA=  then 2 2 2ˆ ˆ ˆˆ ˆ ˆ( ) 2A B f A f ABf B f+ = + + . 

 
3.12 ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ[ , ] ( )A B f AB BA f ABf BAf= − = −  and ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ[ , ] ( )B A f BA AB f BAf ABf= − = − =  

ˆ ˆ[ , ] .A B f−  

 
3.13 (a)  [sin , / ] ( ) (sin )( / ) ( ) ( / )[(sin ) ( )]z d dz f z z d dz f z d dz z f z= − =      

(sin ) (cos ) (sin )z f z f z f′ ′− −  (cos ) ,z f= −  so [sin , / ] cosz d dz z= − . 

 (b)  2 2 2 2 2 2 2 2 2[ / , ] ( / )[( ) ] ( )( / )d dx ax bx c f d dx ax bx c f ax bx c d dx f+ + = + + − + +  
2 2( / )[(2 ) ( ) ] ( )d dx ax b f ax bx c f ax bx c f′ ′′= + + + + − + +
2 22 2(2 ) ( ) ( ) 2 (4 2 )af ax b f ax bx c f ax bx c f af ax b f′ ′′ ′′ ′= + + + + + − + + = + + ,  

so 2 2 2[ / , ] 2 (4 2 )( / ).d dx ax bx c a ax b d dx+ + = + +  

 (c)  2 2 2 2 2 2[ / , / ] ( / )( / ) ( / )( / ) 0d dx d dx f d dx d dx f d dx d dx f f f f′′′ ′′′= − = − = ⋅  so 
2 2[ / , / ] 0.d dx d dx =  

 
3.14 (a)  Linear;   (b)  nonlinear;   (c)  linear;   (d)  nonlinear;   (e)  linear. 
 
3.15 ( ) ( ) ( 1) ( 1)

1 1 0[ ( ) / ( ) / ( ) / ( )] ( ) ( )n n n n
n nA x d dx A x d dx A x d dx A x y x g x− −

−+ + + + =  
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3.16 Given: ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) , ( ) , ( ) , ( ) ( ).A f g Af Ag A cf cAf B f g Bf Bg B cf c Bf+ = + = + = + =  
Prove: ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) , ( ) .AB f g ABf ABg AB cf cABf+ = + =  
Use of the given equations gives ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )AB f g A Bf Bg A Bf A Bg+ = + = + =  
ˆ ˆˆ ˆ ,ABf ABg+  since B̂f  and B̂g  are functions; also, ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) .AB cf A cBf cA Bf cABf= = =  

 
3.17 We have    

   

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) (defn. of sum of ops.  and )
ˆ ˆ ˆ ˆˆ( ) ( ) (linearity of )
ˆ ˆ ˆˆ (defn. of op. prod.)
ˆ ˆ ˆ ˆ ˆ ˆˆ( ) (defn. of sum of ops.  and )

A B C f A Bf Cf B C

A Bf A Cf A

ABf ACf

AB AC f AB AC

+ = +

= +

= +

= +

 

 Hence ˆ ˆ ˆ ˆ ˆˆ ˆ( ) .A B C AB AC+ = +  

 

3.18 (a)  Using first (3.9) and then (3.10), we have ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) .A bf cg A bf A cg bAf cAg+ = + = +  

 (b)  Setting b = 1 and c = 1 in (3.94), we get (3.9). Setting c = 0 in (3.94), we get (3.10). 
 
3.19 (a)  Complex conjugation, since ( )* * *f g f g+ = +  but ( )* * * *.cf c f cf= ≠  

(b)  ( )–1(d/dx)( )–1, since ( )–1(d/dx)( )–1cf = ( )–1(d/dx)c–1f – 1 =  
( )–1 1 2[ ( ) ]c f f− − ′−  = 2 /cf f ′−  and c( )–1(d/dx)( )–1f = c( )–1(d/dx)f – 1 = 

1 2( ) ( )c f f− − ′−  = 2 /cf f ′− , but  
( )–1(d/dx)( )–1(f  + g) = ( )–1(d/dx)( f  + g)–1 = –( )–1[( f  + g)–2 ( )f g′ ′+ ] =  
–( f  + g)2 1( )f g −′ ′+  ≠ ( )–1(d/dx)( )–1f + ( )–1(d/dx)( )–1g = 2 2/ /f f g g′ ′− − . 

 
3.20 (a)  This is always true since it is the definition of the sum of operators.  

(b)  Only true if Â  is linear. 
(c)  Not generally true; for example, it is false for differentiation and integration. It is true 
if Â  is multiplication by a function. 
(d)  Not generally true. Only true if the operators commute. 
(e)  Not generally true. 
(f)  Not generally true. 
(g)  True, since .fg gf=  
(h)  True, since B̂g  is a function.  

 
3.21 (a)  ˆ ˆ ˆ[ ( ) ( )] ( ) ( ) ( ) ( ).h h hT f x g x f x h g x h T f x T g x+ = + + + = +   

Also, ˆ ˆ[ ( )] ( ) ( ).h hT cf x cf x h cT f x= + =  So ĥT  is linear. 
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 (b)  2 2 2 2
1 1 1
ˆ ˆ ˆ( 3 2) ( 2) 3( 1) 2 2 1.T T T x x x x x− + = + − + + = − +  

 

3.22 ˆ 2 3ˆ ˆ( ) (1 /2! /3! ) ( ) ( ) ( ) ( )/2! ( )/3! .De f x D D D f x f x f x f x f x′ ′′ ′′′= + + + + = + + + +  

1̂ ( ) ( 1).T f x f x= +  The Taylor series (4.85) in Prob. 4.1 with x changed to z gives 
2( ) ( ) ( )( ) / 1! ( )( ) /2! .f z f a f a z a f a z a′ ′′= + − + − +  Letting ,h z a≡ −  the Taylor series 

becomes 2( ) ( ) ( ) / 1! ( ) /2! .f a h f a f a h f a h′ ′′+ = + + +  Changing a to x and letting 

1,h =  we get ( 1) ( ) ( ) / 1! ( )/2! ,f x f x f x f x′ ′′+ = + + +  which shows that ˆ
1̂ .De f T f=  

 

3.23 (a)  2 2( / ) x xd dx e e=  and the eigenvalue is 1. 

 (b)  2 2 2( / ) 2d dx x =  and 2x  is not an eigenfunction of 2 2/d dx . 

 (c)  2 2( / ) sin ( / ) cos sind dx x d dx x x= = −  and the eigenvalue is –1. 

 (d)  2 2( / )3cos 3cosd dx x x= −  and the eigenvalue is –1. 

 (e)  2 2( / )(sin cos ) (sin cos )d dx x x x x+ = − +  so the eigenvalue is –1. 

 

3.24 (a)  2 2 2 2 2 3 2 3 2 3 2 3( / / )( ) 4 9 13 .x y x y x y x yx y e e e e e e e e∂ ∂ + ∂ ∂ = + =  The eigenvalue is 13. 
(b)  2 2 2 2 3 3 3 3( / / )( ) 6 6 .x y x y xy x y∂ ∂ + ∂ ∂ = +  Not an eigenfunction. 
(c)  

2 2 2 2( / / )(sin 2 cos 4 ) 4sin 2 cos 4 16sin 2 cos 4 20sin 2 cos 4 .x y x y x y x y x y∂ ∂ + ∂ ∂ = − − = −  
The eigenvalue is 20.−  
(d)  2 2 2 2( / / )(sin 2 cos3 ) 4sin 2 9cos3 .x y x y x y∂ ∂ + ∂ ∂ + = − −  Not an eigenfunction, 

 

3.25 2 2 2( /2 )( / ) ( ) ( )m d dx g x kg x− =  and 2( ) (2 / ) ( ) 0.g x m kg x′′ + =  This is a linear 
homogenous differential equation with constant coefficients. The auxiliary equation is 

2 2(2 / ) 0s m k+ =  and 1/2(2 ) / .s i mk= ±  The general solution is 
1/2 1/2(2 ) / (2 ) /

1 2 .i mk x i mk xg c e c e−= +  If the eigenvalue k were a negative number, then 1/2k  

would be a pure imaginary number; that is, 1/2 ,k ib=  where b is real and positive. This 
would make 1/2ik  a real negative number and the first exponential in g would go to ∞ as 
x → −∞  and the second exponential would go to ∞ as .x →∞  Likewise, if k were an 
imaginary number ( ,ik a bi re θ= + =  where a and b are real and b is nonzero), then 1/2k  
would have the form ,c id+  and 1/2ik  would have the form ,d ic− +  where c and d are 
real. This would make the exponentials go to infinity as x goes to plus or minus infinity. 
Hence to keep g finite as ,x → ±∞  the eigenvalue k must be real and nonnegative, and the 
allowed eigenvalues are all nonnegative numbers. 
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3.26 ( ) .dx f f dx kf= =∫ ∫  Differentiation of both sides of this equation gives 
( / ) .d dx f dx f kf ′= =∫  So 1/df dx k f−=  and 1(1/ ) .f df k dx−=  Integration gives 

1ln f k x c−= +  and / / ,c x k x kf e e Ae= =  where A is a constant and k is the eigenvalue. To 
prevent the eigenfunctions from becoming infinite as ,x → ±∞  k must be a pure 
imaginary number. (Strictly speaking, /x kAe  is an eigenfunction of dx∫  only if we omit 
the arbitrary constant of integration.) 

 
3.27 2 2/ 2 /d f dx df dx kf+ =  and 2 0.f f kf′′ ′+ − =  The auxiliary equation is 2 2 0s s k+ − =  

and 1/21 (1 ) .s k= − ± +  So 
1/2 1/2[ 1 (1 ) ] [ 1 (1 ) ] ,k x k xf Ae Be− + + − − += +  where A and B are arbitrary 

constants. To prevent the eigenfunctions from becoming infinite as ,x → ±∞  the factors 
multiplying x must be pure imaginary numbers: 1/21 (1 ) ,k ci− ± + =  where c is an arbitrary 
real number. So 1/2(1 ) 1k ci± + = +  and 21 (1 )k ci+ = + = 21 2ic c+ −  and 22 .k ic c= −  

 

3.28 (a)  3 3 3 3 3 3ˆ ( / ) ( / ) /yp i y i y= ∂ ∂ = ∂ ∂ ;    

 (b)  ˆ ˆ ˆ ˆ ( / ) / ( / ) / ;y xxp yp x i y y i x− = ∂ ∂ − ∂ ∂  

 (c)  2 2[ ( / ) / ] ( , ) ( / )( / )x i y f x y x y x f y∂ ∂ = − ∂ ∂ ∂ ∂ = 2 2 2 2( / ).x f y− ∂ ∂   
Hence 2 2 2 2 2ˆˆ( ) ( / ).yxp x y= − ∂ ∂  

 
3.29 ( / )( / )i dg dx kg=  and / ( / ) .dg g ik dx=  Integration gives ln ( / )g ik x C= +  and 

/ / ,ikx C ikxg e e Ae= =  where C and A are constants. If k were imaginary ( ,k a bi= +  
where a and b are real and b is nonzero), then ,ik ia b= −  and the /bxe−  factor in g makes 
g go to infinity as x goes to minus infinity if b is positive or as x goes to infinity if b is 
negative. Hence b must be zero and ,k a=  where a is a real number. 

 
3.30 (a)  ˆ ˆ[ , ] ( / )[ / ( / ) ] ( / )[ / ( / )( )]xx p f i x x x x f i x f x x xf= ∂ ∂ − ∂ ∂ = ∂ ∂ − ∂ ∂ =  

( / )[ / / ] ( / ) ,i x f x f x f x i f∂ ∂ − − ∂ ∂ = −  so ˆ ˆ[ , ] ( / ).xx p i= −  

 (b)  2 2 2 2 2 2 2 2 2 2 2ˆ ˆ[ , ] ( / ) [ / ( / ) ] [ / ( / )( )]xx p f i x x x x f x f x x xf= ∂ ∂ − ∂ ∂ = − ∂ ∂ − ∂ ∂ =  
2 2 2 2 2 2[ / / 2 / ] 2 / .x f x x f x f x f x− ∂ ∂ − ∂ ∂ − ∂ ∂ = ∂ ∂  Hence 2 2ˆ ˆ[ , ] 2 / .xx p x= ∂ ∂  

 (c)  ˆ ˆ[ , ] ( / )[ / ( / ) ] ( / )[ / ( / )] 0yx p f i x y y x f i x f y x f y= ∂ ∂ − ∂ ∂ = ∂ ∂ − ∂ ∂ = , so ˆ ˆ[ , ] 0yx p = . 

 (d)  ˆˆ[ , ( , , )] ( ) 0.x V x y z f xV Vx f= − =  

 (e)  Let 2 /2 .A m≡ −  Then ˆˆ[ , ]x H f =  

{ }2 2 2 2 2 2 2 2 2 2 2 2[ ( / / / ) ] [ ( / / / ) ]x A x y z V A x y z V x f∂ ∂ + ∂ ∂ + ∂ ∂ + − ∂ ∂ + ∂ ∂ + ∂ ∂ + =  
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2 2 2 2 2 2 2 2 2 2 2 2[ / / / / 2 / / / ]A x f x x f y x f z x f x f x x f y x f z∂ ∂ + ∂ ∂ + ∂ ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ +  
22 / ( / ) / ,xAVf AVxf A f x m f x− = − ∂ ∂ = ∂ ∂  so 2ˆˆ[ , ] ( / ) / .x H m x= ∂ ∂  

 (f)  2ˆˆ ˆˆ[ , ]xxyz p f =  
2 2 2 2 2 2 2 2 2 2[ / ( / )( )] [ / / 2 / ]xyz f x x xyzf xyz f x xyz f x yz f x− ∂ ∂ − ∂ ∂ = − ∂ ∂ − ∂ ∂ − ∂ ∂ =  
22 / ,yz f x∂ ∂  so 2 2ˆˆ ˆˆ[ , ] 2 / .xxyz p yz x= ∂ ∂  

 

3.31 
2 2 2 2 2 2 2 2

2 2 2 2 2 2
1 21 1 1 2 2 2

ˆ
2 2

T
m mx y z x y z

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= − + + − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

 

3.32  2 2 2 2 2ˆ ( /2 ) ( ),H m c x y z= − ∇ + + +  where 2 2 2 2 2 2 2/ / / .x y z∇ = ∂ ∂ + ∂ ∂ + ∂ ∂  

 

3.33 (a)  
2 2
0 | ( , ) |x t dx∫ Ψ ; 

 (b)  2 2
0 | ( , , , ) |x y z t dx dy dz∞ ∞

−∞ −∞∫ ∫ ∫ Ψ ; 

 (c)  2 2
0 1 1 1 2 2 2 1 1 1 2 2 2| ( , , , ,  ,  ,  )|x y z x y z t dx dy dz dx dy dz∞ ∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞ −∞∫ ∫ ∫ ∫ ∫ ∫ Ψ . 

 
3.34 (a)  2| | dxψ  is a probability and probabilities have no units. Since dx has SI units of m, 

the SI units of ψ  are m–1/2. 

 (b)  To make 2| | dx dy dzψ  dimensionless, the SI units of ψ  are m–3/2. 

 (c)  To make 2
1 1 1| | n n ndx dy dz dx dy dzψ  dimensionless, the SI units of ψ  are m–3n/2. 

 
3.35 Let the x, y, and z directions correspond to the order used in the problem to state the edge 

lengths. The ground state has x y zn n n  quantum numbers of 111.  The first excited state 

has one quantum number equal to 2. The quantum-mechanical energy decreases as the 
length of a side of the box increases. Hence in the first excited state, the quantum-number 
value 2 is for the direction of the longest edge, the z direction. Then 

2 2 2 2 2 2 2 2

2 2 2 2 2 2
1 1 2 1 1 1

8 8
h hh
m ma b c a b c

ν
⎛ ⎞ ⎛ ⎞

= + + − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

34
14 1

2 31 10 2
3 3(6.626 10  J s) 7.58 10  s

8 8(9.109 10  kg)(6.00 10  m)
h

mc
ν

−
−

− −
×

= = = ×
× ×

 

 

3.36 (a)  Use of Eqs. (3.74) and (A.2) gives 3.00 nm 2.00 nm 0.40 nm 2
2.00 nm 1.50 nm 0 | | dx dy dzψ =∫ ∫ ∫  

0.40 nm 2
0 (2/ )sin ( / )a x a dxπ∫ 2.00 nm 2

1.50 nm (2/ )sin ( / )b y b dyπ∫ 3.00 nm 2
2.00 nm (2/ )sin ( / )c z c dzπ∫ =  
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0.40 nm 2.00 nm 3.00 nm

0 1.50 nm 2.00 nm

sin(2 / ) sin(2 / ) sin(2 / )
2 2 2

x x a y y b z z c
a b c

π π π
π π π

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 = 

0.40 sin(2 0.40/1.00) 2.00 1.50 sin(2 2.00/2.00) sin(2 1.50/2.00)
1.00 2 2.00 2

π π π
π π

⋅ − ⋅ − ⋅⎡ ⎤ ⎡ ⎤− − ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
3.00 2.00 sin(2 3.00/5.00) sin(2 2.00/5.00)

5.00 2
π π

π
− ⋅ − ⋅⎡ ⎤−⎢ ⎥⎣ ⎦

 =  

(0.3065)(0.09085)(0.3871) = 0.0108. 
(b) The y and z ranges of the region include the full range of y and z, and the y and z 
factors in ψ are normalized. Hence the y and z integrals each equal 1. The x integral is the 
same as in part (a), so the probability is 0.3065. 
(c) The same as (b), namely, 0.3065. 

 
3.37 ˆ / .xp i x= − ∂ ∂   (a)  (sin )/ cos ,kx x k kx∂ ∂ =  so ψ is not an eigenfunction of ˆ .xp  

 (b)  2 2 2 2 2 2
(3.73) (3.73) (3.73)ˆ ( / ) ( 1)( / )x xp x n aψ ψ π ψ= − ∂ ∂ = − − , where (3.73)ψ  is given by  

Eq. (3.73). The eigenvalue is 2 2 2/4 ,xh n a  which is the value observed if 2
xp  is measured. 

 (c)  2 2 2 2 2 2
(3.73) (3.73) (3.73)ˆ ( / ) ( 1)( / )z zp z n cψ ψ π ψ= − ∂ ∂ = − −  and the observed value is 

2 2 2/4 .zh n c  

 (d)  (3.73) (3.73) (3.73)ˆ (const.)x xψ ψ ψ= ≠ , so ψ is not an eigenfunction of ˆ.x  

 
3.38 Since 2,yn =  the plane /2y b=  is a nodal plane within the box; this plane is parallel to 

the xz plane and bisects the box. With 3,zn =  the function sin(3 / )z cπ  is zero on the nodal 
planes /3z c=  and 2 /3;z c=  these planes are parallel to the xy plane.  

 
3.39 (a)  2| |ψ  is a maximum where | |ψ  is a maximum. We have ( ) ( ) ( ) .f x g y h zψ =  For 

1,xn =  1/2( ) (2/ ) sin( / )f x a x aπ=  is a maximum at /2.x a=  Also, ( )g y  is a maximum 

at /2y b=  and ( )h z  is a maximum at /2.z c=  Therefore ψ  is a maximum at the point 
( /2, /2, /2),a b c  which is the center of the box. 

 (b)  1/2( ) (2/ ) sin(2 / )f x a x aπ=  is a maximum at /4x a=  and at 3 /4.x a=  ( )g y  is a 

maximum at /2y b=  and ( )h z  is a maximum at /2.z c=  Therefore ψ  is a maximum at 
the points ( /4, /2, /2)a b c  and (3 /4, /2, /2),a b c  

 
3.40 When integrating over one variable, we treat the other two variables as constant; hence   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )F x G y H z dx dy dz F x G y H z dx dy dz G y H z F x dx dy dz⎡ ⎤ ⎡ ⎤= =∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫⎣ ⎦ ⎣ ⎦
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( ) ( ) ( ) ( ) ( ) ( )F x dx G y H z dy dz F x dx H z G y dy dz⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =∫ ∫ ∫ ∫ ∫ ∫⎣ ⎦ ⎣ ⎦ ⎣ ⎦
( ) ( ) ( )F x dx G y dy H z dz∫ ∫ ∫ . 

3.41 If the ratio of two edge lengths is exactly an integer, we have degeneracy. For example, if 
b = ka, where k is an integer, then 2 2 2 2 2 2 2 2/ / ( / )/x y x yn a n b n n k a+ = + . The ( , , )x y zn n n  
states (1, 2 , )zk n  and (2, , )zk n  have the same energy. 

 

3.42 With V = 0, we have 
2 2 2 2

2 2 22
E

m x y z
ψ ψ ψ ψ

⎛ ⎞∂ ∂ ∂
− + + =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

. Assume 

( , , ) ( ) ( ) ( ).x y z F x G y H zψ =  Substitution into the Schrödinger equation followed by 

division by FGH, gives 
2 2 2 2

2 2 2
1 1 1

2
d F d G d H E

m F G Hdx dy dz
⎛ ⎞

− + + =⎜ ⎟⎜ ⎟
⎝ ⎠

 and 

2 2 2 2 2

2 2 2
1 1 1

2 2
d F d G d HE

m F m G Hdx dy dz
⎛ ⎞ ⎛ ⎞

− = + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

   (Eq. 1).   Let 
2 2

2
1 .

2x
d FE

m F dx
⎛ ⎞

≡ − ⎜ ⎟⎜ ⎟
⎝ ⎠

 

Then, since F is a function of x only, xE  is independent of y and z. But Eq. 1 shows xE  is 
equal to the right side of Eq. 1, which is independent of x, so xE  is independent of x. 

Hence xE  is a constant and 2 2 2( /2 )( / ) .xm d F dx E F− =  This is the same as the one-
dimensional free-particle Schrödinger equation (2.29), so F(x) and xE  are given by (2.30) 
and (2.31). By symmetry, G and H are given by (2.30) with x replaced by y and by z, 
respectively. 

 
3.43 For a linear combination of eigenfunctions of Ĥ  to be an eigenfunction of Ĥ , the 

eigenfunctions must have the same eigenvalue. In this case, they must have the same 
value of 2 2 2.x y zn n n+ +  The functions (a) and (c) are eigenfunctions of Ĥ  and (b) is not. 

 

3.44 In addition to the 11 states shown in the table after Eq. (3.75), the following 6 states have 
2 2(8 / ) 15 :E ma h <  

x y zn n n  123 132 213 231 312 321 
2 2(8 / )E ma h  14 14 14 14 14 14 

 These 6 states and the 11 listed in the textbook give a total of 17 states. These 17 states 
have 6 different values of 2 2(8 / )E ma h , and there are 6 energy levels. 

 
3.45 (a)  From the table after Eq. (3.75), there is only one state with this value, so the degree of 

degeneracy is 1, meaning this level is nondegenerate. 
 (b)  From the table in the Prob. 3.44 solution, the degree of degeneracy is 6. 
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 (c)  The following x y zn n n  values have 2 2(8 / )E ma h  = 27;  115, 151, 511, 333. The degree 

of degeneracy is 4. 
3.46 (a)  These are linearly independent since none of them can be written as a linear 

combination of the others. 

(b)  Since 2 2 1
83 1 3( ) (8),x x− = −  these are not linearly independent. 

(c)  Linearly independent. 
(d)  Linearly independent. 
(e)  Since cos sin ,ixe x i x= +  these are linearly dependent. 

(f)  Since 2 21 sin cos ,x x= +  these are linearly dependent. 

(g)  Linearly independent. 
 
3.47 See the beginning of Sec. 3.6 for the proof. 
 

3.48 (a)  2 2 2
0 0 0 | ( ) | | ( ) | | ( ) |c b ax x f x g y h z dx dy dz〈 〉 = ∫ ∫ ∫ =  
2 2 2

0 0 0| ( ) | | ( ) | | ( ) | ,ca bx f x dx g y dy h z dz∫ ∫ ∫ where f, g, and h are given preceding Eq. 

(3.72). Since g and h are normalized, 2 2
0 0| ( ) | (2/ ) sin ( / )aa

xx x f x dx a x n x a dxπ〈 〉 = ∫ = ∫  = 

2 2

2 2
0

2 sin(2 / ) cos(2 / )
4 4 28

a

x x
x x

x ax a an x a n x a
a n n

π π
π π

⎡ ⎤
− − =⎢ ⎥

⎣ ⎦
, where Eq. (A.3) was used. 

 (b)  By symmetry, /2y b〈 〉 =  and /2.z c〈 〉 =  

 (c)  The derivation of Eq. (3.92) for the ground state applies to any state, and 0.xp〈 〉 =  

 (d)  Since g and h are normalized, 
2 2 2 2 2

0 0| ( ) | (2/ ) sin ( / )aa
xx x f x dx a x n x a dxπ〈 〉 = ∫ = ∫ =

3 2 3 2

3 3 2 2
0

2 sin(2 / ) cos(2 / )
6 4 8 4

a

x x
x x x

x ax a a xn x a n x a
a n n n

π π
π π π

⎡ ⎤⎛ ⎞
− − − =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

2 2

2 23 2 x

a a
n π

− ,  

where Eq. (A.4) was used. We have 2 2 2/4 .x a x〈 〉 = ≠ 〈 〉  Also, 
2 2 2

0 0 0 | ( ) | | ( ) | | ( ) |c b axy xy f x g y h z dx dy dz〈 〉 = ∫ ∫ ∫ =
2 2 2

0 0 0| ( ) | | ( ) | | ( ) |ca bx f x dx y g y dy h z dz∫ ∫ ∫  = .x y〈 〉〈 〉  

 

3.49 ˆ ˆ ˆˆ ˆ ˆ*( ) *( ) * *A B A B d A B d A d B dτ τ τ τ〈 + 〉 = Ψ + Ψ = Ψ Ψ + Ψ = Ψ Ψ + Ψ Ψ =∫ ∫ ∫ ∫  

.A B〈 〉 + 〈 〉   Also ˆ ˆ*( ) * .cB cB d c B d c Bτ τ〈 〉 = Ψ Ψ = Ψ Ψ = 〈 〉∫ ∫  
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3.50 (a)  Not acceptable, since it is not quadratically integrable. This is obvious from a graph or 
from 2 2(1/2 ) | .ax axe dx a e∞ − − ∞

−∞ −∞∫ = − = ∞  

 (b)  This is acceptable, since it is single-valued, continuous, and quadratically integrable 
when multiplied by a normalization constant. See Eqs. (4.49) and (A.9). 

 (c)  This is acceptable, since it is single-valued, continuous, and quadratically integrable 
when multiplied by a normalization constant. See Eqs. (4.49) and (A.10) with n = 1. 

 (d)  Acceptable for the same reasons as in (b). 
 (e)  Not acceptable since it is not continuous at x = 0. 
 

3.51 Given: 1 1
ˆ/i t H∂Ψ ∂ = Ψ  and 2 2

ˆ/i t H∂Ψ ∂ = Ψ . Prove that 

1 1 2 2 1 1 2 2
ˆ( ) / ( )i c c t H c c∂ Ψ + Ψ ∂ = Ψ + Ψ . We have 1 1 2 2( ) /i c c t∂ Ψ + Ψ ∂ =  

1 1 2 2[ ( ) / ( ) / ]i c t c t∂ Ψ ∂ + ∂ Ψ ∂ = 1 1 2 2/ /c i t c i t∂Ψ ∂ + ∂Ψ ∂ = 1 1 2 2
ˆ ˆc H c HΨ + Ψ =

1 1 2 2
ˆ ( )H c cΨ + Ψ , since Ĥ  is linear.  

 
3.52 (a)  An inefficient C++ program is 
 
  #include <iostream> 
  using namespace std; 
  int main() { 
   int  m, i, j, k, nx, ny, nz, L[400], N[400], R[400], S[400]; 
   i=0; 
   for (nx=1; nx<8; nx=nx+1) { 
    for (ny=1; ny<8; ny=ny+1) { 
     for (nz=1; nz<8; nz=nz+1) { 
      m=nx*nx+ny*ny+nz*nz; 
      if (m>60) 
       continue; 
      i=i+1; 
      L[i]=m; 
      N[i]=nx; 
      R[i]=ny; 
      S[i]=nz; 
     } 
    } 
   } 
   for (k=3; k<61; k=k+1) { 
    for (j=1; j<=i; j=j+1) { 
     if (L[j]==k) 
      cout<<N[j]<< " "<<R[j]<< " "<<S[j]<< " "<<L[j]<<endl; 
    } 
   } 
   return 0;  



 
Copyright © 2014 Pearson Education, Inc. 

 

3-11

  } 
 
   A free integrated development environment (IDE) to debug and run C++ programs is  
  Code::Blocks, available at www.codeblocks.org. For a Windows computer, downloading  
  the file with mingw-setup.exe as part of the name will include the MinGW (GCC) compiler  
  for C++. Free user guides and manuals for Code::Blocks can be found by searching the  
  Internet.  
   Alternatively, you can run the program at ideone.com. 
 (b)  One finds 12 states. 
 
3.53 (a)  T.   (b)  F.  See the paragraph preceding the example at the end of Sec. 3.3. 
 (c)  F. This is only true if f1 and f2 have the same eigenvalue. 
 (d)  F.   (e)  F. This is only true if the two solutions have the same energy eigenvalue. 
 (f)  F. This is only true for stationary states. 
 (g)  F.   (h)  F.  (5 ) (const.)(5 ).x x x≠  

 (i)  T.  / / /ˆ ˆ ˆ( ) .iEt iEt iEtH H e e H Ee Eψ ψ ψ− − −Ψ = = = = Ψ  

 (j)  T.   (k)  T.   (l)  F. 

 (m)  T.  2 2ˆ ˆ ˆ ˆ ˆ( ) ( ) ,A f A Af A af aAf a f= = = =  provided Â  is linear. Note that the 
definition of eigenfunction and eigenvalue in Sec. 3.2 specified that Â  is linear. 

 (n)  F.   (o)  F. 
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      Chapter 4   

The Harmonic Oscillator 
 
 

4.1 Taking ( / )md dx  of (4.84) gives ( )
0( ) ( 1)( 2) ( 1)( )m n m

nnf x c n n n n m x a∞ −
=

= − − − + −∑ " . 
The factors n, ( 1),...n −  make the terms with 0,n =  1,n = …, 1n m= −  vanish, so 

( ) ( ) ( 1)( 2) ( 1)( )m n m
nn mf x c n n n n m x a∞ −

=
= − − − + −∑ "   (Eq. 1). (If this is too abstract 

for you, write the expansion as 2
0 1 2( ) k

kf x c c x c x c x= + + + + +" "  and do the 

differentiation.) With x a=  in Eq. 1, the ( )n mx a −−  factor makes all terms equal to zero 
except the term with ,n m=  which is a constant. Equation (1) with x a=  gives 

( ) ( ) ( 1)( 2) ( 1) !m
m mf a c m m m m m c m= − − − + ="  and ( ) ( )/ !m

mc f a m= .  

 
4.2 (a)  (iv)( ) sin , ( ) cos , ( ) sin , ( ) cos , ( ) sin ,f x x f x x f x x f x x f x x′ ′′ ′′′= = = − = − = …;  

a = 0 and (iv)(0) sin 0 0, (0) cos0 1, (0) 0, (0) 1, (0) 0,f f f f f′ ′′ ′′′= = = = = = − = …. The 

Taylor series is 3 5sin 0 / 1! 0 / 3! 0 / 5!x x x x= + + − + + + =" 2 1
0 ( 1) / (2 1)!k k

k x k∞ +
=

− +∑ . 

(b)  2 4 2 4 2
0cos 1 / 1! 3 / 3! 5 / 5! 1 / 2! / 4! ( 1) / (2 )!k k

kx x x x x x k∞
=

= − + − = − + − = −∑" . 

 
4.3 (a)  We use (4.85) with 0.a =  We have ( ) xf x e=  and ( ) ( ) .n xf x e=   ( ) 0(0) 1.nf e= =  

So 2 3
01 / 1! / 2! / 3! / !x n

ne x x x x n∞
=

= + + + + = ∑" . 

 (b)  2 3 4 51 ( ) / 1! ( ) / 2! ( ) / 3! ( ) / 4! ( ) / 5!ie i i i i iθ θ θ θ θ θ= + + + + + + ="  
2 4 3 51 / 2! / 4! ( / 1! / 3! / 5! )iθ θ θ θ θ− + − + − + −" "  cos sin .iθ θ= +  

 
4.4 From (4.22) and (4.28), / 2 cos(2 )dx dt A t bπν πν= +  and 2 2 2 22 cos (2 ).T m A t bπ ν πν= +  

From (4.22) and (4.27), 2 2 2 22 sin (2 ).V mA t bπ ν πν= +  Then 2 2 22 ,T V mAπ ν+ =  since 
2 2sin cos 1.θ θ+ =  

 

4.5 (a)  Let 0
n

nny c x∞
=

= ∑ . Then 1
0

n
nny nc x∞ −

=
′ = ∑  and 2

0 ( 1) n
nny n n c x∞ −

=
′′ = −∑ . Since 

the first two terms in the y′′  sum are zero, we have 2
2 ( 1) .n

nny n n c x∞ −
=

′′ = −∑  Let 

2.j n≡ −  Then 2 20 0( 2)( 1) ( 2)( 1)j n
j nj ny j j c x n n c x∞ ∞
+ += =

′′ = + + = + +∑ ∑ . Substitution 

in the differential equation gives 
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20 0 0 0( 2)( 1) ( 1) 2 3 0n n n n
n n n nn n n nn n c x n n c x nc x c x∞ ∞ ∞ ∞
+= = = =

+ + − − − + =∑ ∑ ∑ ∑ .  

We have 2
20[( 2)( 1) (3 ) ] 0.n

n nn n n c n n c x∞
+=

+ + + − − =∑  Setting the coefficient of nx  

equal to zero, we have 2
2 ( 3) / [( 2)( 1)].n nc n n c n n+ = + − + +  

 (b)  The recursion relation of (a) with 0n =  gives 2 03 /2c c= −  and with 2n =  gives 

4 2 2 0 03 / 12 /4 ( 3 / 2)/4 3 /8.c c c c c= = = − = −  With 1n =  and 3n =  in the recursion 
relation, we get 3 1/6c c= −  and 5 3 1 19 /20 9( /6)/20 3 /40.c c c c= = − = −  

 
4.6 (a)  Odd;   (b)  even;  (c)  odd;   (d)  neither;  (e)  even;  (f)  odd;   (g)  neither;   (h)  even. 
 
4.7 Given:  ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ).f x f x g x g x h x h x k x k x− = − = − = − − = −  

Let ( ) ( ) ( ).p x f x g x≡   We have ( ) ( ) ( ) ( ) ( ) ( ),p x f x g x f x g x p x− = − − = =  so the product 
of two even functions is an even function.  Let ( ) ( ) ( ).q x h x k x≡  Then 

( ) ( ) ( ) ( )[ ( )] ( ) ( ) ( ),q x h x k x h x k x h x k x q x− = − − = − − = =  so the product of two odd 
functions is an even function. Let ( ) ( ) ( ).r x f x h x=  Then 

( ) ( ) ( ) ( )[ ( )] ( ) ( ) ( )r x f x h x f x h x f x h x r x− ≡ − − = − = − = − . 

 
4.8 (a)  Given: ( ) ( ).f x f x= −  Differentiation of this equation gives 

( ) ( )/ ( )[ ( )/ ] ( ),f x df x dx f x d x dx f x′ ′ ′= − = − − = − −  so f ′  is an odd function.  
 (b)  Differentiation of ( ) ( )f x f x= − −  gives ( ) ( 1) ( ) ( ).f x f x f x′ ′ ′= − − − = −  
 (c)  Differentiation of ( ) ( )f x f x= −  gives ( ) ( ),f x f x′ ′= − −  as in (a). Putting 0x =  in 

this equation, we get (0) (0),f f′ ′= −  so 2 (0) 0f ′ =  and (0) 0f ′ = . 

 

4.9 
2 22 1/2 /2 2 2 /2ˆ* ( /2 ) ( / ) ( / )x xT T d m e d dx e dxα αψ ψ τ α π

∞ − −
−∞〈 〉 = = − ∫∫ =  = 

2 22 1/2 /2 2 2 /2( /2 )( / ) ( )x xm e x e dxα αα π α α
∞ − −
−∞− ∫ −=  = 

22 1/2 2 2
0( /2 )( / ) 2 ( ) xm x e dxαα π α α
∞ −− ∫ − ==

2 1/2 2 1/2 3/2 1/2( / )( / ) [ (1/4)( / ) (1/2)( / ) ]m α π α π α α π α− − == 2 /4mα ==
2 (2 / )/4 /4,m m hπν ν== =  where (A.9) and (A.10) were used. 

2 21/2 /2 2 2 2 /2ˆ* ( / ) (2 )x axV V d e mx e dxαψ ψ τ α π π ν∞ − −
−∞〈 〉 = = =∫ ∫  

21/2 2 2 2
0( / ) 2 (2 ) axmx e dxα π π ν∞ − =∫ 3/2 1/2 2 1/2 3/2 2 24 (1/4)( / ) /m mπ α ν π α π ν α= =

2 2 1/(2 ) /4 .m m h Tπ ν πν ν− = = 〈 〉=  

 

4.10 From (4.54), 
2 22 2 2 2 2 1/2 3/21

1 1 0 1 41 | | 2 | | 2 | | /x xc x e dx c x e dx cα α π α∞ ∞− −
−∞= = =∫ ∫ , where 

(4.49) and (A.10) with n = 1 were used. We get 1/2 3/4 1/4
1| | 2c α π −= . From (4.56), 
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2 22 2 2 4 2 2 2 4
0 0 01 | | (1 4 4 ) 2| | (1 4 4 )x xc x x e dx c x x e dxα αα α α α∞ ∞− −

−∞= − + = − +∫ ∫  
2 1 1/2 1/2 3/2 2 1/2 5/2

02 | | [2 ( / ) 4 (1/4) / 4 (3 / 8) / ]c π α α π α α π α−= − + = 2 1/2
02 | | ( / )c π α  

where (A.9) and (A.10) were used. Hence 1/2 1/4
0| | 2 ( / ) .c α π−=  

 

4.11 From (4.47), 
23 /2

3 1 3( ) .axc x c x eψ −= +  From (4.46), 3 1 1[2 (1 3)/6] 2 /3.c c cα α= − = −  So 
23 /2

3 1[ (2/3) ] xc x x e αψ α −= − . We have 
22 2 4 2 6

1 01 | | 2 [ (4/3) (4/9) ] xc x x x e dxαα α∞ −= − + =∫  
2 2 1/2 3/2 3 1/2 5/2 2 4 1/2 7/2

12 | | [(1/2 ) / (4/3) (3/2 ) / (4/9) (15/2 ) / ]c π α α π α α π α− + =  
2 1/2 3/2

1| | / 3c π α−  and 1/2 3/4 1/4
1| | 3 .c α π −=  Then 

21/2 3/4 1/4 3 /2
3 3 [ (2/3) ] .xx x e αψ α π α− −= −  

 

4.12 From (4.47), 
2 2 4

4 0 2 4( ).xe c c x c xαψ −= + +  From (4.46) with 4,=v  

2 0 02 ( 4) /2 4c c cα α= − = −  and 

4 2 22 (2 4) /(3 4) /3c c cα α= − ⋅ = − 0( 4 )/3cα α= − − 2
04 /3.cα=  Then 

2 2 2 4
4 0 (1 4 4 /3).xc e x xαψ α α−= − +  

 
4.13 At the maxima in the probability density 2| |ψ , we have 2| | / 0.xψ∂ ∂ =  From (4.54), 

2 22 2 2 3
1 10 ( / )( ) (2 2 ) ,x xc x x e c x x eα αα− −= ∂ ∂ = −  so 3 20 (1 ).x x x xα α= − = −  The solutions 

are 0x =  and 1/2.x α−= ±  From Fig. 4.4b, 0x =  is a minimum in probability density, so 
the maxima are at 1/2.x α−= ±  

 
4.14 The wave function is an odd function with five nodes, one of which is at the origin. 

 
 Alternatively, one could take 1−  times the ψ function graphed above.  
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4.15 2ˆ* | | .x x d x dxψ ψ τ ψ∞
−∞〈 〉 = = ∫∫ v  The wave function ψ v  is either even or odd, so 2| |ψ v  

is an even function. Hence 2| |x ψ v  is an odd function and 2| | 0.x dxψ∞
−∞∫ =v  The result 

0x〈 〉 =  is obvious from the graphs of 2| |ψ  that correspond to Fig. 4.4. 

 
4.16 (a)  T.   (b)  T.   (c)  F (since ψ  can be multiplied by –1 and remain a valid wave 

function).  (d)  T.   (e)  T.  
 
4.17 Similarities: The number of nodes between the boundary points is zero for the ground 

state and increases by one for each increase in the quantum number. The quantum 
numbers are integers. There is a zero-point energy. The shapes of corresponding wave 
functions are similar. If the origin is placed at the center of the box, the wave functions 
alternate between being even or odd as the quantum number increases. The energy levels 
are nondegenerate. There are an infinite number of bound-state energy levels 
Differences: The energy levels are equally spaced for the harmonic oscillator (ho) but 
unequally spaced for the particle in a box (pib). For the ho, there is some probability for 
the particle to be found in the classically forbidden region, but this probability is zero for 
the pib. 

 
4.18 (a)  1 1(2 ) [sin ( / ) ]t x A bπν − −= −  and 1 1 2 1/2/ (2 ) [1 ( / ) ]dt dx A x Aπν − − −= − , so 

1 2 1/2(2 ) [1 ( / ) ] .dt A x A dxπν − −= −  The period is 1/ν , so the probability that the particle is 
found between x and x dx+  is 1 2 1/22 ( ) [1 ( / ) ] .dt A x A dxν π − −= −  

 (b)  At ,x A= ±  the classical probability density is infinite. 
 (c)   

  x/A 
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 For high values of the quantum number v , the outer peaks in 2ψ  are much higher than 
the inner peaks, and the highest probability density is near the classical turning points of 
the motion, as is true for the classical probability density graphed above. This is in accord 
with the correspondence principle. 

 
4.19 For 0,x ≥  the Hamiltonian operator is the same as that of the harmonic oscillator. Hence 

the solutions of the Schrödinger equation for 0x ≥  are the functions (4.42), where the 
coefficients obey the recursion relation (4.39). To make ψ quadratically integrable, ψ 
must go to zero as .x →∞  This boundary condition then restricts the solutions to the 
harmonic-oscillator functions (4.47). Since V is infinite for 0x < , ψ  must be zero for 

0x <  (as for the particle in a box). The condition that ψ  be continuous then requires that 
0ψ =  at 0x = . The even harmonic-oscillator functions in (4.47) are not zero at the 

origin, so these are eliminated. Hence the well-behaved solutions are the harmonic 
oscillator wave functions with 1, 3, 5,...,=v  and 1

2( )E hν= +v  with 1, 3, 5,....=v  If 

we define ( 1)/2n ≡ −v , then 3
2(2 )E n hν= + , with 0, 1, 2,....n =  

 
4.20 (a)  The time-independent Schrödinger equation (3.47) is  

2 2 2 2 2 2 2 2 2 21 1 1
2 2 2( /2 )( / / / ) ( ) .x y zm x y z k x k y k z Eψ ψ ψ ψ ψ− ∂ ∂ + ∂ ∂ + ∂ ∂ + + + ==   

The Hamiltonian operator is the sum of terms that each involve only one coordinate, so 
we try a separation of variables, taking ( ) ( ) ( ).f x g y h zψ =  Substitution of this ψ  into the 
Schrödinger equation followed by division by fgh gives  

2 2 2 2
2 2 21 1 1

2 2 22 2 2 ( )
2 x y z

d f d g d hgh f h fg k x k y k z fgh Efgh
m dx dy dz
⎛ ⎞

− + + + + + =⎜ ⎟⎜ ⎟
⎝ ⎠

=  

2 2 2 2
2 2 21 1 1

2 2 22 2 2
1 1 1

2 x y z
d f d g d h k x k y k z E

m f g hdx dy dz
⎛ ⎞

− + + + + + =⎜ ⎟⎜ ⎟
⎝ ⎠

=      (Eq. 1)  

2 2 2 2 2
2 2 21 1 1

2 2 22 2 2
1 1 1

2 2x x y z
d f d g d hE k x E k y k z

m f m g hdx dy dz
⎛ ⎞

≡ − + = + + − −⎜ ⎟⎜ ⎟
⎝ ⎠

= =     (Eq. 2)  

Since f is a function of x only, the defined quantity xE  is independent of y and z. Since 

xE  equals the right side of the last equation and x does not appear on this side, xE  is 
independent of x. Therefore xE  is a constant. Multiplication of the xE  definition by f 

gives 2 2 2 21
2( /2 )( / ) x xm d f dx k x f E f− + == , which is the same as the one-dimensional 

harmonic-oscillator (ho) Schrödinger equation (4.32) [see also (4.26)] with ψ  replaced 
by f, k replaced by ,xk  and E replaced by xE . Hence f (x) is the one-dimensional ho wave 
function (4.47) with v  replaced by xv , and xE  is given by (4.45) and (4.23) as 

1/21
2( ) , (1/2 )( / ) .x x x x xE h k mν ν π= + =v  Since x, y, and z occur symmetrically, g(y) and 

h(z) are ho functions with y and z as the variable. Equations 1 and 2 give, 
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1 1 1
2 2 2( ) ( ) ( ) ,x y z x x y y z zE E E E h h hν ν ν= + + = + + + + +v v v  where 

0, 1, 2, , 0, 1, 2, 0, 1, 2,x y z= = =… … …v v v  

 (b)  When the k’s are equal, we have x y zν ν ν ν= = ≡  and 3
2( ) .x y zE hν= + + +v v v  The 

lowest energy level is 000 and is nondegenerate, where the numbers give the values of 
the quantum numbers , , .x y zv v v  The next-lowest level is threefold degenerate, 

consisting of the states 100, 010, and 001. The next level is sixfold degenerate and has 
the states 200, 020, 200, 110, 101, 011. The next level is tenfold degenerate and has the 
states 300, 030, 003, 111, 210, 201, 012, 021, 102, 120. 

 

4.21 (a)  
2 20

0 ( 1) 1.z zH e e−= − =   
2 2 2 2

1 ( 1) ( / ) ( 2 ) 2 .z z z zH e d dz e e ze z− −= − = − − =   
2 2 22 2

2 ( 2 4 ) 4 2,z z zH e e z e z− −= − + = −   
2 2 2 23 3

3 (4 8 8 ) 8 12 .z z z zH e ze ze z e z z− − −= − + − = −  

 (b)  For n = 0,  0zH z=  and 1
12 .H z=    

For n = 1,  2
1 2zH z=  and 2 21

0 22 1 2 1 2 .H H z z+ = + − =  

For n = 2,  3
2 4 2zH z z= −  and 3 31

1 322 4 4 6 4 2 .H H z z z z z+ = + − = −  

 (c)  For 0,=v  (4.86) is 
21/4 /2

0 ( / ) ,xe αψ α π −=  as in (4.53). For 1,=v  (4.86) is 
2 21/2 1/4 /2 1/2 1/2 3/4 1/4 /2

1 (2 1!) ( / ) (2 ) 2x xe x xeα αψ α π α α π− − − −= ⋅ = , as in (4.55).  Finally, 
2 22 1/2 1/4 /2 1/2 2 1/2 1/4 2 /2

2 (2 2!) ( / ) [4( ) 2] 2 ( / ) (2 1)x xe x x eα αψ α π α α π α− − − −= ⋅ − = −  as in 
(4.57). 

 
4.22 For very large | |,x  the first term in parentheses in (4.32) can be neglected compared with 

the second term, and (4.32) becomes 2 2 0.xψ α ψ′′ − =  With 
2 /2xe αψ −= , we have 

2 2 2 22 2 /2 2 2 /2 2 2 /2 /2.x x x xx e x e x e eα α α αψ α ψ α α α α− − − −′′ − = − + − = −  For very large | |,x  
2 /2xe αα −−  is extremely close to zero, so 

2 /2xe αψ −=  is an approximate solution for very 
large | | .x  

 

4.23 (a)  Let 1/2
rx xα≡ . Then Eq. (4.40) becomes  

   
2 62 4

/2 62 4
0 2 3

0 0 0
/ 1rx rr r c xc x c xc e

c c c
ψ

α α α
− ⎛ ⎞

= + + + +⎜ ⎟⎜ ⎟
⎝ ⎠

"  

Let 2 / /rE mE E hα ν−≡ == . Then Eq. (4.39) becomes 

2 / (2 1 2 )/ [( 1)( 2)]n n r nc c n E n n fα+ = + − + + ≡ , where nf  was defined as shown. We 

have 6 62 4 4 2 4 2
0 2 0 4 2 02 3

0 2 0 4 2 00 0
, , ,c cc c c c c cf f f f f f

c c c c c cc cα α α α α αα α
= = = = = …  . Hence 
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( )2 /2 2 4 6
0 0 0 2 0 2 4/ 1rx

r r rc e f x f f x f f f xψ −= + + + +" .  

We have 2
2 2 (4 4 1 2 )/[(2 2 1)(2 2 2) (4 3 2 )/(4 2 )n r rf n E n n n E n n− = − + − − + − + = − − − .  

 
 A C++ program is 
 #include <iostream> 
 #include <cmath> 
 using namespace std; 
 int main () { 
  int n; 
  double er, xr, fac, sum, term, psi; 
  label2: cout  <<  "Enter Er (enter 1000 to quit)"; 
  cin >> er; 
  if (er > 999) { 
   return 0; 
  } 
  for (xr=0; xr<=6; xr=xr+0.5)  { 
   fac=exp(-xr*xr/2); 
   sum=1; 
   term=1; 
   for (n=1; n<=9500; n=n+1)  { 
       term=term*(4*n-3-2*er)*xr*xr/(4*n*n-2*n); 
       if (fabs(fac*term) < 1e-15)  { 
    goto label1; 
      } 
      sum=sum+term; 
   } 
   cout << "Did not converge"; 
   return 0; 
   label1: psi=fac*sum; 
   cout  <<  " xr =  "   << xr  << "  Psi =  "  << psi  << "  n =  " <<  n << endl; 
  } 
  goto label2; 
 } 
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 (b)  For 0.499, 0.500, 0.501,rE =  the values of 0/cψ  at 4rx =  are 0.684869, 
0.000335463, and –0.68198. 

 
4.24 (a)  With the harmonic-oscillator approximation for the molecular vibration, Eq. (4.61) 

gives the molecular vibration frequency as 13 18.65 10  sν −= × . From (4.59), 2 24k π ν μ=  
and 1 2 1 2/( )m m m mμ = + . From Table A.3 in the Appendix, 

24
23

1.008(34.97) g 1 1.627 10  g
(1.008 34.97) 6.022 10

μ −= = ×
+ ×

 

 So 2 24k π ν μ=  = 4π2(8.65 ×1013 s–1)2(1.627 × 10–27 kg) = 481 N/m. 

 (b)  1
2 hν = 0.5(6.626 × 10–34 J s)(8.65 × 1013 s–1) = 2.87 × 10–20 J. 

 (c)  From the last equation in (4.59), the force constant k of a molecule is found from the 
U(R) function. The electronic energy function U is found by repeatedly solving the 
electronic Schrödinger equation at fixed nuclear locations. The nuclear masses do not 
occur in the electronic Schrödinger equation, so the function U is independent of the 
nuclear masses and is the same for 2H35Cl as for 1H35Cl. Hence k is the same for these 
two molecules. From the first equation in (4.59), 1/2

2 1 1 2/ ( / )ν ν μ μ= , where 2 and 1 refer 
to 2H35Cl and 1H35Cl, respectively. From Table A.3, 

24
2 23

2.014(34.97) g 1 3.162 10  g
(2.014 34.97) 6.022 10

μ −= = ×
+ ×

 

So 1/2
2 1 2 1( / )ν μ μ ν= =  (1.627/3.162)1/2(8.65 ×1013 s–1) = 6.20 ×1013 s–1. 

 
4.25 (a)  Putting 2 1=v  and 2 2=v  in the result of Prob. 4.27b, we have 

12885.98 cm 2e e exν ν− = −� �  and 15667.98 cm 2 6e e exν ν− = −� � . Subtracting twice the first 

equation from the second, we get 1103.98 cm 2 e exν−− = − �  and 151.99 cme exν −=� . The 

first equation then gives 1 1 12885.98 cm 2(51.99 cm ) 2989.96 cm .eν
− − −= + =�  Also, 

e ecν ν= =�  ( 12989.96 cm− )(2.99792 ×1010 cm/s) = 8.96366 × 1013 s–1 and e e e ex x cν ν= =�  

( 151.99 cm− )(2.99792 ×1010 cm/s) = 1.559 × 1012 s–1. 
(b)  With 2 3=v , the result of Prob. 4.27b becomes light 3 12e e exν ν ν= − =� � �   

3(2989.96 cm–1) – 12(51.99 cm–1) = 8346.00 cm–1. 
 
4.26 (a)  Using the harmonic-oscillator approximation, the energy difference between these 

two vibrational levels is h h cν ν= =�  (6.626 × 10–34 J s)(1359 cm–1)(2.998 × 1010 cm/s) = 
2.70 × 10–20 J. The Boltzmann distribution law (4.63) for these nondegenerate levels 
gives 20 23

1 0/ exp[( 2.70 10  J)/(1.381 10  J/K)(298 K)]N N − −= − × ×  = 0.0014 at 25°C and 
20 23

1 0/ exp[( 2.70 10  J)/(1.381 10  J/K)(473 K)]N N − −= − × ×  = 0.016 at 200°C. 



4-9 
Copyright © 2014 Pearson Education, Inc. 

 

(b)  h h cν ν= =�  (6.626 × 10–34 J s)(381 cm–1)(2.998 × 1010 cm/s) = 7.57 × 10–21 J. 
21 23

1 0/ exp[( 7.57 10  J)/(1.381 10  J/K)(298 K)]N N − −= − × ×  = 0.16 at 25°C and 
21 23

1 0/ exp[( 7.57 10  J)/(1.381 10  J/K)(473 K)]N N − −= − × ×  = 0.31 at 200°C. 

 
4.27 (a)  

{ }1 2 21 1 1 1
light 2 1 2 2 1 12 2 2 2( )/ ( ) ( ) ( ) ( )e e e e e eE E h h h h x h h xν ν ν ν ν− ⎡ ⎤= − = + − + − + − +⎣ ⎦v v v v =  

2 2
2 1 1 2 1 2( ) [( ) ( )]e e exν ν− + − + −v v v v v v   (Eq. 1). Use of the selection rule 2 1 1− =v v  

gives 2 2
light 1 1 1[ ( 1) 1] 2 ( 1).e e e e e ex xν ν ν ν ν= + − + − = − +v v v  

(b)  Putting 1 0=v  in Eq. 1 of part (a), we get 2
light 2 2 2( )e e exν ν ν= − +v v v . 

 
4.28 The Taylor series (4.85) of Prob. 4.1 with x R= , ( ) ( ),f x U R=  and ea R=  gives 

2 3( ) ( ) / 0! ( )( ) / 1! ( )( ) /2! ( )( ) /3!e e e e e e eU R U R U R R R U R R R U R R R′ ′′ ′′′= + − + − + − +" . 
Since eR  occurs at the minimum in the ( )U R  curve, we have ( ) 0.eU R′ =  From (4.59), 

( ) .eU R k′′ =  The zero of potential energy can be chosen wherever we please, so we can 

take ( ) 0eU R = , as in Fig. 4.6. Neglecting the 3( )eR R−  term and higher terms, we thus 

have 2 21 1
2 2( ) ( ) ,eU R k R R kx≈ − =  where ex R R≡ − . 

 
4.29 (a)  Putting R = ∞  and then eR R=  in the Morse function, we get ( ) eU D∞ =  and 

( ) 0.eU R =  So ( ) ( ) .e eU U R D∞ − =  

 (b)  From (4.59), ( ).e ek U R′′=  For the Morse function, 
( ) ( ) ( ) 2 ( )2 [1 ] 2 [ ]e e e ea R R a R R a R R a R R

e eU D e ae aD e e− − − − − − − −′ = − = −  and 
( ) 2 ( )2 [ 2 ].e ea R R a R R

eU aD ae ae− − − −′′ = − +  Then 2( ) 2 ( 2 ) 2e e e ek U R aD a a a D′′= = − + = , so 
1/2( /2 ) .e ea k D=  

 
4.30 We begin by finding combinations of m, l, and =  that have dimensions of energy and of 

length. The reduced energy and x coordinate are /rE E A≡  and / .rx x B≡   

Let .a b cA m l= =  Using (4.71) and (4.70), we have  
[A] = ML2T–2 = [ a b cm l = ] = 2 1 2M L (ML T ) M L T ,a b c a c b c c− + + −=  so 

1, 2 2, 2.a c b c c+ = + = − = −  Hence 2, 1, 2c a b= = − = −  and 2 2/ ( / ).rE E ml= =   

Let d e fB m l= = . We have 2 1 2[ ] L M L (ML T ) M Ld e f d f e f fB T− + + −= = = , so  
0, 2 1, 0.d f e f f+ = + = − =  Hence, 0, 0, 1,f d e= = =  and / ,rx x l=  as is obvious 

without doing the detailed analysis. From (4.78) and (4.79), 1/2 1/2
r B lψ ψ ψ= =  and 

5/2 5/2
r rB lψ ψ ψ− −′′ ′′ ′′= = . The Schrödinger equation 2( /2 )m Eψ ψ′′− ==  becomes 
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2 5/2 2 2 1/2( /2 ) ( / )r r rm l ml E lψ ψ− −′′− == =  or 2 .r r rEψ ψ′′ = −  To put this equation in the form 
of Eq. (4.66) and the first equation in (4.82), we define 2r rG E≡ −  to give .r r rGψ ψ′′ =  
The formula in cell B7 and the cells below it in Fig. 4.9 becomes =-2*$B$3. There is no 
penetration into the classically forbidden region, so we omit steps (c) and (d) at the end of 
Sec. 4.4. The variable /rx x l=  runs from 0 to 1. We take the interval rs  as 0.01. We 
enter 0.0001 in C8. The rψ  formulas in column C are the same as in Fig. 4.9. The Solver 

is set to make C107 equal to zero by varying B3. The lowest three 2 2 24 / ( / )rE E h mlπ=  
eigenvalues are found to be 4.9348021805, 19.7392075201, and 44.41320519866. (For 
maximum accuracy, use the Options button in the Solver to reduce the Precision to 

1410 .− ) These rE  values correspond to E values of 2 2/h ml  times 0.12499999949, 

0.4999999675, and 1.124999630, as compared with the true values of 2 2/h ml  times 
2 /8n =  0.125, 0.500, and 1.125. 

 
4.31 (a)  As in Prob. 4.30, we take combinations of m, l, and =  that have dimensions of 

energy and of length; the reduced energy and x coordinate are /rE E A≡  = 2 2/ ( / )E ml=  

and /rx x B≡  /x l= . The Schrödinger equation is 2 2 2( /2 ) ( / )m K ml Eψ ψ ψ′′− + == = , 
where K = 20 in regions I and III of Fig. 2.5, and K = 0 in region II. From (4.78) and 
(4.79), 1/2 1/2

r B lψ ψ ψ= =  and 5/2 5/2
r rB lψ ψ ψ− −′′ ′′ ′′= = . The Schrödinger equation 

becomes 2 5/2 2 2 1/2 2 2 1/2( /2 ) ( / ) ( / )r r r rm l K ml l ml E lψ ψ ψ− − −′′− + == = =  or 
(2 2 ) .r r rK Eψ ψ′′ = −  The bound-state reduced energies are less than 20, so the maximum 

reduced energy we are interested in is 20. For reduced energies less than 20, the 
classically forbidden regions are regions I and III in Fig. 2.5. Reasonable starting and 
ending points are 1.5 units into each of the classically forbidden regions, so we shall take 

rx  to run from –1.5 to 2.5. A reasonable interval is 0.02rs =  or 0.01. For greater 
accuracy, we shall use 0.01. The K value for regions I and III is entered into cell B2 of 
Fig. 4.9. In column B, rx  values in regions I (from –1.5 to 0) and III (from 1 to 2.5) 
contain the formula 2*$B$2-2*$B$3 and rx  values in region II (from 0 to 1) contain the 
formula -2*$B$3. The rψ  formulas in column C are the same as in Fig. 4.9. The Solver 
is set to make C407 equal to zero by varying B3. The Options button in the Solver is used 
to set the Precision at 810− . The bound-state 2 2 24 / ( / )rE E h mlπ=  eigenvalues are found 
to be 2.772515720011 and 10.6051190761. (A value of 20.213299 is also obtained, but 
the graph shows that the solution for this energy does not go to zero asymptotically in the 
forbidden region.)  

 (b)  The spreadsheet of part (a) is modified by changing cell B2 from 20 to 50. The 
Solver gives the rE  values 3.3568218287, 13.256836483275, 29.003101429782, and 
47.66519784181. 



4-11 
Copyright © 2014 Pearson Education, Inc. 

 

 (c)  Substitution of 2 2
0 20 /V ml= =  in (2.34) for b gives b = 6.3245553203 and 

/ 2.0132,b π =  so there are three bound states. The Solver shows the roots of Eq. (2.35) to 
be 0.1407215, 0.5375806, 0.9995981.ε =  From (2.34), 0, 20r rE Vε ε= = =  
2.814429, 10.75161, 19.99196.  The eigenvalues found in (a) are rather inaccurate, 
indicating that we need to go further into the classically forbidden regions and decrease 
the interval. For 2 2

0 50 /V ml= = , one finds b = 10; 
0.06827142, 0.26951445, 0.58904615, 0.9628693ε = ; 

,50 3.413571, 13.47572 29.452308, 48.143464.rE ε= =   
The eigenvalues in (b) are rather inaccurate. 

 
4.32 We begin by finding combinations of m, c, and =  that have dimensions of energy and of 

length. c has dimensions of energy divided by length4, so 2 2 4 2 2[ ] ML T /L MT Lc − − −= = . 
The reduced energy and x coordinate are /rE E A≡  and / .rx x B≡   

Let a b dA m c= = . Using (4.71) and (4.70), we have  
[A] = ML2T–2 = [ a b dm c= ] = 2 1 2 2 2 2 2M (ML T ) (MT L ) M L T ,a b d a b d b d b d− − − + + − − −=  so  

 1, 2 2 2, 2 2a b d b d b d+ + = − = − − = − . Adding twice the third equation to the second, 
we get 6 2d− = −  and 1

3d = . Then 4
3b =  and 2

3a = − . So 2/3 4/3 1/3/ / .rE E A E m c−= = =  

Let e f gB m c= = . We have 
2 1 2 2 2 2 2[ ] L M (ML T ) (MT L ) M L Te f g e f g f g f gB − − − + + − − −= = = , so 

0, 2 2 1, 2 0e f g f g f g+ + = − = − − = . Subtracting the third equation from the 
second, we get 1

3f = . Then 1
6g = −  and 1

6e = − . So 1/6 1/3 1/6/ /rx x B x m c− −= = = . The 

Schrödinger equation is 2 4( /2 )m cx Eψ ψ ψ′′− + == . From (4.78) and (4.79), 1/2
r Bψ ψ=  

and 1/2 2 1/2 1/3 2/3 1/3
r rB B B m cψ ψ ψ− − − −′′ ′′ ′′= = = . The Schrödinger equation becomes 

2 1/2 1/3 2/3 1/3 4 2/3 4/3 2/3 1/2 2/3 4/3 1/3 1/2( /2 ) r r r r rm B m c cx m c B m c E Bψ ψ ψ− − − − − − −′′− + == = = =  and 
4(2 2 )r r r r r rx E Gψ ψ ψ′′ = − = , where 42 2r r rG x E≡ − . Let us find eigenvalues with 

10.rE ≤  Setting this maximum rE  equal to rV , we have 410 rx=  and the classically 
allowed region is bounded by 1.78rx = ± . We shall start well into the classically 
forbidden region at 3.5rx = −  and go to 3.5rx = +  in steps of 0.05. Cell B7 of Fig. 4.9 
contains the formula 2*A7^4-2*$B$3 and this is copied to other column B cells. With 
0.001 in cell C8, a suitable Precision (set by clicking the Solver Options button) is 0.1. 
The Solver gives the lowest three eigenvalues as 

2/3 4/3 1/3/ 0.667986133, 2.39364258, 4.69678795.rE E m c−≡ ==  

 

4.33 Proceeding similarly as in Prob. 4.32, we have 2 2 8 2 6[ ] ML T / L MT La − − −= = .   
/rE E A≡  and / .rx x B≡  Let b c dA m a= = . Then [A] = ML2T–2 = [ b c dm a= ] = 
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2 1 2 6 2 6 2M (ML T ) (MT L ) M L T ,b c d b c d c d c d− − − + + − − −=  so 
1, 2 6 2, 2 2b c d c d c d+ + = − = − − = − .  81 4

5 5 5, ,d c b= = = − .  
4/5 8/5 1/5/ / .rE E A E m a−= = =   Let e f gB m a= = . We have 
2 1 2 6 2 6 2[ ] L M (ML T ) (MT L ) M L Te f g e f g f g f gB − − − + + − − −= = = , so 

0, 2 6 1, 2 0e f g f g f g+ + = − = − − = .     1 1 1
10 5 10, , .g f e= − = = −   

1/10 1/5 1/10/ /rx x B x m a− −= = = .  The Schrödinger equation is 2 8( /2 )m ax Eψ ψ ψ′′− + == . 

From (4.78) and (4.79), 1/2
r Bψ ψ= and 1/2 2 1/2 1/5 2/5 1/5

r rB B B m aψ ψ ψ− − − −′′ ′′ ′′= = = . The 
Schrödinger equation becomes 

2 1/2 1/5 2/5 1/5 8 4/5 8/5 4/5 1/2 4/5 8/5 1/5 1/2( /2 ) r r r r rm B m a ax m a B m a E Bψ ψ ψ− − − − − − −′′− + == = = =  and 
8(2 2 )r r r r r rx E Gψ ψ ψ′′ = − = , where 82 2r r rG x E≡ − . Let us find eigenvalues with 

10.rE ≤  Setting this maximum rE  equal to rV , we have 810 rx=  and the classically 
allowed region is bounded by 1.33rx = ± . We shall start well into the classically 
forbidden region at 3rx = −  and go to 3rx = +  in steps of 0.02. Cell B7 of Fig. 4.9 
contains the formula 2*A7^8-2*$B$3 and this is copied to other column B cells. With 
0.001 in cell C8, a suitable Precision (set by clicking the Solver Options button) is 0.1. 
The Solver gives the lowest three eigenvalues as 4/5 8/5 1/5/ /rE E A E m a−= = =  = 
0.70404876, 2.731532, 5.884176. 

 

4.34 Proceeding similarly as in Prob. 4.32, we have 2 2 2[ ] ML T / L MT Lb − −= = .   
/rE E A≡  and / .rx x B≡  Let a c dA m b= = . Then [A] = ML2T–2 = [ a c dm b= ] = 
2 1 2 2 2M (ML T ) (MT L) M L T ,a c d a c d c d c d− − + + + − −=  so 1a c d+ + = , 2 2,c d+ =  

2 2.c d− − = −  2 2 1
3 3 3,d c a= = = − . So 1/3 2/3 2/3/ / .rE E A E m b−= = =  Let e f gB m b= = . 

We have 2 1 2 2 2[ ] L M (ML T ) (MT L) M L Te f g e f g f g f gB − − + + + − −= = = , so 
0, 2 1,e f g f g+ + = + =  2 0f g− − =  and 1 2 1

3 3 3, , .g f e= − = = −   
1/3 2/3 1/3/ /rx x B x m b− −= = = .  The Schrödinger equation is 2( /2 )m bx Eψ ψ ψ′′− + == . 

From (4.78) and (4.79), 1/2
r Bψ ψ= and 1/2 2 1/2 2/3 4/3 2/3

r rB B B m bψ ψ ψ− − − −′′ ′′ ′′= = = . The 
Schrödinger equation becomes 

2 1/2 2/3 4/3 2/3 1/3 2/3 1/3 1/2 1/3 2/3 2/3 1/2( /2 ) r r r r rm B m b bx m b B m b E Bψ ψ ψ− − − − − − −′′− + == = = =  and 

(2 2 )r r r r r rx E Gψ ψ ψ′′ = − = , where 2 2r r rG x E≡ − . Let us find eigenvalues with 

8.rE ≤  Setting this maximum rE  equal to rV , we have 8 rx=  and the classically 
allowed region is 0 8rx≤ ≤ . We shall go from 0rx =  to 10 in steps of 0.05. Cell B7 of 
Fig. 4.9 contains the formula 2*A7-2*$B$3 and this is copied to other column B cells. 
The Solver gives the lowest four eigenvalues as 1.85575706, 3.24460719, 4.38167006, 
5.38661153. 
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4.35 (a)  Let / .rE E A≡   a has dimensions of length, and just as 2 2/A ml= =  in Prob. 4.30, we 

have 2 2/A ma= =  here. Hence, 2/ 31.5/( ) ,r rx x
rV V A e e−= = − + where / .rx x a≡   

 
 
 
  
(b)   

 
 (c)  For 0.1,rE = −  the boundaries of the classically allowed region are where 

0.1.r rV E= = −  The table used to make the graph in (b) shows that 0.1rV = −  at 
2.9.rx ≈ ±  We shall go from 7rx = −  to 7 in steps of 0.05. (Use of too small a range for x 

can give erroneous results. For example going from 4−  to 4 gives only 3 states instead of 
4. Also, the value of the highest energy level found varies significantly with the size of 
the range.) Setting 0.1rE = − , we get a function with 4 nodes interior to the boundary 
points, indicating that there are 4 states below 0.1rE = − . These are found to be 

2 2/( / ) 6.125000942,rE E ma= = −=  –3.1250035, –1.125005, and –0.1226. For the lowest 
state the Solver might say that it could not find a solution, but the appearance of the wave 
function shows that the Solver has found a good solution; you could improve it by 
varying by hand the last digit of the Solver’s value. If we go from –8 to 8 in steps of 0.05, 
the highest energy level is improved to –0.1241.  

 

4.36 (a)  2 1 1/2 3/2 2 3/2 1/2 1 4 1/2 1/21
4/ ( )/rV V A b a m b bx ab m x m b− − − − −= = ⋅ − + == = =    

1/2 1/2 1 2 2 41/(4 )a b m x abm x− −− + == = 2 41/(4 ) ,r ra x ax− +  where we used the expression for 
c given in the statement of this problem, (4.73) with k replaced by b, and rx x B= =  

1/4 1/4 1/2 .rm b x− − =  
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 (c)  The graph gives 4.9rx = ±  at 10,r rE V= =  and these are the boundary points of the 

classically allowed region. We shall go from 6.5rx = −  to 6.5 in steps of 0.05. We 
modify the spreadsheet of Fig. 4.9 by changing the formulas in column B to correspond 
to 2 2r rV E−  with 0.05.a =  Putting 10rE =  in the spreadsheet gives a function with 12 
nodes, indicating that 12 states have energies below 10. One finds the following rE  
values: 0.97336479758, 0.97339493833903, 2.7958839769, 2.79920822, 4.315510072, 
4.4214678772594, 5.3827766596746, 5.9746380026562, 6.8331392725971, 
7.7437224213536, 8.7368315651332, 9.7948731480794, where the number of interior 
nodes goes from 0 to 11. 

 
4.37 (a)  The potential-energy function is 
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 As in the particle in a box (Prob. 4.30) 2 2/( / ), / .r rE E ml x x l= ==  rx  goes from 0.5−  to 

0.5 . We shall take 0.01.rs =  A cell is designated to contain the value of 0,rV . The 
column B cells contain the formula for 2 2 ,r rV E−  where rV  is 0 for 0.5 0.25rx− ≤ ≤ −  

and for 0.25 0.5;rx≤ ≤  and is 0,rV  for 0.25 0.25.rx− < <  One finds 2 2/( / )rE E ml= =  = 

5.7400863, 20.216046, 44.798915, 79.459117. The wave functions closely resemble 
those of a particle in a box (pib). This is because the bound-state energies are all 
substantially greater than 0V , so 0V  is only a small perturbation on the pib potential 
energy. 

 (b)  With 0,rV  changed to 100, one finds 2 2/( / )rE E ml= =  = 44.4763188, 44.7856494, 

113.73536239, 142.13947708. 
(c)  With 0, 1000rV = , we get rE =  63.869414269, 63.869414294, 254.025267141, 

254.025267989. The first two states have wave functions that look like particle-in-box  
n = 0 functions in the left and right quarters of the well with ψ being small in the central 
region, and the next two wave functions resemble n = 1 functions in these two quarters. 
The energies of these states are well below 0V . In the limit 0V →∞ , we would have two 
boxes with infinitely high walls. 

 
4.38 (a)  0.4999996, 1.4999973, 2.4999903, 3.4999765, 4.4999621, 5.5000081; 11.7121. The 

range –5 to 5 was chosen as appropriate for reduced energies less than 5. For 11.5,rE =  

the classically allowed region is found from 20.5 11.5rx =  and 4.8.rx = ±  At 5rx = ± , we 
are not far enough into the classically forbidden region to approximate ψ as zero. If we 
redo things with the range taken from –6.5 to 6.5 with 0.1,rs =  we get 11.49921. 

 (b)  0.499747, 1.498209, 2.493505, 3.483327, 4.465124, 5.436066. The larger rs  value 
reduces the accuracy. 

 (c)  0.500391, 1.506079, 2.541116, 3.664184, 4.954083.  

∞ ∞

V0 

1
2 l−  1

4 l−  1
2 l  1

4 l  

V 

x
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4.39 (a)  The usual mathematical convention is that 2 2 0.x x− + =  Hence one would expect 0 
as the result.  

 (b)  Excel gives 50. Certain other spreadsheets give 0. 
 
4.40 (b)  x2 can be misinterpreted as a cell reference, so x2 is not allowed as the name of a 

parameter.  
 
4.41 Put n = 1 in (4.67). Since 0 0,ψ =  (4.67) shows that 2ψ  is proportional to 1ψ . With n = 2, 

(4.67) shows that 3ψ  contains only terms linear in 2ψ  and 1ψ , and since 2ψ  is 
proportional to 1ψ , 3ψ  is proportional to 1ψ . With n = 2, (4.67) shows that 4ψ  contains 
only terms linear in 3ψ  and 2ψ  and since both of these are proportional to 1ψ , 4ψ  is 
proportional to 1ψ . And so on. 

 
4.42 For the 0=v  state with 0.5,rE =  the boundaries of the classically allowed region are 

found from 20.5 0.5 rx=  and thus are 1rx = ± . The probability of being in the classically 

forbidden region is 1 2
52 | |r rdxψ−
−∫ . We square the normalized rψ  column E values to get 

2| |rψ  values in column F. We approximate this probability by 22 | | (0.1),rψ∑  where 

the sum uses the column F values from –5 to –1. Since the value at –1 is at the boundary 
of the allowed and forbidden regions, we shall include one-half the 2| |rψ  value at –1 in 
the sum. We get 0.16 as the probability of being in the classically forbidden region. For 
the 1.5rE = state, the boundaries of the classically allowed region satisfy 21.5 0.5 rx=  and 

1.73.rx = ±  Taking twice the sum from –5 to –1.7 for this state, we get 0.12 as the 
probability of being in the classically forbidden region. This is smaller than 0.16, in 
accord with the correspondence principle.  

 
4.43 (a)  With this notation, (4.85) becomes 

2 3 (iv) 4 (v) 51 1 1 1
2 6 24 120( ) ( ) ( ) ( ) ( ) ( ) ( )n n n n n n nf x s f x f x s f x s f x s f x s f x s′ ′′ ′′′+ = + + + + + +"  

 (b)  Replacement of s by –s gives 
2 3 (iv) 4 (v) 51 1 1 1

2 6 24 120( ) ( ) ( ) ( ) ( ) ( ) ( )n n n n n n nf x s f x f x s f x s f x s f x s f x s′ ′′ ′′′− = − + − + − +"  

 Addition of these two equations and neglect of s6 and higher powers gives 
2 (iv) 41

12( ) ( ) 2 ( ) ( ) ( )n n n n nf x s f x s f x f x s f x s′′+ + − ≈ + +  

 Use of the notation of (4.65) with ψ replaced by f  followed by the replacement of f  by ψ 
gives 
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( )iv2 41
1 1 122n n n n nf f f f s f s+ − ′′≈ − + + +    (4.87) 

( )iv2 41
1 1 122n n n n ns sψ ψ ψ ψ ψ+ − ′′≈ − + + +      (4.88) 

 (c)  Replacement of f  in (4.87) with ψ ′′  and multiplication by s2 gives 

2 2 2 (iv) 4 (vi) 61
1 1 122n n n n ns s s s sψ ψ ψ ψ ψ+ −′′ ′′ ′′≈ − + + +  

 Neglecting the s6 term, we get  
(iv) 4 2 2 2

1 1 2n n n ns s s sψ ψ ψ ψ+ −′′ ′′ ′′≈ + −  

 Use of Gψ ψ′′ =  in this last equation gives 
(iv) 4 2 2 2

1 1 1 1 2n n n n n n ns G s G s G sψ ψ ψ ψ+ + − −≈ + −    (4.89) 

 Substitution of (4.89) and Gψ ψ′′ =  into (4.88) gives 

2 2 2 21
1 1 1 1 1 1122 2n n n n n n n n n n nG s G s G s G sψ ψ ψ ψ ψ ψ ψ+ − + + − −⎡ ⎤≈ − + + + + −⎣ ⎦  

 Solving this last equation for 1nψ + , we get Eq. (4.67). 

4.44 Let  = .d e fB m k =  Then (4.70) and (4.71) give  

[ ] ( ) ( )2 2 1 2 2M MT ML T M L T L
e fd e f d d e f f e fB m k − − + + − −⎡ ⎤= = = =⎣ ⎦=  

0,   2 1,   2 0d e f f e f+ + = = − − =  

1 1 1
2 4 4,   ,   f e d= = − = −  

1/4 1/4 1/2B m k− −= =  
 
4.45 (a)  From 2( /2 ) ( )m V x Eψ ψ ψ′′− + == , we get ( ) 0aψ ′′ =  if ( ) 0aψ =  and ( )V a  is finite.  

 (b)  Differentiation of the Schrödinger equation gives 2( /2 )m V V Eψ ψ ψ ψ′′′ ′ ′ ′− + + == . 
Then if both ψ  and ψ ′  are zero at a and V ′  is finite at a, we get ( ) 0aψ ′′′ = . Further 
differentiation of the Schrödinger equation then shows all higher derivatives are zero at a. 

 
4.46 (a)  V is the same as in Prob. 4.33, except that c replaces a. From the Prob. 4.33 solution, 

1/10 1/5 1/10/rx x m c− −= = , 4/5 8/5 1/5/ /rE E A E m c−= = =  and 4/5 8/5 1/5/ /rV V A V m c−= = =  = 
8 4/5 8/5 1/5 8 1/10 1/5 1/10 8 4/5 8/5 1/5 8/ ( ) / .r rcx m c cx m c m c x− − − −= == = =  The classically allowed 

region has ,r rE V≥  that is, 810 rx≥ , which gives 1/810 1.33rx ≤ =  and 
1.33 1.33.rx− ≤ ≤  
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 (b)  With these values of ,0rx , ,max ,rx  and ,rs  one finds that ψ oscillates between 

positive and negative values from one point to the next between –3 and –2.65 and 
between 2.65 and 3. 

 (c)  2 21 /12 1 (2 2 ) /12.r r r r rG s V E s− = − −  We have 8 8( 2.65) 2432r rV x= = ± = ; this is much 

greater than ,rE  which is less than 10, so 2 21 /12 1 2 /12r r r rG s V s− ≈ − =  
21 2(2430)(0.05) /12− =  –0.01. So for 2.65,rx >  the denominator in (4.67) is negative 

and ψ oscillates in sign from point to point. 
 (d) The spurious oscillations are eliminated with both of these choices. 
 
4.47 Replace the last statement goto label1; with 
 
 z=0; 
 for (i=1; i<=m; i=i+1)  { 
  z=z+p[i]*p[i]*s; 
 } 
 n=1/sqrt(z); 
 for (i=1; i <= m; i=i+1)  { 
  p[i]=n*p[i]; 
  cout  <<  " xr =  " <<  x[i]  <<  "  psir =  "  <<  p[i]  <<  endl; 
 } 
 goto  label1; 
 
 Also add z and n to the list of double-precision variables in the sixth line of the program. 
 
4.48 A C++ program is 
 include  <iostream> 
 using namespace std; 
 int main() { 
    int m, nn, i; 
    double x, s, E, p, q, y, g, h, ss, z, j, r; 
    cout <<  " Enter initial xr  "; 
    cin  >>  x; 
    cout  <<   " Enter interval sr  "; 
    cin  >>  s; 
    cout  <<  " Enter number of intervals m  "; 
    cin  >>  m; 
    label1: 
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    cout  << " Enter Er (enter 1e10 to quit)  "; 
    cin  >> E; 
    if (E > 1e9) { 
     cout  <<  "quitting "; 
     return 0; 
    } 
    nn = 0;  p = 0;  q = 0.0001; 
    y = x+ s; 
    g = x*x - 2*E; 
    h = y*y - 2*E; 
    ss = s*s/12; 
    for (i=1; i <= m-1; i=i+1)  { 
     z=y+s; 
     j=z*z - 2*E; 
     r=(-p+2*q+10*h*q*ss+g*p*ss)/(1-j*ss); 
     if(r*q < 0) 
        nn = nn+1; 
     p=q;  q=r;  x=y;  y=z; 
     g=h;  h=j; 
    } 
    cout  << " Er=  " << E  << "  nodes =  " << nn << "  Psir(xm) =  "  << q  << endl; 
    x = z - m*s; 
    goto label1; 
 } 
4.49 (a)  From Prob. 2.23, b = 3.97. Use of the Solver to make the left side of (2.35) equal to 

zero subject to the constraints that 1ε ≤  and 610ε −≥  gives 0.2677 and 0.9035.ε =  
Then (15.0 eV)E ε= =  4.02 eV and 13.6 eV. 

 (b)  When 0r rE V> , we have 1/2 1/2
0 0( ) ( )r r r rV E i E V− = − . Also, use of (2.14) gives 

cos sin (cos sin ) 2 sintanh( ) tan
cos sin (cos sin ) 2cos

ix ix

ix ix
e e x i x x i x i xix i x

x i x x i x xe e

−

−
− + − −

= = = =
+ + −+

 

Thus we enter four formulas into the spreadsheet, corresponding to whether rE  is less or 
greater than 0rV  and whether p is 1 or –1. We use the constraints in the Solver either that 

0r rE V>  or 5
010 r rE V− ≤ ≤ . The values found in Prob. 4.37 can be used as initial values 

for the Solver. For 0 1,rV =  the Solver gives 5.7503448, 20.23604266, 44.808373, 
79.45920976, where the first and third numbers are for p = –1. For 0 100,rV =  we get 

0 45.80216565,rE =  46.10722291, 113.9380765, 143.353994. For 0 1000,rV =  we get 
66.399924233, 66.399924251, 263.9170623, 263.9170630. To get accurate values when 
two states lie very close together, use Options to change the Solver precision to a much 
smaller value than the default value. (Although 0r rE V=  satisfies the equation, it is not a 
valid energy level.) 
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4.50 (a)  Given: ˆ
i i iAf k f= . Prove: ˆ( ) ( ).i i iA cf k cf=  We have ˆ ˆ( ) ( ),i i i i i iA cf cAf ck f k cf= = =  

where we assumed that Â  is linear, as is true for quantum-mechanical operators 
corresponding to physical properties. 

 (b)  The operator 1
ho

ˆ( )h Hν − , where hoĤ  is the harmonic-oscillator Hamiltonian operator 
(4.30), has eigenvalues (4.45) divided by hν  and has the required eigenvalues. 

 (c)  If we add a constant a to a linear operator, we add a to each of its eigenvalues. (See 
Prob. 4.52.) Hence the operator 1 1

ho 2
ˆ( )h Hν − +  has the desired eigenvalues.  

 
4.51 (a)  The wave function depends on one coordinate and is for a one-particle,  

one-dimensional system. The time-independent Schrödinger equation is 
4 4 42 2 2( /2 ) ( )/ ,ax ax axm d Ne dx VNe ENe− − −− + ==  so 

4 4 4 42 2 2 6( /2 )( 12 16 ) ,ax ax ax axm ax e a x e Ve Ee− − − −− − + + ==  and 
2 2 2 6( ) ( /2 )( 12 16 )V x E m ax a x= + − += . If we choose (0) 0,V =  then we get 0 E=  and 

2 2 6 2( ) ( / )(8 6 )V x m a x ax= −= .  

 (b)  To aid in sketching V, we find its maxima and minima. We have 
2 2 5( / )(48 12 ) 0V m a x ax′ = − ==  and 0x =  and 1/4(4 ) .x a −= ±  Clearly a is positive 

(otherwise ψ would not be quadratically integrable). Evaluating V ′′ , we find that it is 
negative at 0x =  and positive at 1/4(4 ) .x a −= ±  Hence, V is a local maximum at 0x =  
and a local minimum at 1/4(4 ) .x a −= ±  For very large x, the 2x  term in V is negligible 
compared with the 6x  term and 2 2 6( / )8V m a x≈ = . Thus V is positive for very large x and 
goes to ∞ as .x → ±∞  Also, V is an even function and is zero at 0.x =  Combining this 
information, we have 

 
 (c)  Because ψ has no nodes, it is the ground state. See the paragraph after Eq. (4.57). 
 

4.52 Given: ˆ .H Eψ ψ=  Prove: ˆ( ) ( ) .H C E Cψ ψ+ = +  We have ˆ ˆ( )H C H Cψ ψ ψ+ = + =  
( ) .E C E Cψ ψ ψ+ = +   
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4.53 (a)  F.    

(b)  T.    
(c)  T, since the integrand is an odd function.    
(d)  T. This follows from the one-particle, one-dimensional Schrödinger equation.   
(e)  F.   
(f)  T, since ψ  is an odd function and, as noted near the end of Sec. 4.2, ψ  does not 
oscillate in the classically forbidden region). 
(g)  T. 
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Chapter 5 

Angular Momentum 
 
 
5.1 (a)  No;   (b)  yes;   (c)  yes;   (d)  yes;   (e)  yes. 
 

5.2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] ( ) ( ) [ , ] .A B f AB BA f ABf BAf BAf ABf B A f= − = − = − − = −  

 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] ( ) 0 0n n n n nA A f AA A A f A f A f f+ += − = − = = ⋅  

 ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ[ , ] ( ) [ , ] ,kA B f kAB BkA f kABf kBAf k A B f= − = − =  since B̂  is linear.  

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ[ , ] ( ) ( ) [ , ] [ , ]A B C f A B C f B C Af ABf BAf ACf CAf A B f A C f+ = + − + = − + − = + . 

 ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ[ , ] .A BC f ABCf BCAf= −   Also, 
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ , ] ( ) ( )A B Cf B A C f AB BA Cf B AC CA f ABCf BACf BACf BCAf+ = − + − = − + −  

= ˆ ˆ ˆ ˆˆ ˆABCf BCAf−  = ˆ ˆˆ[ , ]A BC f . 

 The second identities in (5.3), (5.4), and (5.5) are proved similarly. 

 

5.3 3 2 2 2 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ , ] [ , ] [ , ] ( / )(2 / ) ( / )x x x x x x xx p x p p p x p x p p i x x i x= = + = − ∂ ∂ ∂ ∂ + − ∂ ∂ == = = =  
3 2 23 ( / )i x− ∂ ∂=  where (5.6) and (5.7) were used.  

 

5.4 From (5.11), 2 2 2( )x x xΔ = 〈 〉 − 〈 〉 . From Prob. 4.9, 21 1
2 4V kx hν〈 〉 = 〈 〉 =  so 

2 1 2 2 21 1
2 2 /4 /8x h k h m h mν ν π ν π ν−〈 〉 = = = . Figure 4.4a shows 0x〈 〉 = . Equation (5.11) 

then gives 2 1/2( /8 ) .x h mπ νΔ =  From Prob. 4.9, 1 2 1
4(2 ) xT m p hν−〈 〉 = 〈 〉 =  and 

2 /2xp h mν〈 〉 = . Essentially the same reasoning that gave Eq. (3.92) gives 0xp〈 〉 = . Then 
1/2( /2)xp h mνΔ =  and 2 1/2 1/2( /8 ) ( /2) /4 /2.xx p h m h m hπ ν ν πΔ Δ = = = =  

 
5.5 From (3.88), 

2 7 6 2 7 8 7 9 9 9
0(105/ ) ( 2 ) (105/ )( /7 /4 / 9)lx l x l lx x dx l l l l〈 〉 = ∫ − + = − + 25 /12l=  and 

7 5 2 6 7 7 8 8 8
0(105/ ) ( 2 ) (105/ )( /6 2 /7 / 8) 5 /8lx l x l lx x dx l l l l l〈 〉 = ∫ − + = − + = . Also, 

7 1/2 2ˆ / (105/ ) (2 3 )xp i x i l lx xψ ψ= − ∂ ∂ = − −= =  and 2 2 7 1/2ˆ (105/ ) (2 6 )xp l l xψ = − −= . So 
7 2 3 2 7 2 3 4 5

0 0(105/ ) ( )(2 3 ) (105/ ) (2 5 3 )l l
xp i l lx x lx x dx i l l x lx x dx〈 〉 = − ∫ − − = − ∫ − += =  = 

7 6 1 1
2 2(105/ ) ( 1 )i l l− − +=  = 0, which also follows by the reasoning used to get Eq. (3.92). 

Then 2 2 7 2 3 2 7 2 2 3 4
0 0(105/ ) ( )(2 6 ) (105/ ) (2 8 6 )l l

xp l lx x l x dx l l x lx x dx〈 〉 = − ∫ − − = − ∫ − += =  
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2 7 5 2 262
3 5(105 / ) ( 2 ) 14 /l l l= − − + == = . So 2 2 2 2 2 25 25 5

12 64 192( )x x x l l lΔ = 〈 〉 − 〈 〉 = − =  and 
2 2 2( ) 14 / .xp lΔ = =  We have 1/2 1/2 1/2 1

2(5/192) (14 / ) (35/96) 0.6038 .xx p l lΔ Δ = = = >= = = =  

 
5.6 If ˆ ,A aΨ = Ψ  then 2 2ˆ ˆ ˆ ˆ ˆA AA Aa aA aΨ = Ψ = Ψ = Ψ = Ψ  and 

2 2 2 2ˆ* *A A d a d aτ τ〈 〉 = ∫Ψ Ψ = ∫Ψ Ψ = . Also 

( ) ( )2 22 2ˆ* * .A A d a d aτ τ〈 〉 = ∫Ψ Ψ = ∫Ψ Ψ =  Then (5.11) gives 2( ) 0AΔ =  and 0.AΔ =  

 
5.7 We have 2 2 2ˆ ˆ ˆ ˆ ˆ( ) ( )( ) 2 ,A A A A A A A A A A− 〈 〉 Ψ = − 〈 〉 − 〈 〉 Ψ = Ψ − 〈 〉 Ψ + 〈 〉 Ψ  where Eqs. 

(3.11), (3.12), (3.10), and (3.2) were used. Then Eq. (5.10) becomes   
2( )AΔ =  2 2ˆ ˆ( * 2 * * )A A A A dτ∫ Ψ Ψ − 〈 〉Ψ Ψ + Ψ 〈 〉 Ψ   

2 2ˆ ˆ* 2 * *A d A A d A dτ τ τ= ∫Ψ Ψ − 〈 〉 ∫Ψ Ψ + 〈 〉 ∫Ψ Ψ  = 
2 2 2 22 1 .A A A A A A〈 〉 − 〈 〉〈 〉 + 〈 〉 ⋅ = 〈 〉 − 〈 〉  

 
5.8 The possible outcomes are HH, HT, TH, TT, where HT means the first coin showed 

heads and the second showed tails. The w values are 2, 1, 1, 0. We have 
(2 1 1 0)/4 1w〈 〉 = + + + = . Alternatively, the probabilities for 2, 1, and 0 heads are 

1 1 1
4 2 4, ,  and ,  respectively, and (3.81) gives 1 1 1

4 2 4(2) (1) (0) 1w〈 〉 = + + = . The 2w  values 

are 4, 1, 1, 0 and 2 (4 1 1 0)/4 1.5w〈 〉 = + + + = . We have 
2 2 2 21.5 1 0.5w w wσ = 〈 〉 − 〈 〉 = − =  and 1/22 0.707.wσ

−= =  

 
5.9 (a)  Vector;   (b)  vector;   (c)  scalar;   (d)  scalar;   (e)  vector;   (f)  scalar. 
 

5.10 2 2 2 1/2| | [3 ( 2) 6 ] 7= + − + =A , 2 2 2 1/2 1/2| | [( 1) 4 4 ] 33= − + + =B , 
(3 1) ( 2 4) (6 4) 2 2 10+ = − + − + + + = + +A B i j k i j k , 
(3 1) ( 2 4) (6 4) 4 6 2− = + + − − + − = − +A B i j k i j k , 3( 1) ( 2)4 6(4) 13= − + − + =A·B , 

3 2 6 ( 8 24) (12 6) (12 2) 32 18 10
1 4 4

= − = − − − + + − = − − +
−

i j k
A B i j k i j k× . 

 1/2| | | |cos 13 7(33) cos ;θ θ= = =A·B A B  cos 0.3232887θ = ;  θ = 1.2416 rad = 71.14°. 

 
5.11 Let the sides of the cube be 1 unit long and let the cube be placed with one corner at the 

origin and three of its edges lying on the positive x, y, and z axes, respectively. Then the 
center of the cube has (x, y, z) coordinates 1 1 1

2 2 2( , , ) . If we imagine H3 in the middle 
drawing of Fig. 12.5 to lie at the origin, then 3H  and 4H  have coordinates (0, 0, 0) and 
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(1, 1, 0), respectively. If we draw a vector from C at the center of the cube to H3 and slide 
this vector so its tail is at the origin, this vector’s tip has the coordinates 

1 1 1 1 1 1
2 2 2 2 2 2(0 , 0 , 0 ) ( , , )− − − = − − − . The vector from C to H4 has coordinates 

1 1 1 1 1 1
2 2 2 2 2 2(1 , 1 , 0 ) ( , , )− − − = −  when moved to bring its tail to the origin while 

preserving its direction. Calling these two vectors A and B, we have 
2 2 2 1/2 1/21 1 1

2 2 2| | [( ) ( ) ( ) ] 3 /2= − + − + − =A , 2 2 2 1/2 1/21 1 1
2 2 2| | [( ) ( ) ( ) ] 3 /2= + + − =B ,  

A·B  = 1 1 1 1 1 1 1
2 2 2 2 2 2 4( )( ) ( )( ) ( )( )− + − + − − = − 3

4| | | | cos cosθ θ= =A B , so 1
3cosθ = −  and 

arccos( 0.3333333) 1.91063θ = − =  rad = 109.47°. This is the tetrahedral bond angle. 

 
5.12 (a)  Let the labels 1, 2, 3 distinguish the three Br atoms. Let the C atom lie at the origin, 

the C—H bond lie on the positive z axis, and the Br1 atom lie in the xz plane with a 
positive x coordinate. Let α  denote the HCBr angle and β denote the BrCBr angle. The 
angle made by the C—Br1 bond and the negative z axis is π α− . Let b denote the  
C—Br1 bond length. A little trigonometry shows that the x, y, z coordinates of Br1 are 

sin( ), 0, cos( ),b bπ α π α− − − respectively, and the x, y, z coordinates of Br2 are 
1 1
2 2sin( ), 3 sin( ), cos( )b b bπ α π α π α− − − − − . (The x and y coordinates of Br2 are 

more easily found if the molecule is raised in the z direction to make the Br atoms lie in 
the xy plane; the line from the origin to atom Br2 will then make a 30° angle with the y 
axis.) The dot product of the vectors that go from the origin at C to Br1 and to Br2 is  
[Eqs. (5.20) and (5.23)]: 2 2 2 2 21

2cos sin ( ) 0 cos ( )b b bβ π α π α= − − + + − . Hence 
2 2 21

2cos sin ( ) cos ( ) 1 1.5sin ( )β π α π α π α= − − + − = − −  where 2 2cos sin 1θ θ+ =  was 

used. We have sin( ) sin cos cos sin sinπ α π α π α α− = − = , so 2cos 1 1.5sinβ α= − . 

 (b)  2cos( BrCBr) 1 1.5sin (107.2 ) 0.36884∠ = − ° = −  and BrCBr 111.6∠ = ° . 

 
5.13 grad f = ( / ) ( / ) ( / ) (4 5 ) 5 (2 5 )f x f y f z x yz xz z xy∂ ∂ + ∂ ∂ + ∂ ∂ = − − + −i j k i j k . 
 2 2 2 2 2 2 2( / / / ) 4 0 2 6.f f x f y f z∇ = ∂ ∂ + ∂ ∂ + ∂ ∂ = + + =  
 

5.14 (a)  
2 2 2

2 2 2div[ ( , , ) g g g g g gg x y z
x y z x y z x y z

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + = + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

grad i j k · i j k  

 (b)  ·r∇  = ( ) 3x y zx y z
x y z x y z

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
+ + + + = + + =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

i j k · i j k . 

 
5.15 (a) Let B  denote the vector. We have  2 2 2 2 1/2 1/2[3 ( 2) 0 1 ] 14 .= + − + + =B  

 (b)  Let , , ,α β γ δ  be the direction angles. Then 
1/2 1/2

1 1cos / (3, 2, 0,1) (1, 0, 0, 0) / (14) (1) 3/14 0.80178α = = − = =B e B ei i  and 

0.6405 rad 36.7 .α = = °  Next 1/2 1/2cos (3, 2, 0,1) (0,1, 0, 0)/14 2/14 0.53452β = − = − = −i  
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and 2.1347 rad 122.3 .β = = °  Then cos 0γ =  and /2 rad 90 .γ π= = °  
1/2cos 1 / 14 0.26726δ = =  and 1.300 rad 74.5 .δ = = °  

5.16 (a)   No;   (b)  yes;   (c)  yes;   (d)  yes; see Eqs. (5.5) and (5.49). 
 

5.17 2 2ˆ sin cot cos sin cot cosx
f fL f φ θ φ φ θ φ

θ φ θ φ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂

= − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
=   

2ˆ
xL f =

2 2
2 2 2

2
2

2 2
2 2 2

2

sin sin cos csc sin cos cot cot cos

cot cos sin cot cos sin cot cos

f f f f

f f f

φ φ φ θ φ φ θ θ φ
φ θ φ θθ

θ φ φ θ φ φ θ φ
φ θ φ φ

⎛ ⎞∂ ∂ ∂ ∂
− + +⎜ ⎟

∂ ∂ ∂ ∂∂⎜ ⎟− ⎜ ⎟∂ ∂ ∂⎜ ⎟+ − +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

=   

2 2ˆ cos cot sin cos cot siny
f fL f φ θ φ φ θ φ

θ φ θ φ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂

= − − −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
=  

2ˆ
yL f =

2 2
2 2 2

2
2

2 2
2 2 2

2

cos cos sin csc cos sin cot cot sin

cot sin cos cot sin cos cot sin

f f f f

f f f

φ φ φ θ φ φ θ θ φ
φ θ φ θθ

θ φ φ θ φ φ θ φ
φ θ φ φ

⎛ ⎞∂ ∂ ∂ ∂
+ − +⎜ ⎟

∂ ∂ ∂ ∂∂⎜ ⎟− ⎜ ⎟∂ ∂ ∂⎜ ⎟− + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

=

2
2 2

2
ˆ

z
fL f

φ
∂

= −
∂

=  

 
2 2

2 2 2 2 2
2 2

ˆ ˆ ˆ( ) cot (cot 1)x y z
f f fL L L f θ θ

θθ φ

⎛ ⎞∂ ∂ ∂
+ + = − + + +⎜ ⎟⎜ ⎟∂∂ ∂⎝ ⎠

= , where 2 2sin cos 1β β+ =  

was used. Use of 
2 2 2

2
2 2 2

cos cos sin 1cot 1 1
sin sin sin

θ θ θθ
θ θ θ

+
+ = + = =  completes the proof. 

 

5.18 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ , ] [ , ] ( )x y x x y x y x x z z x x z z xL L L L L L L L L i L i L L i L L L L= + = + = + == = =   

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) (2 )x z x z y x z yi L L L L i L i L L i L+ + = += = = = , where (5.48) was used. 
 

5.19 (a)  2 2 2 1/2 1/2 1/2( ) (1 4 0) 5r x y z= + + = + + = ; cos / 0z rθ = =  and 90θ = ° ; 
tan / 2y xφ = =  and arctan 2 1.10715 rad 63.435φ = = = ° . 

 (b)  1/2 1/2(1 0 9) 10r = + + = ; 1/2cos 3/10 0.948683θ = =  and 0.32175 rad 18.435θ = = ° ; 
tanφ = 0  and 180φ = °  (the projection of r in the xy plane lies on the negative x axis). 

 (c)  1/2 1/2(9 1 4) 14r = + + = ; 1/2cos 2/14 0.534522θ = − = −  and 
2.13474 rad 122.31θ = = ° ; tan 1/ 3φ =  and 0.321751 rad 18.435φ = = ° . 

 (d)  1/2 1/2(1 1 1) 3r = + + = ; 1/2cos 1/ 3 0.57735θ = − = −  and 2.18628 rad 125.26θ = = ° ; 
tan ( 1) / ( 1) 1φ = − − =  and 225φ = ° . 
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5.20 (a)  sin cos sin( /2)cos 1x r θ φ π π= = = − ; sin sin sin( /2)sin 0y r θ φ π π= = = ; 
cos cos( /2) 0z r θ π= = = . 

 (b)  1/22sin( /4)cos0 2 1.414x π= = = ; 2sin( /4)sin 0 0y π= = ; 2cos( /4) 1.414z π= = . 

5.21 (a)  A sphere with center at the origin. 
 (b)  A cone whose axis is the z axis. 
 (c)  A half-plane perpendicular to the xy plane with edge being the z axis. 
 
5.22 For points in the sphere, the angular coordinates go over their full ranges and r goes from 

0 to R. So 
2 22 2 31
0 0 0 0 0 0 03sin sin ( cos )| (2 )

R R
V r dr d d r dr d d R

π π π π πθ θ φ θ θ φ θ π= ∫ ∫ ∫ = ∫ ∫ ∫ = −  = 34
3 Rπ . 

 
5.23 From Fig. 5.6, 1/2 1/2cos [ ( 1)] [ ( 1)]m l l m l lθ = + = += = . For l = 2, the possible m values 

are –2, –1, 0, 1, 2 corresponding to 1/2 1/2 1/2 1/2cos 2 / 6 , 1 / 6 , 0, 1 / 6 , 2 / 6θ = − − ,  
respectively. Hence the possibilities are 2.5261 rad 144.74 ,θ = = °   

1.9913 rad 114.09 , 90 , 1.1503 rad 65.91 , 0.61548 rad 35.26θ θ θ θ= = ° = ° = = ° = = ° . 

 
5.24 (a)  When the angle θ  between the z axis and the L vector is smallest, then zL  has its 

largest possible value, which is .l=  We then have (Fig. 5.6) 
1/2 1/2cos / /[ ( 1)] /[ ( 1)]zL l l l l l lθ = = + = +L = =  and 2cos /( 1).l lθ = +  

 (b)  As l increases, /( 1)l l +  increases, coming closer and closer to 1, and θ  decreases 
towards zero. 

 
5.25 We have 

 

2
2 1/2 2 1/2

2

2
2 2 1/2 2 1/21

22

2
2

2

(1 ) (1 )

(1 ) (1 ) (1 ) ( 2 )

(1 )

d S d dS d dGw w
d d dw dwd

d G dGw w w w
dwdw

d G dGw w
dwdw

θ θθ

−

⎡ ⎤= = − − − −⎢ ⎥⎣ ⎦

= − + − − −

= − −

 

 

5.26 (a)  From (5.146), 1/2 05 2!
2,0 22 2!( ) (cos ).S P θ=   

From (5.145), 
2

0 4 2 23 1
2 2 22

1( ) ( 2 1) .
8

dP w w w w
dw

= − + = −  So 

1/2 2 1/2 25 3 1 1
2,0 2 2 2 4( ) [ (cos ) ] (10) (3cos 1)S θ θ= − = − . 
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 (b)  Equations (5.97) and (5.98) with j = 0, m = 0, l = 2 give 2
2,0 0 2( cos )S a a θ= +  and 

6
2 02a a−= , so 2

2,0 0 (1 3cos )S a θ= − . We have 
2 2 2 4

0 2,0 0 01 | | sin | | (sin 6cos sin 9cos sin )S d a d
π π

θ θ θ θ θ θ θ θ= ∫ = ∫ − + . Let cosw θ≡ . 

Then sindw dθ θ= −  and 12 2 4
0 11 | | ( 1 6 9 )a w w dw−

= ∫ − + − = 2 18
0 5| | (2 4 )a − + 28

05 | |a= , 

so 1/2 1/2 1/2
0| | (5/8) (10/16) 10 /4a = = =  and 1/2 21

2,0 410 (1 3cos )S θ= − . 

 

5.27 (a)  From (5.99), 0 1/2
3 3,0 (2 )Y S π −= . From (5.97), 3

3,0 1 3cos cosS a aθ θ= + . From (5.98) 

with j = 1, m = 0, l = 3, we have 5
3 1 13[(2 12)/6]a a a= − = −  so 35

3,0 1 3(cos cos )S a θ θ= − .  

Then 2 2 2 4 610 25
0 2,0 1 0 3 91 | | sin | | (sin cos cos sin cos sin )S d a d
π π

θ θ θ θ θ θ θ θ θ= ∫ = ∫ − + .  

Let cosw θ≡ . Then sindw dθ θ= −  and 12 2 4 610 25
1 1 3 91 | | ( )a w w w dw−

= ∫ − + − =  
2 20 502

1 3 15 63| | ( )a − +  = 28
163 | |a  and 1/2 1/2 1/2

1| | (63/8) (126) /4 3(14) /4a = = = . Then 
1/2 35

3,0 3[3(14) /4](cos cos )S θ θ= − , which differs by a factor –1 from Table 5.1.  

Finally, 1 1/2 3 1/25
3 3[3(14) /4](cos cos )(2 )Y θ θ π −= − . 

 (b)  From (5.99), 1 1/2
3 3,1(2 ) iY S e φπ −= . From (5.97), 2

3,1 0 2sin ( cos )S a aθ θ= + . Eq. 
(5.98) with j = 0, m = 1, l = 3 gives 2 0 0[(2 12)/2] 5a a a= − = −  so 

2
3,1 0 (1 5cos )sinS a θ θ= − . Then 

2 2 2 2 4
0 3,1 0 01 | | sin | | sin (1 10cos 25cos )sinS d a d
π π

θ θ θ θ θ θ θ= ∫ = ∫ − + . Let cosw θ≡ . 

Then sindw dθ θ= −  and 12 2 2 4
0 11 | | (1 )( 1 10 25 )a w w w dw−

= ∫ − − + − =  
12 6 4 2

0 1| | (25 35 11 1)a w w w dw−
∫ − + −  = 2 50 22

0 7 3| | ( 14 2)a − + − +  = 232
021 | |a  and 

1/2 1/2 1/2
0| | (21/32) (42/64) (42) /8a = = = . Then 1/2 1 2

3,1 (42) 8 (1 5cos )sinS θ θ−= −  and 
1 1/2 1 2 1/2
3 (42) 8 (1 5cos )sin (2 ) iY e φθ θ π− −= − . 

 

5.28 
2 2

2 0 2 2
2 2 2 2

cos 1ˆ (3cos 1),
sin sin

L Y bθ θ
θ θθ θ φ

⎛ ⎞∂ ∂ ∂
= − + + −⎜ ⎟⎜ ⎟∂∂ ∂⎝ ⎠
=   

where 1/21
4 (5/ ) ,b π=  and we used Table 5.1 and Eq. 5.99. Then 
2( / )(cos ) [2cos ( sin )] 2sin cos ;θ θ θ θ θ θ∂ ∂ = − = −

2 2 2

2 2 2

( / )(cos ) 2( / )[sin (cos )] 2[ sin (sin ) cos (cos )]

2[cos cos 1] 2 4cos .

θ θ θ θ θ θ θ θ θ

θ θ θ

∂ ∂ = − ∂ ∂ = − − + =

− + − = −
 

2 0 2 2 2 2
2

2 2 2 0
2

cosˆ 6 12cos ( 6sin cos ) 0 (6 18cos )
sin

6 (3cos 1) 2(3) .

L Y b b

b Y

θθ θ θ θ
θ

θ

⎛ ⎞= − − + − + = − − =⎜ ⎟
⎝ ⎠

− =

= =

= =
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5.29 3 3 3ˆ ˆ ˆ ˆ ˆ ˆ ( )m m m m
z l z z z l z z l lL Y L L L Y L L m Y m Y= = == = . 

 

5.30 From (5.43), 2 2 2 2ˆ ˆ ˆ ˆ
x y zL L L L+ = − , so 

2 2 2 2 2 2 2 2 2ˆ ˆ ˆ ˆ ˆ( ) ( ) ( 1) [ ( 1) ]m m m m m
x y l z z l l l lL L Y L L L Y l l Y m Y l l m Y+ = − = + − = + −= = = = . 

 

5.31` (a)  For l = 2, the possible eigenvalues of ˆ
zL  are 2 , , 0, , 2− −= = = = , and since only 

eigenvalues can be found as the results of measurements, these are the possible outcomes 
of a measurement of ˆ

zL . 

 (b)  2 212 ( 1)l l= += =  so 3l = . The possible outcomes are 3 , 2 , , 0, , 2 , 3− − −= = = = = = . 

 
5.32 Since the three directions of space are equivlent to one another and it is arbitrary as to 

whether we label a particular direction x, y, or z, the ˆ
yL  eigenvalues are the same as the 

ˆ
zL  eigenvalues, So the ˆ

yL  eigenvalues for 1l =  are , 0, and ,−= =  and these are the 

possible outcomes of the measurement. 
 
5.33 Since the state function is an eigenfunction of 2L̂  with eigenvalue 22(2 1)+ =  and of ˆ

zL  
with eigenvalue 1= , measurement of zL  must give the result =  = (6.626 × 10–34 J s)/2π = 

1.055 × 10–34 J s and measurement of 2L  must give 26=  = 6(1.055 × 10–34 J s)2 =  
6.68 × 10–68 J2 s2. 

 

5.34 0 2 0
0 ( ) ( 1) 1,P w w= − =  since the zeroth derivative of f is f. 0 2

1
1( ) ( 1) .
2

dP w w w
dw

= − =  

 
2

1 2 1/2 2 2 1/2
1 2

1 (1 ) ( 1) (1 ) .
2

dP w w w
dw

= − − = −  
2

0 4 2 23 1
2 2 22

1( ) ( 2 1) .
8

dP w w w w
dw

= − + = −  

 
3

1 2 1/2 4 2 2 1/2
2 3

1( ) (1 ) ( 2 1) 3 (1 ) .
8

dP w w w w w w
dw

= − − + = −  

 
4

2 2 4 2 2
2 4

1( ) (1 ) ( 2 1) 3(1 ).
8

dP w w w w w
dw

= − − + = −  

 

5.35 From (5.107), (5.65), (5.66), and (1.28): ˆ ˆ ˆ
x yL L iL− = − =  

( sin cos ) cot ( )(cos sin ) coti ii i i e i eφ φφ φ θ φ φ θ
θ φ θ φ

− −⎡ ⎤ ⎛ ⎞∂ ∂ ∂ ∂
− + − = − +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎝ ⎠

= = .  

From (5.99) and Table 5.1, 1 1/21
1 2

cosˆ (3/2 ) sin
sin

i i iL Y e i e eφ φ φθ π θ
θ θ φ

− −
−

⎛ ⎞∂ ∂
= − +⎜ ⎟∂ ∂⎝ ⎠
=  = 
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1/2 1/21
2 (3/2 ) ( cos cos ) (3/2 ) cosπ θ θ π θ− − = −= = , which Eq. (5.99) and Table 5.1 show is 

proportional to 0
1Y . Applying L̂−  again, we have 

1/2cot [ (3/2 ) cos ]i ie i eφ φθ π θ
θ φ

− −⎛ ⎞∂ ∂
− + −⎜ ⎟∂ ∂⎝ ⎠

= =  = 

2 1/2 2 1/2(3/2 ) ( sin 0) (3/2 ) sini ie eφ φπ θ π θ− −− + = −= = , which is proportional to 1
1Y − .  

A third application of L̂−  gives 2 1/2cos [ (3/2 ) sin ]
sin

i i ie i e eφ φ φθ π θ
θ θ φ

− − −⎛ ⎞∂ ∂
− + −⎜ ⎟∂ ∂⎝ ⎠

= =  = 

3 1/2 2 2(3/2 ) ( cos cos ) 0i ie eφ φπ θ θ− −− − + == . 

 

5.36 Use of (3.11) and (3.12) gives 1ˆ ˆ ˆ ˆ ˆ ˆ(2 ) ( 2 )( 2 )x xA A m p i mx p i mxπ ν π ν−
+ − = + − =  

1 2 2 2 2 2ˆ ˆ ˆ ˆˆ ˆ(2 ) [ 2 ( ) 4 ]x x xm p i m p x xp m xπ ν π ν− + − + + . But ˆ ˆ ˆˆ ˆ ˆ( ) [ , ]x x xp x xp x p i− + = = =   

[Eq. (5.6)], so 2 2 2 2 1
2

ˆ ˆ ˆˆ ˆ/2 2xA A p m mx H hπν π ν ν+ − = − + = −= . Similarly, 
1ˆ ˆ ˆ ˆ ˆ ˆ(2 ) ( 2 )( 2 )x xA A m p i mx p i mxπ ν π ν−

− + = − + =  
1 2 2 2 2 2ˆ ˆ ˆ ˆˆ ˆ(2 ) [ 2 ( ) 4 ]x x xm p i m p x xp m xπ ν π ν− + − + 2 2 2 2ˆ ˆ/2 2xp m mxπν π ν= + += 1

2Ĥ hν= + . 

Then 1 1
2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] ( )A A A A A A H h H h hν ν ν+ − + − − += − = − − + = − . Next, 
1/2 1/2 1/2ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ[ , ] [ , (2 ) ( 2 )] (2 ) [ , ] (2 ) 2 [ , ]x xH A H m p i mx m H p m i m H xπ ν π ν− − −

+ = + = + . Use of 

Eqs. (5.8) and (5.9) gives 1/2 1/2ˆˆ ˆ[ , ] (2 ) ( / ) (2 ) 2 ( / ) xH A m i dV dx m i m i m pπ ν− −
+ = + −= = . 

From (4.27), dV/dx = 4 2 2mxπ ν , so 1/2ˆ ˆˆ ˆ[ , ] (2 ) ( 2 )xH A h m p i mx h Aν π ν ν−
+ += + = . Also, 

1/2 1/2ˆˆ ˆ ˆˆ ˆ[ , ] (2 ) [ , ] (2 ) 2 [ , ]xH A m H p m i m H xπ ν− −
− = −  1/2 ˆˆ ˆ(2 ) (2 )xh m i mx p h Aν π ν ν−

−= − = − . 

Operating on Ĥ Eψ ψ=  with Â+  gives ˆ ˆˆA H EAψ ψ+ += . But we showed 
ˆ ˆ ˆˆ ˆHA A H h Aν+ + +− = , so ˆ ˆ ˆˆ( )HA h A EAν ψ ψ+ + +− =  and ˆ ˆˆ ( ) ( )( )H A E h Aψ ν ψ+ += + . Hence 

Â ψ+  is an eigenfunction of Ĥ  with eigenvalue E hν+ . Operating on Ĥ Eψ ψ=  with 

Â−  gives ˆ ˆˆA H EAψ ψ− −= . But we showed ˆ ˆ ˆˆ ˆHA A H h Aν− − −− = − , so 
ˆ ˆ ˆˆ( )HA h A EAν ψ ψ− − −+ =  and ˆ ˆˆ ( ) ( )( )H A E h Aψ ν ψ− −= − . Hence Â ψ−  is an eigenfunction 

of Ĥ  with eigenvalue E hν− . Let minψ  be the minimum energy state. We showed that 

Â ψ−  is an eigenfunction of Ĥ  with eigenvalue E hν− . But since minψ  has the lowest 

possible eigenvalue of Ĥ , minÂ ψ−  cannot be a valid wave function and so must be zero: 

min
ˆ 0A ψ− = . Operating on this equation with Â+  and using the result 1

2
ˆ ˆ ˆA A H hν+ − = −  

derived above, we have 1
min min2

ˆ ˆ ˆ0 ( )A A H hψ ν ψ+ − = = −  and 1
min min2Ĥ hψ νψ= , so the 

lowest eigenvalue is 1
2 hν . Since we showed the eigenvalues to be spaced by hν , the 

allowed eigenvalues are 1
2( )n hν+ , where n = 0, 1, 2,… . 

 
5.37 (a)  True.   (b)  False.   (c)  True.   (d)  True.   (e)  True.   (f)  False. 
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Chapter 6 

The Hydrogen Atom 
 
 
6.1 (a)  T;   (b)  F. 
 
6.2 (a)  V is independent of θ  and φ, so this is a central-force problem and Eq. (6.16) shows 

that ( , )m
lf Y θ φ= .  

 (b)  For r b> , V is infinite and ψ must be zero. For r b≤  and 0l = , Eq. (6.17) is 
2 1(2 ) ( 2 / )m R R r ER− ′′ ′− + = . Let ( ) ( )g r rR r≡ . Then 1R gr−=  and the radial 

differential equation becomes 
2 1 1 2 3 3 2 1(2 ) ( 2 2 2 2 )m r g r g gr gr r g Egr− − − − − − −′′ ′ ′− − + − + =  and 2( /2 ) ( )m g r Eg′′− =  

so 2( ) 2 ( ) 0g r mE g r−′′ + = . This is the same as Eq. (2.10) with IIψ  replaced by g and x 

replaced by r, so Eq. (2.15) gives 1 1/2 1 1/2cos[ (2 ) ] sin[ (2 ) ]g rR A mE r B mE r− −= = + .  
Since m

lY  is a constant for 0l =  and ψ is finite at 0r = , ( )R r  must be finite at 0r = . 
Hence at 0r = , the equation for g becomes 0 1 0g A B= = ⋅ + ⋅ . Thus 0A =  and 

1 1/2sin[ (2 ) ]g rR B mE r−= = . Since 0ψ =  for r b> , continuity of ψ requires that 
0ψ =  at r b= . Thus 0R =  at r b= . We have 1 1/20 sin[ (2 ) ]B mE b−= .  B cannot be 

zero since this would make ψ equal to zero. Hence 1 1/2(2 )mE b nπ− = , where 
1, 2, 3,...n = . (n = 0 would make ψ zero and negative n values give essentially the same 

wave functions as positive n values.) Solving for E, we get 2 2 2/8E n h mb= . Substitution 
of this E expression in 1 1/2sin[ (2 ) ]rR B mE r−=  gives 1 1/2( ) ( / )sin[ (2 ) ]R r B r mE r−= =  
( / )sin( / )B r n r bπ . The 0l =  wave functions are found by multiplying this ( )R r  by 0

0Y , 
which is a constant.  

 
6.3 (a) and (b)  We have 2 2 2 21 1

2 2( )V k x y z kr= + + = , which is a function of r only. Thus 

this is a central-force problem and Eq. (6.16) shows that ( ) ( , )m
lf r Yψ θ φ= . 

 (c)  Equation (6.17) with R f=  gives 
2 2

21
2

2 ( 1)
2 2

l lf f f kr f Ef
m r m

+⎛ ⎞′′ ′− + + + =⎜ ⎟
⎝ ⎠

. 

 (d)  Problem 4.20 showed that ψ is the product of three one-dimensional harmonic-
oscillator wave functions. Because the three force constants are equal in Prob. 6.3, we 
have x y zν ν ν= =  and x y zα α α= = . Use of (4.53) gives the ground-state ψ as 

2 2 2 23/4 /2 /2 /2 3/4 /2( / ) ( / ) ( ) ( , )x y z re e e e f r Gα α α αψ α π α π θ φ− − − −= = = , where G is a 

constant. With 
2 /2rf e α−=  and 0l = , the left side of the differential equation in (c) 
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becomes 
2 2 2 22

/2 2 2 /2 /2 2 /21
2

2
2

r r r re r e re kr e
m r

α α α αα α α− − − −⎛ ⎞− − + − + =⎜ ⎟
⎝ ⎠

   

       2 1 2 2 21
2[ (2 ) ( 3 ) ]m r kr fα α−− − + +  

 Using Eqs. (4.31) and (4.23) for α and k, we have 
2 1 2 2 2 2 1 2 2 2 2 2 2 2 21

2(2 ) ( 3 ) (2 ) ( 6 / 4 / ) 2m r kr m m m r mrα α πν π ν π ν− −− − + + = − − + +
3
2 hν= . The ground-state energy is 3

2 hν (Prob. 4.20), so the equation in (c) is satisfied. 

 
6.4 From (5.62), 2 2/f x∂ ∂ =   

cos cos sin cos cos sinsin cos sin cos
sin sin

f f f
r r r r r r

θ φ φ θ φ φθ φ θ φ
θ θ φ θ θ φ

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
+ − + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

 

 
2 2 2 2

2 2
2 2 2

sin cos cos sin cos cos sin cos sinsin cos
sin

f f f f
r rr r r

θ θ φ θ θ φ θ φ φθ φ
θ θ φθ

∂ ∂ ∂ ∂
= − + +

∂ ∂ ∂ ∂∂
 

2 2 2 2 2 2

2
sin cos sin cos cos cos sin cos sin cos cos

sin
f f f f

r r r r r r r
θ φ φ θ φ θ θ φ θ θ φ

θ φ θ θ
∂ ∂ ∂ ∂

− + + −
∂ ∂ ∂ ∂ ∂ ∂

 

2 2 2 2 2

2 2 2 2
cos cos cos cos sin (sin ) cos cos cos sin

sin
f f f

r r r
θ φ θ φ φ θ θ θ φ φ

φ θ φθ θ

−∂ ∂ ∂
+ + −

∂ ∂ ∂∂
 

2 2 2

2 2
sin sin sin sin cos sin cos sin sin cos cos

sin sin sin sin
f f f f

r r r r r r
φ θ φ θ φ φ θ φ φ θ φ
θ θ φ θ φ θθ θ

∂ ∂ ∂ ∂
+ − + −

∂ ∂ ∂ ∂ ∂ ∂
 

2 2

2 2 2 2 2
sin cos sin

sin sin
f f

r r
φ φ φ

φθ θ φ
∂ ∂

+ +
∂ ∂

  

 From (5.63), 2 2/f y∂ ∂ =   
cos sin cos cos sin cossin sin sin sin

sin sin
f f f

r r r r r r
θ φ φ θ φ φθ φ θ φ

θ θ φ θ θ φ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

+ + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
2 2 2 2

2 2
2 2 2

sin cos sin sin cos sin sin sin cossin sin
sin

f f f f
r rr r r

θ θ φ θ θ φ θ φ φθ φ
θ θ φθ

∂ ∂ ∂ ∂
= − + −

∂ ∂ ∂ ∂∂
2 2 2 2 2 2

2
sin sin cos cos sin cos sin sin sin cos sin

sin
f f f f

r r r r r r r
θ φ φ θ φ θ θ φ θ θ φ

θ φ θ θ
∂ ∂ ∂ ∂

+ + + −
∂ ∂ ∂ ∂ ∂ ∂

2 2 2 2 2

2 2 2 2
cos sin cos sin cos (sin ) cos cos sin cos

sin
f f f

r r r
θ φ θ φ φ θ θ θ φ φ

φ θ φθ θ

−∂ ∂ ∂
+ − +

∂ ∂ ∂∂
2 2 2

2 2
cos sin cos sin sin cos cos cos cos cos sin

sin sin sin sin
f f f f

r r r r r r
φ θ φ θ φ φ θ φ φ θ φ
θ θ φ θ φ θθ θ

∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂ ∂ ∂
2 2

2 2 2 2 2
cos sin cos

sin sin
f f

r r
φ φ φ

φθ θ φ
∂ ∂

− +
∂ ∂
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 From (5.64), 2 2/f z∂ ∂ =  
sin sincos cos f f

r r r r
θ θθ θ

θ θ
∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞− − =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

  

2 2 2 2
2

2 2
cos sin cos sin sin sin coscos f f f f f

r r r r r rr r
θ θ θ θ θ θ θθ

θ θ θ
∂ ∂ ∂ ∂ ∂

+ − + −
∂ ∂ ∂ ∂ ∂ ∂∂

  

2 2

2 2 2
sin cos sinf f

r r
θ θ θ

θ θ
∂ ∂

+ +
∂ ∂

 

 We find 
2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2
cos 2 1 1

sin sin
f f f f f f f f

r rx y z r r r r
θ

θθ θ θ φ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + = + + + +
∂ ∂∂ ∂ ∂ ∂ ∂ ∂

, where 

identities such as 2 2sin cos 1,θ θ+ =  2 2sin cos 1,φ φ+ =  2 2/ /f r f rθ θ∂ ∂ ∂ = ∂ ∂ ∂  were 
used. 

 
6.5 (a)  F.   (b)  T. 
 
6.6 Equations (6.23) and (2.20) give 

2 2 2 22 34 2
1 2 1 2

1 2 2 10 2 29
1 2

(6.626 10  J s)
9.0 5.08 8(1.00 10  m) (10  kg)

n n n nhE E E
m ma

−

− −

⎛ ⎞ ⎛ ⎞×
= + = + = + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠

 

2 2 219
19 2 19 2 21 2 1

2 1 2
5.05.49 10  J5.49 10  J (1.10 10  J)(0.556 )

9.0 5.0 5 9.0
n n n n n n

−
− −⎛ ⎞ ⎛ ⎞×

× + = + = × +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Trial and error gives the quantum numbers 1 2( , )n n  and energies of the six lowest states 
as (1,1), (2,1), (1,2), (3,1), (2,2), (3,2) and 1.71 × 10–19 J, 3.54 × 10–19 J, 5.01 × 10–19 J, 
6.60 × 10–19 J, 6.84 × 10–19 J, 9.90 × 10–19 J. 

 
6.7 (a)  True, since 1 2 1 2 2 2 1 2/( ) /(1 / ) ;m m m m m m m mμ = + = + <  similarly 1.mμ <  

 (b)  True. 
 
6.8 (a)  T;   (b)  F;   (c)  T;   (d)  T;   (e)  T. 
 
6.9 (a)  The lowest absorption frequency corresponds to the 0J =  to 1 transition. We have 

2 2
upper lower 1(2) /2 0E E d hμ ν− = − =  so 2 1/2( /4 )d h π μν= . The reduced mass is 

23
1 2 1 2/( ) {12(15.9949)/[27.9949(6.02214 10 )]}m m m mμ = + = ×  g = 1.13850 × 10–26 kg. 

So 
1/234

10
2 26 6 1

6.62607 10  J s 1.13089 10 m 1.13089
4 (1.13850 × 10  kg)(115271 10  s )

d
π

−
−

− −

⎛ ⎞×
= = × =⎜ ⎟⎜ ⎟×⎝ ⎠

Å. 

 (b)  The next two frequencies are for the J = 1 to 2 and 2 to 3 transitions and as found in 
Eq. (6.54) and Fig. 6.4 are twice and three times the 0 to 1 frequency. So 

1 2 2(115271 MHz) =ν → =  230542 MHz and 2 3 345813ν → =  MHz. 
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 (c)  From part (a), 2 2/4h dν π μ= .  d is the bond length averaged over the zero-point 
vibrations, which differ for 12C16O and 13C16O, so d will differ very slightly for these two 
species. We shall neglect this difference. We have for 13C16O, 

23{13.0034(15.9949)/[28.9983(6.02214 10 )]}μ = ×  g = 1.19101 × 10–26 kg and 
34

2 26 10 2
6.62607 10  J s

4 (1.19101 10  kg)(1.13089 10  m)
ν

π

−

− −
×

=
× ×

= 1.102 × 1011 Hz 

 (d)  The Boltzmann distribution law (4.63) gives 1 0( )/
1 0 1 0/ ( / ) E E kTN N g g e− −= . The 

degeneracy of each rotational level is 2J + 1, so 1 3g =  and 0 1g = . Also, 

1 0 0 1E E hν →− = = ( 346.62607 10  J s−× ) 6 1(115271 10  s )−× = 7.63794 × 10–23 J. Then 
23 23( 7.63794 10  J)/[(1.38065 10  J/K)(298.15 K)]

1 0/ 3 2.944N N e
− −− × ×= = .  

We have 2 2
2 0 2 ( 1) /2 6 /2E E E J J I I− = = + =  and 2

1 0 1 2 /2E E E I− = = , so 

2 0 1 03( )E E E E− = − =  3(7.63794 × 10–23 J) = 2.29138 × 10–22 J. Hence 
22 23( 2.29138 10 J)/[(1.38065 10 J/K)(298.15 K)]

2 0/ 5 4.729N N e
− −− × ×= = . 

 
6.10 2 2 2

5 6 6 5 6(7) /2 5(6) /2 12 /2h E E I I Iν → = − = − =  and 
2 2 2

2 3 3 2 3(4) /2 2(3) /2 6 /2h E E I I Iν → = − = − = . We have 5 6 2 3/ 12/6 2ν ν→ → = =  and 

5 6 2(126.4ν → =  GHz) = 252.8 GHz. 

 

6.11 2 2 2 2 2 2
8 7 8(9) /2 7(8) /2 16 /2 2 / ,E E I I I h d hπ μ ν− = − = = =  so 2 1/2(2 / ) .d h π μν=  

26
23 1

(34.96885)22.98977 g 2.303281 10  kg
22.98977 34.96885 6.022142 10  mol

μ −
−= = ×

+ ×
 

 
1/234

10
2 26 6 1

2(6.626069 10  J s) 2.36541 10  m
(2.303281 10  kg)(104189.7 10  s )

d
π

−
−

− −

⎡ ⎤×
= = ×⎢ ⎥

× ×⎣ ⎦
 

  
6.12 Let 1ν  and 2ν  be the lower and higher of the two frequencies, respectively. Let J ′  be the 

rotational quantum number of the lower level of the 1ν  transition. Then, since there are 
no lines between these two lines, Eq. (6.54) gives 1 2( 1)J Bν ′= +  and 2 2( 1 1) .J Bν ′= + +  
So 2 1 2 115.19Bν ν− = =  GHz and 57.60B =  GHz. 

 
6.13 (a)  From (6.54) and the formula for the centrifugal-distortion energy correction, we get 

2 2 2 2
1

2 2 2 2

2

3

2( 1) [( 1) ( 2) ( 1) ]

2( 1) [( 1) ( 4 4) ( 1) ]

2( 1) [( 1) (4 4)]

2( 1) 4 ( 1)

J JE J Bh hD J J J J

J Bh hD J J J J J

J Bh hD J J

J Bh hD J

→ +Δ = + − + + − +

= + − + + + − +

= + − + +

= + − +
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So 0 1 2 4B Dν → = −  and 3
4 5 10 4(4 1) 10 500 .B D B Dν → = − + = −  Then 

4 5 0 15 480 [576267.92 5(115271.20)] MHz 88.08 MHzDν ν→ →− = − = − = −  and 
0.183 MHz.D =  

 (b)  From (6.54) and the formula for ,Bv  the 0 to 1 rotational absorption frequency is 
1

0 1 22 2[ ( )].e eB Bν α→ = = − +v v  For the 0=v  and 1=v  levels, we then have 
1

0 1 2( 0) 2( )e eBν α→ = = −v  and 3
0 1 2( 1) 2( ).e eBν α→ = = −v  So 

0 1 0 1( 0) ( 1) 2 (115271.20 114221.74) MHzeν ν α→ →= − = = = −v v  and 524.7 MHz.eα =  
(This answer is somewhat inaccurate because of additional anharmonicity correction 
terms that are being neglected.) 

 
6.14 Equation (6.50) gives 

2 2 2 2 2 2
2 2 1 2 1 2 1 1 1 2 1 2 1 2 2 2

1 1 2 2
1 2 1 2 1 2

( ) m m m m m m m m m mI m m
m m m m m m

ρ ρ ρ ρρ ρ μ+ + + +
= + =

+
. Use of 

(6.49) gives 
2 2 2

21 1 2 2 1 2 1 2 1 2 2 2 1 1 1 2 1 2

1 2 1 2

( )m m m m m m m m m mI d
m m m m

ρ ρ ρ ρ ρ ρ ρ ρμ μ μ+ + + +
= = = . 

 

6.15 
2 2

el
2

grav 04 e p

F e r
F Gm mrπε

= =   

19 2

12 2 2 11 3 2 31 27
(1.602 10  C)

4 (8.854 10  C /N-m )(6.674 10  m /kg-s )(9.109 10  kg)(1.6726 10  kg)π

−

− − − −
×

× × × ×

 = 2.27 × 1039. This is so large that the gravitational force can be ignored. 
 
6.16 (a)  The H-atom energies depend on n only, so all the various l and m possibilities for 

each n give different states that have the same energy. For each l value, there are 2l + 1 
allowed values of m, and l goes from 0 to n – 1. Hence the number of states for a given n 
is 1

0 (2 1)n
l l−
=

+∑ .  

 (b)  1 1 1
0 0 0(2 1) 2 1n n n

l l ll l− − −
= = =

+ = +∑ ∑ ∑ . We have 
1 1 21

20 12 2 2[ ( 1) ]n n
l ll l n n n n− −
= =

= = − = −∑ ∑ , where we used the sum in the text with j 

replaced by l and k replaced by n – 1. Also 1
01 1( )n

l n n−
=

= =∑ , since this sum has n terms 

each equal to 1. Hence 1 2 2
0 (2 1)n

l l n n n n−
=

+ = − + =∑ .  

 (c)  Let S denote the desired sum. S is the sum of the first k positive integers, so 
2 [1 2 3 ] [ ( 1) ( 2) 1]S k k k k= + + + + + + − + − + + . The sum of any two 
corresponding terms of the two series in brackets is k + 1, and there are k terms in each 
series in brackets. Hence 2 ( 1)S k k= +  and 1

2 ( 1)S k k= + . 
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6.17 (a)  From Eq. (6.108), the equation preceding (6.108), and Eq. (6.94), the H-atom 
energies are 18 2(2.17868 10  J)/E n−= − × . So 

18 19
upper lower 2 2

1 1(2.17868 10  J) 1.81557 10  J
6 3

h E Eν − −⎛ ⎞= − = − × − = ×⎜ ⎟
⎝ ⎠

 

19 34 14 1(1.81557 10  J)/(6.62607 10  J s) 2.74004 10  sν − − −= × × = ×  
8 14 1 6/ (2.997925 10  m/s)/(2.74004 10  s ) 1.09412 10  m =1094.12 nmcλ ν − −= = × × = ×  

 (b)  He+ is a hydrogenlike ion with Z = 2. From (6.94), E and EΔ  are proportional to 2Z , 
so ν  is proportional to 2Z  if the slight change in μ  is neglected. Hence 

14 1 154(2.740 10  s ) 1.096 10  Hzv −= × = ×  and (1094.12 nm)/4 273.5 nmλ = = . 
 
6.18 From Eq. (6.108), the equation preceding (6.108), and Eq. (6.94), the H-atom energies 

are 18 2(2.17868 10  J)/E n−= − × . So 
8 34

18 2 2
upper lower

(2.99792 10  m/s)(6.62607 10  J s)
(2.17868 10  J)( )l u

c ch
E E n n

λ
ν

−

− − −
× ×

= = =
− × −

8

2 2
1 1 9.11764 10  m

l un n λ

−×
− =  

 For the first line, 
8

2 2 10
1 1 9.1176 10  m 0.138889

6564.7 10  ml un n

−

−
×

− = =
×

. The value 1ln =  when 

combined with 2un =  or more gives values much larger than 0.139, so 1ln ≠ . With 

2,ln =  the value 3un =  gives 2 21/ 1/ 1/4 1/9 0.138889l un n− = − = , so these are the 

quantum numbers for the first line. For the remaining lines, we find 2 21/ 1/l un n−  = 
0.18750, 0.21000, and 0.22222. With 2ln = , the un  values 4, 5, and 6 fit the data for 
these three lines. With 2ln =  and un  = 7, 8 and ∞, we get 3971.2λ = , 3890.2, and 
3647.1 Å. 

 
6.19 A small fraction of hydrogen atoms in nature are the isotope deuterium, 2H or D. From 

(6.94), the energy is proportional to the reduced mass μ¸ so the transition frequency is 
proportional to μ and λ is inversely proportional to μ. Thus 

D H

H D

e p pe d e d

e p e d d e p

m m mm m m m
m m m m m m m

λ μ
λ μ

+ +
= = =

+ +
, where dm   is the mass of a deuterium 

nucleus. From Appendix Table A.1, / 1836.15p em m = . From Table A.3, 
2

1 1
( H) 2.014102 1.998464

1.0078250 1837.15( H) (1 1836.15 )

0.9994557( / ) 0.0005443

d e d e

p e ep

d p

m m m mm
m m mm m

m m

−
+

= = = = +
+ +

= +
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which gives / 1.999008d pm m = . Hence D H

H D

1 1.998464 0.999728
1.999008

λ μ
λ μ

= = = . 

Multiplication of the wavelengths in Prob. 6.18 by 0.999728 gives 656.29, 486.14, 
434.05, and 410.18 nm. 

 

6.20 For 2 11 2 (2 ) / ! (2 ) /( 1)!Cr j je Cr Cr j Cr j+= + + + + + +  , the ratio of successive 
powers of r for large j is 

1(2 ) ! 2 2
( 1)! 1(2 )

j

j
C j C C
j j jC

+

⋅ = ≈
+ +

 

 The ratio of successive powers of r in (6.88) for large j is  

1
2

2 2j

j

b Cj C
b jj
+ ≈ =  

 
6.21 For the H atom (and for the particle in a rectangular well), there is a maximum value 

maxV  of the potential-energy function, and the energy levels above maxV  are continuous. 
For the particle in a box and the harmonic oscillator, the potential-energy function goes to 
infinity at each end of the allowed region of the x axis, and all the energy levels are 
discrete. 

 
6.22 Positronium is a hydrogenlike atom with reduced mass /( ) /2e e e e em m m m mμ = + = , 

which is about half the reduced mass (6.105) of the H atom. Since E in (6.94) is 
proportional to μ, the positronium ground-state energy is about half the energy in (6.108), 
namely, (13.6 eV)/2 6.8 eV− = − . 

 
6.23 We have, 22 3 3 2 / 2

0 0 0| | ( / ) sinZr ar r d Z a e rr dr d d
ππψ τ π θ θ φ∞ −〈 〉 = = ∫ ∫ ∫ =∫  

23 3 2 / 3
0 0 0( / ) sin Zr aZ a d d e r dr

πππ φ θ θ ∞ −∫ ∫ ∫ =  3 3 4( / )(2 )(2)[3!/ (2 / ) ]Z a Z aπ π = 3 /2a Z , 
where (3.88), (5.77), (5.78), (6.104), and (A.8) were used. Alternatively, (6.101) (6.103), 
and (6.117) give 

22 2 2 2
0 0 0| | | ( )| | ( , )| sinm

nl lr r d r R r r dr Y d d
ππ

ψ τ θ φ θ θ φ∞
〈 〉 = = ∫ ∫ ∫ =∫  

3 3 3 2 / 3 3 4
0(4 / ) (4 / )[3!/ (2 / ) ] 3 /2Zr aZ a r e dr Z a Z a a Z∞ −∫ = = . 

 

6.24 We have, 22 5 5 2 / 2 2
0 0 0| | ( /32 ) cos sinZr ar r d Z a r e r r dr d d

ππψ τ π θ θ θ φ∞ −〈 〉 = = ∫ ∫ ∫ =∫  
25 5 2 / 5
0 0 0( /32 ) cos sin Zr aZ a d d e r dr

πππ φ θ θ θ ∞ −∫ ∫ ∫ = 5 5 6( /32 )(2 )(2/3)[5!/ ( / ) ]Z a Z aπ π =

5 /a Z , where (5.77), (5.78), (6.113), (A.8), and 2 3cos sin (cos )/3dθ θ θ θ= −∫  were used. 
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6.25 22 2 2 5 5 2 / 2 2 2
0 0 0| | ( /64 ) sin sinZr a i ir r d Z a r e r e e r dr d d

ππ φ φψ τ π θ θ θ φ∞ − −〈 〉 = = ∫ ∫ ∫ =∫  
25 5 3 / 6
0 0 0( /64 ) sin Zr aZ a d d e r dr

πππ φ θ θ ∞ −∫ ∫ ∫ = 5 5 7( /64 )(2 )(4/3)[6!/ ( / ) ]Z a Z aπ π =
2 230 /a Z , where Eqs. (5.77), (5.78), (6.113), (A.8), and the integral-table result 
3 21

3sin cos (sin 2)dθ θ θ θ∫ = − +  were used. 

6.26 2| |r r dψ τ〈 〉 = =∫
2 2 2 2
0 0 0 | ( )| | ( , )| sinm

nl lr R r Y r dr d d
ππ

θ φ θ θ φ∞
∫ ∫ ∫ =   

22 2 2
0 0 0| ( )| | ( , )| sinm

nl lr R r r dr Y d d
ππ

θ φ θ θ φ∞
∫ ∫ ∫ = 3 2

0 | ( )|nlr R r dr∞
∫ , where (6.117) was 

used. 
 
6.27 From (6.100) and (6.99), 0 /2

2 0 1( )Zr a
sR r e b b r−= +  and 

1 0 0( / )[ 1/(1 2)] ( /2 )b Z a b Z a b= − ⋅ = − . Hence /2
2 0 (1 /2 ) Zr a

sR b Zr a e−= − . Normalization 

gives 2 2 2 2 / 2
0 01 | | (1 / /4 ) Zr ab Zr a Z r a e r dr∞ −= ∫ − + =   

2 3 4 2 2 5
0| | [2!( / ) ( / )3!( / ) ( /4 )4!( / ) ]b a Z Z a a Z Z a a Z− + = 2 3

02 | | ( / )b a Z , where Eq. (A.8) 

was used. Hence 3/2 1/2
0| | ( / ) 2b Z a −=  and 3/2 1/2 /2

2 ( / ) 2 (1 /2 ) Zr a
sR Z a Zr a e− −= − .  

From (6.100) and (6.99), /2
2 0

Zr a
pR re b−= . Normalization gives 

2 2 / 2 2 5
0 0 01 | | | | 4!( / )Zr ab r e r dr b a Z∞ −= ∫ = , so 1/2 5/2

0| | (24) ( / )b Z a−=  and 
1/2 5/2 /2

2 (24) ( / ) Zr a
pR Z a re− −= . 

 
6.28 At the nucleus, 0r =  and the lr  factor in (6.100) and (6.101) shows that ψ is zero at the 

nucleus unless 0l =  (s states). 
 
6.29 From (6.110) we have  

 
letter s p d f g h i k l m n o q r t 

l 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
 
6.30 If we ignore the interelectronic-repulsion term (and neglect the difference between the 

reduced mass and the electron mass), the Hamiltonian operator (3.50) for internal motion 
in the He-atom becomes 2 2 2 2 2 2

1 2 0 1 0 2( /2 ) ( /2 ) /4 /4e em m Ze r Ze rπε πε− ∇ − ∇ − − , where 

Z equals 2 and 1r  and 2r  are the distances of electrons 1 and 2 from the nucleus. This Ĥ  

is the sum of Ĥ ’s ( 1Ĥ  and 2
ˆ )H for two noninteracting electrons. Hence the results of 

Sec. 6.2 tell us that 1 2E E E= + , where 1 1 1 1Ĥ Eψ ψ=  and 2 2 2 2Ĥ Eψ ψ= . We recognize 

1Ĥ  and 2Ĥ  as hydrogenlike Hamiltonians with Z = 2. Since the hydrogenlike energies 

(6.94) are proportional to 2Z , Eqs. (6.94) and (6.108) give 
2

1 22 ( 13.6 eV) 54.4 eVE E= − = − = . Hence 108.8E = −  eV. From Eq. (6.25), 
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1 1 1 1 2 2 2 2( , ) ( , , )r rψ ψ θ φ ψ θ φ= , where 1ψ  and 2ψ  are hydrogenlike wave functions with 
2Z = . Of course, these results are very approximate, since the interelectronic repulsion 

was ignored. The percent error in E is 100%[ 108.8 ( 79.0)]/( 79.0) 38%− − − − = . 
 
6.31 The probability that the electron is between r and r + dr is proportional to the radial 

distribution function, so we look for the maximum in 2 2 3 3 2 2 /
1 4( / ) Zr a
sR r Z a r e−= . At the 

maximum, the derivative is zero and 3 3 2 / 2 2 /0 (4 / )[2 (2 / ) ]Zr a Zr aZ a re Zr a e− −= − , so 
(1 / ) 0r Zr a− = . The root r = 0 is a minimum in Fig. 6.9, and the maximum is at 

/r a Z= . 
 
6.32 The probability density is 2 3 3 2 /

1| | ( / ) Zr a
s Z a eψ π −= . The exponential function is a 

maximum at 0r = , the nucleus. 
 
6.33 (a)  Similar to the example after Eq. (6.117), the probability is 

2 2 3 2 / 2
2 1 2(4/ ) r a

a s aR r dr a e r dr
∞ ∞ −∫ = ∫ = 3 2 / 2 2 31 1 1

22 2 4(4/ ) ( ) |r a
aa e r a ra a− ∞− − − =  

4 1
44 (2 1 ) 0.2381e− + + = .  

 (b)  The classically forbidden region is where E V< . From (6.94) and (6.60), this 
condition is 4 2 2 2

0 0/2(4 ) /4e e rμ πε πε− < − , which simplifies to 2 2
01/ /8r eμ πε<  or 

2 2
08 / 2r e aπε μ> = , where a is defined by (6.63). The probability of finding 2r a>  

was found in part (a) to be 0.2381. 
 
6.34 From (6.104), /r aceψ −= , where 1/2 3/2c aπ − −≡ . From (6.60), 

2 /
0( /4 ) r aV e r ceψ πε −= − ⋅ ≠  const. ψ⋅ . From (6.6), 

2 2ˆ ( /2 )Tψ μ ψ= − ∇ = 2 2 2 /( /2 )[ / (2/ )( / )] r ar r r ceμ −− ∂ ∂ + ∂ ∂  = 
2 2 /( /2 )(1/ 2/ ) const.r aa ra ceμ ψ−− − ≠ ⋅ . Use of 2 2

04 /a eπε μ≡  gives 
2 2 /

0 0
ˆ ( /8 /4 ) .r aT e a e r ceψ πε πε −= − +  So 

2 / 2
0 0

ˆ ˆ ˆ ˆ( ) ( /8 ) ( /8 )r aT V T V e a ce e aψ ψ ψ πε πε ψ−+ = + = − = − . 
 
6.35 ˆ* *H H d E d Eψ ψ τ ψ ψ τ〈 〉 = = =∫ ∫ . Also H T V T V〈 〉 = 〈 + 〉 = 〈 〉 + 〈 〉 . Hence 

.E T V= 〈 〉 + 〈 〉  
 

6.36 (a)  22 2 1 3 2 /
0 0 0 0 0* ( /4 ) ( /4 ) sinr aV e r d e a e r dr d d

π πψ πε ψ τ πε π θ θ φ
∞− − −〈 〉 = − = − ∫ ∫ ∫ =∫  

2 1 3 2 2
0 0( /4 ) ( /2) (2)(2 ) /4e a a e aπε π π πε− −− = − .  

 (b)  2 2 2
0 0 0/8 /4 /8T E V e a e a e aπε πε πε〈 〉 = − 〈 〉 = − + = . Then 

 2 2
0 0/ ( /8 ) / ( /4 ) 1/2T V e a e aπε πε〈 〉 〈 〉 = − = − . 
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 (c)  2 2 2
0/2 ( /2) /8e eT m m e aπε〈 〉 = 〈 〉 = 〈 〉 =v v  so 2 1/2 2 1/2

0( /4 )ee m aπε〈 〉 = =v  
1/219 2

6
12 2 1 2 31 10

(1.6022 10  C) 2.19 10  m/s
4 (8.854 10  C  N  m )(9.109 10  kg)(0.529 10  m)π

−

− − − − −

⎡ ⎤×
= ×⎢ ⎥

× × ×⎣ ⎦
 

 2 1/2 6 8/ (2.19 10 ) / (2.998 10 ) 0.00730 1/137c〈 〉 = × × = =v . 
 
6.37 (a) 

1/2 1/2 7/2 2 /3 1/2 2 2 2 1/21
2 2 43 (3 3 )/2 (4/81)(30) ( / ) (15) sin ( )/(2 )Zr a i i

xyd d d i Z a r e e eφ φθ π− − −
−= − = −

We have 2 2 cos 2 sin 2 (cos 2 sin 2 ) 2 sin 2i ie e i i iφ φ φ φ φ φ φ−− = + − − = =  4 sin cos ,i φ φ  
since sin 2 2sin cos .x x x=  So 3 xyd  contains the factor sin sin sin cos .r r xyθ φ θ φ =  

 (b) As noted near the end of Sec. 6.6, , the real functions are formed by adding and 
subtracting the complex functions having the same | |m  values: real | | | |3 (3 3 )m md N d d−= ± , 

where N is a normalization constant. We have 
2 2 2

| | | | | | | | | | | |1 | | [|3 | (3 )*3 (3 )*3 |3 | ]m m m m m mN d d d d d d dτ− − −= ± ± + =∫ 2| | (1 0 0 1)N ± ± + , 

since the 3d AOs are orthonormal. So 1/2| | 2N −= . To ensure that 

real | | | |3 (3 3 )m md N d d−= ±  is real, we may need to include a factor of 1/i in N. From Eq. 
(5.99), the φ function in 2 23 3d d−+  is 

2 2 cos 2 sin cos sin 2 2cos 2i ie e i iφ φ φ φ φ φ φ−+ = + 2 + 2 − = , which is real and so does not 
need the 1/i factor; also, Table 6.2 shows that this φ  function occurs in 2 23 x yd − . So 

2 2
1/2

2 23 2 (3 3 )x yd d d−
−− = + . Similarly the 1 13 3d d−+  function contains the φ function 

2cosφ , which Table 6.2 shows is in the 3 xzd  function. So 1/2
1 13 2 (3 3 )xzd d d−

−= + . The 

φ function in 2 23 3d d−−  is 2 2 cos 2 sin (cos sin 2 ) 2 sin 2i ie e i i iφ φ φ φ φ φ φ−− = + 2 − 2 − = ; 

2 23 3d d−−  needs the 1/i factor and Table 6.2 tells us that 1/2
2 23 (2 / )(3 3 )xyd i d d−

−= − , as 
in part (a). Similarly the 1 13 3d d−−  function contains 2 sini φ , which Table 6.2 shows is 

in the 3 yzd  function. So 1/2
1 13 (2 / )(3 3 )yzd i d d−

−= − . The 03d  function is independent of 
φ and Table 6.2 gives 2 03 3zd d= . 

 (c)  From Table 6.2, 2 23 x yd −  contains the factor 
2 2 2 2 2 2sin cos 2 sin (cos sin )r rθ φ θ φ φ= − = 2 2 2 2( sin cos ) ( sin sin )r r x yθ φ θ φ− = − . 

 
6.38 Since 2 zp  is the same as 02 p , the 2 zp  function is an eigenfunction of ˆ

zL  with 
eigenvalue zero. Since the x, y, and z directions of space are equivalent to one another in 
the central field of the H atom (it is arbitrary whether we call a particular direction x, y, or 
z), it follows by symmetry that the 2 xp  function is an eigenfunction of ˆ

xL  with 

eigenvalue zero and the 2 yp  function is an eigenfunction of ˆ
yL  with eigenvalue zero.  
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6.39 Since Â  is linear, 1 2 1 2 1 2 1 2
ˆ ˆ ˆ( ) [ ( / ) ]A c f c g c Af c Ag c af c bg a c f b a c g+ = + = + = + . If and 

only if a b= , do we have 1 2 1 2
ˆ( ) ( )A c f c g a c f c g+ = +  and the linear combination is an 

eigenfunction of Â . 
 
6.40 (a)  Since 2 zp  is the same function as 02 p , it is an eigenfunction of 2ˆ ˆ, ,H L  and ˆ

zL . 

 (b)  2 xp  is an eigenfunction of Ĥ  and of 2L̂  but not of ˆ
zL , as is evident from  

Eq. (6.118) and Prob. 6.39. 
 (c)  2ˆ ˆ, ,H L  and ˆ

zL . 
 
6.41 (a)  The radial function is zero for particular values of r. The points where r has a 

particular value lie on the surface of a sphere centered at the nucleus. 
 (b)  The real φ functions contain the factor sin | |m φ  or cos | |m φ . The functions sinφ  

and cosφ  vanish for two values of φ in the range 0 2φ π≤ < . These two value differ by 
π, so they correspond to the same nodal plane, and there is one node in the φ  factor for 
| | 1m = . The functions sin | |m φ  and cos | |m φ  vary | |m  times as rapidly as sinφ  and 
cosφ , so these functions contain | |m  nodal planes. 

 (c)  These nodal surfaces have a fixed value of θ and so they are cones whose axis is the z 
axis. An exception is a node with /2θ π= , which is the xy plane. [The problem in the 
text should say there are | |l m−  surfaces for which the θ factor vanishes. Note from 
(5.97) that ( )S θ  depends on | |m  and not on m.] 

 (d)  There are 1n l− −  radial nodes, | |l m−  θ nodes, and | |m  φ nodes, for a total of 
1n −  nodes. 

 

6.42 The integral (2 )* 2x yp p dτ∫  contains the factor 2 2 21
0 02cos sin sin | 0dπ πφ φ φ φ∫ = = . The 

integral (2 )* 2x zp p dτ∫  contains the factor 2 2
0 0cos sin | 0dπ πφ φ φ∫ = = . The integral 

(2 )* 2y zp p dτ∫  contains the factor 2 2
0 0sin cos | 0dπ πφ φ φ∫ = − = . 

 

6.43 We want 22 3 2 / 2
0 0 00.95 | | (1/ ) sinb r a

V d a e r dr d dπ πψ τ π θ θ φ−= ∫ = ∫ ∫ ∫ , where b is the 
orbital radius. Use of Eq. (A.7) gives 

3 2 / 2 2 3
00.95 (1/ )[ ( /2 2 /4 2 /8)] | 2(2 )r a ba e ar ra aπ π−= − − − = 2 / 21 [2( / ) 2( / ) 1]b ae b a b a−− + +

. We have 2 20.05 (2 2 1) 0we w w−− + + = , where /w b a≡ . Use of the Solver gives 
3.148w =  and 3.148 3.148(0.529b a= =  Å) = 1.665 Å. 

 
6.44 The maximum value of | sin |θ  is 1. To find the maximum of krre− , we have 

0 ( ) / (1 )kr kr kr krd re dr e kre e kr− − − −= = − = − , which gives 1/r k= . With | sin | 1θ =  and 
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1/r k= , Eq. (6.123) gives 3/2 1/2 1
2 max( )

yp k eψ π − −= . Hence (6.123) gives 

max| |/| | |sin | 0.316krkereψ ψ θ−= = . Putting 1/2k a=  and e =2.71828, we have 
0.5 /0.2325 ( / ) |sin |r ar a e θ−=  and 0.5( / )|sin | 0.2325 ( / )r ae r aθ =   (Eq. 1). We plot points 

on the orbital by taking values of r/a and calculating | sin |θ  from Eq. 1. Then we find θ , 
the angle with the z axis. y and z values can be found from cosz r θ=  and siny r θ= . 
Some values are 

 
r/a 0.24 0.2655 0.28 0.30 0.36 0.45 0.6 0.8 1 1.5 
sinθ  1.09 1.00 0.955 0.900 0.773 0.647 0.523 0.434 0.383 0.328
θ/rad  1.570 1.270 1.121 0.884 0.704 0.550 0.448 0.393 0.334
y  0.265 0.267 0.270 0.278 0.291 0.314 0.347 0.383 0.492
z  0 0.083 0.130 0.228 0.343 0.511 0.721 0.924 1.417

 
r/a 2.1 2.7 3.5 4.5 5.5 6 6.3 6.6 6.7312 
sinθ  0.316 0.332 0.382 0.490 0.661 0.778 0.861 0.955 1.00 
θ/rad 0.322 0.339 0.392 0.512 0.722 0.892 1.038 1.270 1.557 
y 0.664 0.897 1.338 2.206 3.637 4.700 5.426 6.304 6.730 
z 1.992 2.547 3.234 3.922 4.126 3.767 3.202 1.955 0 

 
 By taking the four combinations ( , ), ( , ), ( , ), ( , )y z y z y z y z− − − −  of points in the table, 

we get the complete orbital cross-section, which looks like 
 
 

-5

0

5

-8 -4 0 4 8

 
 
6.45 The probability density is proportional to 2 2sin ( / )sin ( / )x yn x a n y aπ π . For the 11 state, 

there are no interior nodes and the maximum in 2| |ψ  is at the center of the box. For the 
12 state, there is nodal line (the dashed line) at /2y a= . The 21 state has a nodal line at 

/2x a= . The 22 state has nodal lines at /2x a=  and /2y a= . The rough sketches of the 
12 and 21 states resemble p orbitals, and the 22 sketch resembles a d orbital. 

 

z/a 

y/a 
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6.46 From (6.135), each different value of the quantum number m gives a different energy, so 

the 2s and 2p0 states have the same energy, and there are three energy levels, the 
nondegenerate 2p1 level, the nondegenerate 2p–1 level, and a doubly degenerate level that 
consists of the two states 2s and 2p0. 

 
6.47 (a)  Let /rE E A≡ , /rr r B≡ , ( )a b cA eμ ′= , ( )d f gB eμ ′= . We have 

2 2 3/2 1/2 1 2 1 /2 3 /2 2[ ] ML T [ ] [ ] [ ] M (L M T ) (ML T ) M L Ta b c a b c a b c b c b cA eμ− − − + + + − −′= = = = , so 
2 2 2, 3 4 4, 2a b c b c b c+ + = + = − − = − . We find 4b = , 2c = − , 1a = , so 

4 2/A eμ ′= . Also, 3/2 1/2 1 2 1 /2 3 /2 2[ ] L M (L M T ) (ML T ) M L Td f g d f g f g f gB − − + + + − −= = = , 
so 2 2 0, 3 4 2, 0d f g f g f g+ + = + = + = . We get 2, 2, 1f g d= − = = − , so 

2 2/B eμ ′= . 

 (b)  2 2 2R r dr F dr=  is a probability and so is dimensionless. So F has dimensions of 
1/2L− . Hence, as in (4.78), 1/2/rF F B−= . Eq. (4.79) with ψ replaced by F and x replaced 

by r gives 2 2 5/2 2 2 1/2 2 2 2 4 2 4 1/2 2 2/ / / /r r r r r rd F dr B d F dr B B d F dr e B d F drμ− − − − −′= = = . 
Equation (6.137) (with m replaced by μ) becomes 

2 4 2 4 1/2 2 2 2 2 1 2 2 4 2 4 2 1/2( /2 ) / [ / ( 1) /2 ]r r r r re B d F dr e e r l l e r B Fμ μ μ μ μ− − − − − − −′ ′ ′ ′− + − + + =
4 2 1/2

r re E B Fμ − −′  or 2[ ( 1)/ 2/ ] 2r r r r r rF l l r r F E F′′ − + − = , which is (6.140). 

x 

y 

( ) (11)x yn n =  ( ) (21)x yn n =  

( ) (12)x yn n =  ( ) (22)x yn n =  
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 (c)  2 4 2 2 2/ ( / ) / / 1/r rV V A e r e e r rμ μ−′ ′ ′= = − = − = − , where (6.139) was used. 
 
6.48 (a)  Cell B7 contains the formula =-$D$3*($D$3+1)/A7^2-2/A7-2*$B$3, where D3 

and B3 contain l and rE , respectively.  

 (b)  If we extend the integration interval to 30rr = , the Solver gives this energy as  
–0.055416, which is considerably more accurate. 

 
6.49 A and B are given by (4.73) and (4.74). The rE  and rr  equations are (4.75) with x 

replaced by r. As in (4.78) and Prob. 6.47b, 1/2/rF F B−= . Eq. (4.79) with ψ replaced by 

F and x replaced by r gives 2 2 5/2 2 2 1/2 2 2 2/ / /r r r rd F dr B d F dr B B d F dr− − −= = =  
1/2 1/2 1/2 1 2 2/r rB m k d F dr− − . Eq. (6.137) becomes 2 1/2 1/2 1/2 1 2 2( /2 ) /r rm B m k d F dr− −− +  

1/2 1/2 2 2 1 1/2 1/2 2 1/21 1
2 2[ ( 1) / ]r r rkm k r l l m m k r B F− − − − − −+ + 1/2 1/2 1/2

r rm k E B F− −=  or 
2 2[ ( 1)/ 2 ]r r r r r r rF r l l r E F G F′′ = + + − = . Suppose we want eigenvalues up to 10.rE =  The 

classically forbidden region begins at the rr  value that satisfies 21
2 10r rV r= = , which is 

4.47rr = . We shall go to 6rr = , starting at 1210rr
−=  to avoid the infinity at the origin, 

and taking 0.05rs = . With these choices, the Solver gives the lowest 0l =  
dimensionless eigenvalues as 1.49999984, 3.4999985, 5.4999944, 7.499987 and gives the 
lowest 1l =  eigenvalues as 2.499986, 4.499964, 6.499933, 8.499902. The Prob. 4.20 
result is 3

2( )x y zE hν= + + +v v v  and 1.5r x y zE = + + +v v v . (The wave function is an 
even function if the sum x y z+ +v v v  is an even number and is odd if this sum is odd. 

Since 0
0Y  is an even function and 1

mY  are odd functions, the 0l =  eigenvalues have 

x y z+ +v v v  even and the 1l =  functions have x y z+ +v v v  odd.) 
 
6.50 We use the spreadsheet prepared for Prob. 6.48. Column C contains the rF  values. We 

set up column D as /r r rR F r=  and graph column D versus rr . At 1510rr
−= , rF  is 

extremely small but nonzero. However, we took rF  as 0 at 1510rr
−= , which erroneously 

makes /r r rR F r=  equal to zero at 1510rr
−= . The graph of rR  indicates that it is 

somewhat greater than 0.4 at 1510rr
−= . 

 
6.51 The dimensionless variables are /rE E A≡ , /rr r B≡ , where A and B are given by the 

particle-in-a-box A and B (Prob. 4.30) with l replaced by b; thus, 2 2/ ( / )rE E mb=  and 

/rr r b= . As in (4.78) and Prob. 6.47b, 1/2/rF F B−= . Equation (4.79) with ψ replaced by 

F and x replaced by r gives 2 2 5/2 2 2 1/2 2 2 2/ / /r r r rd F dr B d F dr B B d F dr− − −= = =  
1/2 2 2 2/r rB b d F dr− −  and (6.137) becomes 

2 1/2 2 2 2 2 2 1/2 2 2 1/2( /2 ) / [ ( 1) /2 ] ( / )r r r r r rm B b d F dr l l mbr B F mb E B F− − − −− + + =  or 
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2[ ( 1)/ 2 ]r r r r r rF l l r E F G F′′ = + − = . The variable rr  goes from 0 to 1. To avoid the infinity 

at the origin, we shall start at 1010rr
−= . We shall take the interval as 0.01.rs =  For 

0l =  the lowest three rE  values are 4.934803, 19.739208, 44.413205 and for 1l =  the 
lowest energies are 10.095357, 29.839696, 59.449675. The exact 0l =  rE  values are 

2 2 2 2 2 2 2 2 2/ ( / ) ( /8 ) / ( / ) /2rE E mb n h mb mb n π= = = =  4.934802, 19.739209, 
44.413220. 

 
6.52 (a)  dx, 0 and l;  (b)  dx, −∞  to ∞ ;  (c)  dx dy dz , −∞  to ∞  for each variable;   

(d)  2 sinr dr d dθ θ φ , 0 to ∞  for r, 0 to π for θ, 0 to 2π for φ. 
 

6.53 (a)  The Boltzmann distribution law (4.63) gives ( )// ( / ) i jE E kT
i j i jN N g g e− −= . The 

degeneracy of the H-atom levels is given near the end of Sec. 6.5 as 2n . (When spin is 
included, this becomes 22n , but the factor 2 cancels when taking a population ratio.) We 
have 2 2 18 23

2 1/ (2 /1 ) exp[ (2.1787 10 J)(1/1 1/4)/(1.3807 10 J/K)(298.15 K)]N N − −= − × − ×  

= 1721.63 10−×  at 25°C, where (6.94) and the equation before (6.108) were used.  

 (b)  Replacement of 298.15 with 1000 gives 511.60 10−× . 
 (c)  Replacement of 298.15 with 10000 gives 0.0000290. 
 
6.54 (a)  The one-dimensional harmonic oscillator;   

(b)  the particle in a one-dimensional box; the rigid two-particle rotor;   
(c)  the H atom; the anharmonic oscillator with energies (4.60). 

 
6.55 (a)  The harmonic oscillator, the rigid two-particle rotor, the particle in a one-dimensional 

box, the hydrogen atom. 
 (b)  The particle in a well; the anharmonic oscillator of Fig. 4.6. 
 (c)  The rigid two-particle rotor.  
 
6.56 (a)  False. The rigid two-particle rotor has a zero eigenvalue.    (b)  True. 
 (c)  False. e is the proton charge.    (d)  True.    (e)  False.    (f)  False.  
 (g)  False.  (h)  True.  (i)  False. 
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Chapter 7 

Theorems of Quantum Mechanics 
 
 
7.1 (a)  T;   (b)  T;   (c)  F. 
 

7.2 ˆ ˆ ˆ| | ( )* * *m n m n m ncf A f cf Af d c f Af dτ τ〈 〉 = =∫ ∫  and 
ˆ ˆ ˆ| | * ( ) *m n m n m nf Acf f A cf d c f Af dτ τ〈 〉 = =∫ ∫  if Â  is linear. Thus if *c c=  (that is, if c is 

real) and if Â  is linear, the integrals are equal. 
 

7.3 ˆ ˆ ˆ ˆ| | * *( ) | .f B g f Bg d f Bg d f Bgτ τ〈 〉 = = = 〈 〉∫ ∫  

 ˆ ˆ ˆ ˆ| | ( )* * * * | | .cf B g cf Bg d c f Bg d c f B gτ τ〈 〉 = = = 〈 〉∫ ∫  

 ˆ ˆ ˆ ˆ| | * ( ) * | | ,f B cg f B cg d c f Bg d c f B gτ τ〈 〉 = = = 〈 〉∫ ∫  if B̂  is linear. 

 

7.4 This equation can be written as ˆ ˆ| 1 | | 1 | *m n n m〈 〉 = 〈 〉 , so the operator “multiplication by 
1” is Hermitian. 

 

7.5 From (7.12), ˆ ˆ ˆ ˆ| | | | * | * | ,f B g g B f g B f Bf g〈 〉 = 〈 〉 = 〈 〉 = 〈 〉  where (7.4) was used. 

 

7.6 (a)  We must prove that ˆ ˆ* ( ) ( )*f cA g d g cAf dτ τ∫ = ∫  (Eq. 1). The left side of Eq. 1 is  
ˆ* ( )f cA g dτ∫  = ˆ ˆ* ( ) *c f Ag d c g Af dτ τ∫ = ∫ , since Â  is Hermitian. The right side of  

Eq. 1 is ˆ ˆ ˆ( )* * ( )* ( )*g cAf d c g Af d c g Af dτ τ τ∫ = ∫ = ∫ , where (1.32) and the fact that c is 
real were used. We have proved the two sides of Eq. 1 to be equal. 

 (b)  We must show that ˆ ˆˆ ˆ* ( ) [( ) ]*f A B g d g A B f dτ τ∫ + = ∫ +  (Eq. 2). The left side of Eq. 
2 is ˆ ˆ ˆˆ ˆ ˆ* ( ) * ( ) ( * * )f A B g d f Ag Bg d f Ag f Bg dτ τ τ∫ + = ∫ + = ∫ + = ˆ ˆ* *f Ag d f Bg dτ τ∫ + ∫  
(Eq. 3), where the definition of the sum of two operators was used. Because Â  and B̂  are 
Hermitian, ˆ ˆ* ( )*f Ag d g Af dτ τ∫ = ∫  and ˆ ˆ* ( )*f Bg d g Bf dτ τ∫ = ∫ . Hence Eq. 3 becomes 

ˆ ˆ* ( )f A B g dτ∫ + = ˆ ˆˆ ˆ( )* ( )* [ ( ) * ( )*]g Af d g Bf d g Af g Bf dτ τ τ∫ + ∫ = ∫ +
ˆ ˆ[( ) * ( )*]g Af Bf dτ= ∫ +  ˆ ˆˆ ˆ[( )]* [( ) ]*g Af Bf d g A B f dτ τ= ∫ + = ∫ + , where (1.33) and the 

definition of the sum of operators were used. This completes the proof. 
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7.7 (a)  We must show that 2 2 2 2* ( / ) [( / ) ]*f d dx g dx g d dx f dx∞ ∞
−∞ −∞∫ = ∫  (Eq. 1). Let *u f≡  

and 2 2( / )d d g dx dx≡v . Then use of (7.16) gives the left side of Eq. 1 as 
2 2* ( / ) * ( / ) | ( / )( */ ) ( / )( */ )f d g dx dx f dg dx dg dx df dx dx dg dx df dx dx∞ ∞ ∞∞

−∞ −∞ −∞ −∞∫ = − ∫ = − ∫
 (Eq. 2), since *f  must be zero at ±∞  for f to be quadratically integrable. Now let 

*/u df dx≡  and ( / )d dg dx dx=v . Use of (7.16) gives the right side of Eq. 2 as 
2 2( / )( */ ) ( */ ) | ( */ )dg dx df dx dx df dx g g d f dx dx∞ ∞∞

−∞ −∞ −∞− ∫ = − + ∫ = 2 2( */ )g d f dx dx∞
−∞∫ , 

which is the right side of Eq. 1, so we have proved that 2 2/d dx  is Hermitian. x̂T  equals a 

real constant times 2 2/d dx , so from Prob. 7.6a, x̂T  is Hermitian. 

 (b)  2 2 2( /2 ) * ( / )xT m d dx dx〈 〉 = − ∫Ψ Ψ= . Let *u ≡ Ψ  and 2 2/d d dx≡ Ψv . Then Eq. (7.16) 

gives 2( /2 )[ * ( / ) | ( / )( */ ) ]xT m d dx d dx d dx dx
∞∞

−∞ −∞〈 〉 = − Ψ Ψ − ∫ Ψ Ψ ==  
2 2 2( /2 ) ( / )( / )* ( /2 ) | / |m d dx d dx dx m d dx dx

∞ ∞
−∞ −∞∫ Ψ Ψ = ∫ Ψ= = , since Ψ  is zero at ±∞ . 

 (c)  From (3.45) ˆ ˆ ˆ ˆ ,x y zT T T T= + +  and (3.90) gives x y zT T T T〈 〉 = 〈 〉 + 〈 〉 + 〈 〉 . 

 (d)  Since the integrand in 2 2( /2 ) | / |m d dx dx
∞
−∞∫ Ψ=  is never negative, it follows from 

part (a) that 0xT〈 〉 ≥ . Similarly 0yT〈 〉 ≥  and 0zT〈 〉 ≥ , and it follows from part c that 
0T〈 〉 ≥ . 

 
7.8 From Prob. 7.6a, if Â  is Hermitian, then ˆcA  is Hermitian if c is a real number. Also, it is 

clear from the proof in Prob. 7.6a that ˆcA  is not Hermitian if *c c≠ , that is, if c is 
imaginary. Since 2 2/d dx  is Hermitian (Prob. 7.7a), it follows that 4 2 2/d dx  is Hermitian 
and i 2 2/d dx  is not Hermitian. Since ˆ ( / )( / ) ( / )xp i d dx i d dx= = −= =  is Hermitian, it 
follows that i ( / )d dx  is Hermitian and ˆ/ ( / ) xd dx i p= =  is not Hermitian. 

 
7.9 (a)  This operator is not linear and cannot represent a physical quantity.  
 (b) /d dx   is not Hermitian (Prob. 7.8) and so cannot represent a physical quantity. 

 (c)  2 2/d dx  is linear and Hermitian and can represent a physical quantity. 
 (d)  ( / )i d dx  is linear and Hermitian and can represent a physical quantity. 

 

7.10 2 2
0 0

ˆ* * ( / )( / )zf L g d f i d g d dπ πφ φ φ∫ = ∫ = . Let *u f=  and ( / ) /d i dg dφ= =v . Then 
integration by parts gives 

2 22
0 0 0* ( / )( / ) ( / ) * | ( / ) ( */ )f i d g d d i f g i g df d dπ ππφ φ φ φ= − =∫ ∫= = =   
2 2
0 0

ˆ[( / ) ( / )]* ( ) *zg i df d d g L f dπ πφ φ φ∫ = ∫= , since a well-behaved function is single-valued 
and so has the same value at 0φ =  as at 2φ π= . [For simplicity, the proof took  f and g 
as functions of φ only. If f and g are taken as functions of r, θ, and φ, the integral becomes 
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2 2
0 0 0 * ( / )( / ) sinf i g d r dr dπ π φ φ θ θ∞ ⎡ ⎤∫ ∫ ∫ ∂ ∂⎣ ⎦=  and the same manipulations of the φ integral 

show ˆ
zL  to be Hermitian.] 

  
7.11 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ* * ( ) ( )( )* | |A A d A A d A A d A dτ τ τ τ〈 〉 = ∫Ψ Ψ = ∫Ψ Ψ = ∫ Ψ Ψ = ∫ Ψ . In this proof, the 

Hermitian property ˆ ˆ* ( )*f Ag d g Af dτ τ∫ = ∫  with f = Ψ  and ˆg A= Ψ  was used.  

 
7.12 (a)  We must show that ˆ ˆˆ ˆ* ( )*f ABg d g ABf dτ τ∫ = ∫  (Eq. 1). Use of the Hermitian 

property of Â  gives the left side of Eq. 1 as 
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ* ( ) ( )( )* ( )* ( )*f A Bg d Bg Af d Af Bg d g BAf dτ τ τ τ∫ = ∫ = ∫ = ∫  (Eq. 2), where the 

Hermitian property of B̂  was used to get the last equality. If ˆ ˆˆ ˆBA AB= , then the rightmost 
side of Eq. 2 equals the right side of Eq. 1, and the result is proved. If ˆ ˆˆ ˆBA AB≠ , the 
rightmost side of Eq. 2 does not equal the right side of Eq. 1 and ˆ ˆAB  is not Hermitian. 

 (b)  Interchange of Â  and B̂  in Eq. 2 of part (a) gives ˆ ˆˆ ˆ* ( ) ( )*f B Ag d g ABf dτ τ=∫ ∫  (Eq. 
3). Adding Eqs. 2 and 3, we get ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ*( ) [( ) ]*f AB BA g d g AB BA f dτ τ+ = +∫ ∫ , which 
completes the proof.  

 (c)  Both x̂  and ˆ xp  are Hermitian, but these two operators do not commute, so by the 
result of part (a), ˆˆ xxp  is not Hermitian. 

 (d)  The results of part (b) and Prob. 7.6(a) show that 1
2 ˆˆ ˆ ˆ( )x xxp p x+  is Hermitian. 

 
7.13 (a)  In Eq. (7.16), let *u f≡  and .g=v  Then (7.16) becomes 

| / | *( / ) * | ( / ) * | / | *.f d dx g f d dx g dx f g g d dx f dx g d dx f
∞ ∞∞

−∞−∞ −∞
〈 〉 = = − = −〈 〉∫ ∫  

 (b) Since Â  is Hermitian, ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ* ( ) ( )( )* ( )* ( )* ,f A Bg d Bg Af d Af Bg d g BAf dτ τ τ τ∫ = ∫ = ∫ = ∫  
where the Hermitian property of B̂  was used. Interchange of Â  and B̂  gives 

ˆ ˆˆ ˆ* ( ) ( )*f B Ag d g ABf dτ τ=∫ ∫ . Subtracting the second equation from the first, we get 
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ*( ) ) [( ) ]* [( ) ]*f AB BA g d g BA AB f d g AB BA f dτ τ τ∫ − = ∫ − = − ∫ − , so the commutator is 

anti-Hermitian. 
 

7.14 (a)  From Eq. (6.14), 1 1
ˆ (3 ) (3 )zL p p− −= −= , so 1 1 1 1

ˆ2 | | 3 2 | 3 0zp L p p p− −〈 〉 = − 〈 〉 == , 

since 12 p  and 13p−  are eigenfunctions of the Hermitian operator ˆ
zL  with different 

eigenvalues and so are orthogonal. 

 (b)  0 0
ˆ (3 ) 0(3 ) 0zL p p= = , so this integral is zero because its integrand is zero. 

 

7.15 (a)  We have 1
2

ˆ ( )n nHf n h fν= + , so 1 1
2 2

ˆ| | ( ) | ( ) .m n m n mnf H f n h f f n hν νδ〈 〉 = + 〈 〉 = +  
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 (b)  2 2 2ˆ ( /8 )n nHf n h ml f= , so 2 2 2 2 2 2ˆ| | ( /8 ) | ( /8 ) .m n m n mnf H f n h ml f f n h ml δ〈 〉 = 〈 〉 =  

 

7.16 2 2 2 2 2 2 2
ˆ ˆ ˆ| | ( ) ( )| | * ( )| * ( )| * | ( )H f x f x H f x H f x E E f xψ ψ ψ ψ ψ〈 〉 = 〈 〉 = 〈 〉 = 〈 〉 = 〈 〉 =

 5
22 | ( ) ,h f xν ψ〈 〉  since Ĥ  is Hermitian and 2E  is real. 

7.17 (a)  1/ 2 1/ 2 1/ 2
1 1 1 1 1 1 1 12 | 2 2 | 2 (2 2 ) 2 2 | 2 2 2 | 2xp p p p p p p p p− − −

− −〈 〉 = 〈 + 〉 = 〈 〉 + 〈 〉 =  
1/2 1/22 0 2 ,− −+ =  since the nlmψ  hydrogenlike functions are orthonormal. 

 (b)  Let the orthogonal functions be 1 12g p≡  and 2 12 2xg p c p≡ + . We require that 

1 12 | 2 2 0xp p c p〈 + 〉 = , so 1/2
1 1 10 2 | 2 2 | 2 2xp p c p p c−= 〈 〉 + 〈 〉 = + , where the result of 

part (a) was used. Hence 1/22c −= −  and 1/2
2 12 2 2xg p p−= − . The normalized function is 

2Ng  and 2 1/2 1/2
2 2 1 11 | | | 2 2 2 | 2 2 2x xNg Ng N p p p p− −= 〈 〉 = 〈 − − 〉 =  

2 1/2 1/2 1
1 1 1 1| | [ 2 | 2 2 2 | 2 2 2 | 2 2 2 | 2 ]x x x xN p p p p p p p p− − −〈 〉 − 〈 〉 − 〈 〉 + 〈 〉 =

2 1/2 1/2 1/2 1/2 1 21
2| | (1 2 2 2 2 2 ) | |N N− − − − −− − + =  and 1/2| | 2N = . So the orthonormal 

functions are 12 p  and 1/2
12 2 2xp p−  [which from (6.118) equals 12 ].p−  These are 

eigenfunctions of the H-atom Ĥ  and of 2L̂  (and also of ˆ ).zL  [An alternative is to take 

1 2 xg p=  and then one finds 1/2
2 12 2 2 xg p p= −  (which equals 2 ).yi p ] 

 

7.18 (a)  We have 1/2 2
0 0(2/ ) sin( / ) sin( / )l l

na l l x n x l dx x n x l dxπ π⎡ ⎤= −∫ ∫⎣ ⎦ . Use of Eq. (A.1) and 
2 2 3 2sin (2 / )sin (2/ / ) cosx bx dx x b bx b x b bx= + −∫  gives 

1/2 2
0(2 ) [( / ) sin( / ) ( / ) cos( / )] |lna l l n n x l xl n n x lπ π π π= −   

1/2 2 2 2 3 3 3 2
0(2/ ) [(2 / )sin( / ) (2 / / ) cos( / )] |ll xl n n x l l n x l n n x lπ π π π π− + − .  

Use of sin 0nπ =  and cos ( 1)nnπ = −  gives 
1/2 5/2 3/2 5/2 3 3 1/2 5/2(2 / )( 1) {(2 / )[( 1) 1] (2 / )( 1) }n n n

na l n l n l nπ π π= − − − − − − − =  
3/2 5/2 3 3(2 / )[1 ( 1) ]nl n π − − . 

 (b)  Setting 1
2x l=  in the final equation of the example and multiplying by 3 24 / lπ ,we get 

3 3
116 [1 ( 1) ] sin( /2)n

n n nπ π∞ −
=

= − −∑ = 
3 3 3 332 0 32/3 0 32/5 0 32/7 0 32/ 9+ − + + + − + + +" 31.0214≈ . The accurate value is 

3 31.0063π = .  
 (c)  For /4,x l=  the expansion is 

2 2 3 3 3 33
16 (4 / )[2sin( /4) (2/3 )sin(3 /4) (2/5 )sin(5 /4) (2/7 )sin(7 /4)l l π π π π π= + + + +  

3(2/9 )sin(9 /4) ]π +" . The left side is 20.18750l . With 1, 3, and 5 nonzero terms 
included, the right side equals 20.18244l , 20.18774 ,l  and 20.18746l , respectively. The 
percent errors are 2.7%,−  0.13%,  and 0.02%− . 
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7.19 (a)  In |n nnf g f g= 〈 〉∑  [Eq. (7.41)], the complete set is 1/2(2/ ) sin( / )ng l n x lπ= . The 

expansion coefficients are 
/21/2 1/2

0 /2| (2/ ) sin( / )( 1) (2/ ) sin( / )(1)l l
n lg f l n x l dx l n x l dxπ π〈 〉 = ∫ − + ∫ =

1/2 /2 1/2
0 /2(2/ ) ( / ) cos( / ) | (2/ ) ( / ) cos( / ) |l l

ll l n n x l l l n n x lπ π π π− =
1/2 1/2(2/ ) ( / )[cos( /2) 1] (2/ ) ( / )[cos( ) cos( /2)]l l n n l l n n nπ π π π π− − − =
1/2[(2 ) / ][2cos( /2) 1 ( 1) ]nl n nπ π − − − . Hence 

1(2/ )[2cos( /2) 1 ( 1) ]sin( / )n
nf n n n x lπ π π∞
=

= − − −∑ .  

 (b)  At /4x l= , the expansion in (a) becomes 
1 (2/ )[0 4/2 0 0 0 4/6 0 0 0 4/10 0 0 0 4/14 ]π− = − + + + + + + + − + + + + +" =

(4/ )( 1 1/3 1/5 1/7 1/9 )π − + − + − +" . With 1, 3, and 5 nonzero terms, the right side is 
1.273− , 1.103,−  and 1.063− , respectively. The errors are 27%, 10%, and 6%.  

 

7.20 (a)  F;   (b)   F;   (c)  T, since ˆ
zL  commutes with Ĥ  and 2px and 3px have different 

eigenvalues of Ĥ , Theorem 6 tells us the integral is zero. 
 
7.21 If m is even, then 2 2 ˆ ˆˆ ˆ ˆ( ) 1 1m n n nΠ = Π = Π = = , where n is an integer and Eq. (7.54) was 

used. If m is odd, then 2 1 2 ˆˆ ˆ ˆ ˆ ˆ ˆ( ) 1m n n n+Π = Π = Π Π = Π = Π . 

 
7.22 (a)  An s hydrogenlike function depends on r only and 2 2 2 1/2( )r x y z= + + . Hence 2sψ  is 

an even function. 
 (b)  From (6.119), 2 xpψ  equals x times a function of r, and so is an odd function. 

 (c)  This function is a linear combination of two functions with the same energy 
eigenvalue, and so is an eigenfunction of Ĥ . This function is a linear combination of two 
functions with different parity eigenvalues and so is not an eigenfunction of Π̂ . 

 
7.23 Since jψ  is an even or odd function according to whether the vibrational quantum number 

j is even or odd, respectively, we have ˆ ( 1) j
j jψ ψΠ = −  and 

( 1) * ( 1) .j j
ij i j ijdxψ ψ δ

∞

−∞
Π = − = −∫  

 
7.24 (a)  From Prob. 7.22, the 2s function is even and 2 xp  is odd. Hence the integrand in 

2 | | 2 xs x p〈 〉  is an even function and parity does not require this integral to be zero. 

 (b)  The integrand is an odd function and the integral must be zero. 
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 (c)  The integrand is the product of three odd functions and so is an odd function. The 
integral must therefore be zero. 

 

7.25 We have ˆ
i i iRf r f= , where ir  and if  are the eigenvalues and eigenfunctions of R̂ . We 

operate on this equation with R̂  and use the linearity of R̂  and the eigenvalue equation to 
get 2 2ˆ

i i i i i i i iR f r Rf r r f r f= = = . Operating with R̂  again, we get 3 3ˆ
i i iR f r f= . Operating 

with R̂  a total of 1n −  times, we get ˆ n n
i i iR f r f= . But ˆ 1nR = , so n

i i if r f=  and 1n
ir = . 

Hence the eigenvalues are the nth roots of unity, given by (1.36). 
 
7.26 (a)  

ˆ ˆ ˆ[ ( , , ) ( , , )] ( , , ) ( , , ) ( , , ) ( , , )f x y z g x y z f x y z g x y z f x y z g x y zΠ + = − − − + − − − = Π +Π . 
Also, ˆ ˆ[ ( , , )] ( , , ) ( , , )cf x y z cf x y z c f x y zΠ = − − − = Π . Hence Π̂  is linear. 

 (b)  We must show that ˆ[ ( )]* ( )f x g x dx∞
−∞∫ Π = ˆ( )[ ( )]*g x f x dx∞

−∞∫ Π . We have  
ˆ[ ( )]* ( ) [ ( )]* ( )f x g x dx f x g x dx∞ ∞

−∞ −∞∫ Π = ∫ −  (Eq. 1). Let z x≡ − . Then dz dx= −  and the 

right side of Eq. 1 becomes [ ( )]* ( )f z g z dz−∞
∞− ∫ − ( )[ ( )]*g z f z dz∞

−∞= ∫ − =  
ˆ ˆ( )[ ( )]* ( )[ ( )]*g z f z dz g x f x dx∞ ∞

−∞ −∞∫ Π = ∫ Π , which completes the proof. 

 
7.27 As shown in Sec. 7.5, if two eigenfunctions f and g of Π̂  have different eigenvalues, then 

one function must be odd and the other even. Hence the integrand in *f g dτ∫  is an odd 
function and the integral is zero. 

 
7.28 The harmonic-oscillator wave functions are even or odd according to whether the 

quantum number v  is even or odd, respectively. If 1v  and 2v  are both even numbers or 
both odd numbers, then the integrand in 2 1| |x〈 〉v v  is an odd function and the integral 
must be zero. The integral might be zero in other cases also. 

 
7.29 (a)  Since 2 2 2 1/2( )r x y z= + + , replacement of x, y, z by , ,x y z− − −  leaves r unchanged. 

The points (x, y, z) and ( , , )x y z− − −  lie on opposite ends of a line that goes through the 
origin, as shown in the first and last figures in Fig. 12.6 in the text. The angle θ made by 
the radius vector with the positive half of the z axis is the same in the second figure as in 
the first, and when the radius vector is reflected in the xy plane to generate the third figure 
from the second, the angle with the positive z axis becomes π θ− . In going from the first 
figure to the second, the angle made by the projection of the radius vector in the xy plane 
with the positive half of the x axis increases from φ  to φ π+ , and remains unchanged on 
going from the second to the third figure. 
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 (b)  From part (a), ( )ˆ (cos sin ) ( 1)im im im im im m ime e e e e m i m eφ φ π φ π φ φπ π+Π = = = + = − , 
since cos ( 1)mmπ = −  and sin 0mπ = . 

 (c)  From (a), θ goes to π θ− . Use of trigonometric identities gives 
cos( ) cos cos sin sin cosπ θ π θ π θ θ− = + = −  and 
sin( ) sin cos cos sin sinπ θ π θ π θ θ− = − = . So the parity operator does not affect the 

| |sin m θ  factor in (5.97). The transformation of θ to π θ−  changes cos jθ  to 
cos ( ) ( 1) cosj j jπ θ θ− = − . In (5.97), the j values are all odd or are all even, depending on 
whether | |l m−  is odd or even, respectively. Hence if | |l m−  is even, there is no effect on 

, ( )l mS θ , and if | |l m−  is odd, , ( )l mS θ  is multiplied by 1− . Hence 
| |

, ,
ˆ ( ) ( 1) ( )l m

l m l mS Sθ θ−Π = − . If m > 0, then | |m m= . If m < 0, then | |m m= −  and 
| | 2( 1) ( 1) ( 1) /( 1) ( 1)l m l m l m m l m− + + −− = − = − − = − . Hence , ,

ˆ ( ) ( 1) ( )l m
l m l mS Sθ θ−Π = − . 

 (d)  , ( ) ( )m
l l m mY S Tθ φ= . From (b), Π̂  multiplies mT  by ( 1)m−  and from (c) it multiplies 

,l mS  by ( 1)l m−− . Hence Π̂  multiplies m
lY  by ( 1)l− , and m

lY  is even if l  is even and is 

odd if l is odd. 
 
7.30 The integral can be written as 

1 1 1 1( , , , , , )k k m k k mf q q q q dq dq dq dq
∞ ∞ ∞ ∞

+ +−∞ −∞ −∞ −∞
⎡ ⎤
⎢ ⎥⎣ ⎦∫ ∫ ∫ ∫" " … … " "  

 For the multiple integral in brackets, 1kq +  through mq  are constants. By virtue of the first 
equation in the problem, the contributions from 1 1( , , , , , )k k mf q q q q+− −… …  and 

1 1( , , , , , )k k mf q q q q+… …  cancel so the integral in brackets equals zero and the complete 
integral is zero. 

 
7.31 (a)  From (6.122), the 2 zp  function is the same as the 02 p  function, which is an 

eigenfunction of ˆ
zL  with eigenvalue zero, so the value 0 will be obtained with 100% 

certainty when zL  is measured. 

 (b)  From (6.120), 1/2 1/2
1 12 2 (2 ) 2 (2 )yp i p i p− −
−= − . Theorem 8 of Sec. 7.6 tells us that 

the probability of getting −=  is 1/2 2 1/2 1/2 1/2 1/2 1
2| 2 | ( 2 ) * ( 2 ) ( 2 )( 2 )i i i i i− − − − −= = − =  and 

the probability of getting =  is 1/2 2 1/2 1/2 1/2 1/2 1
2| 2 | ( 2 ) * ( 2 ) ( 2 )( 2 )i i i i i− − − − −− = − − = − = . 

 (c)  12 p  is an eigenfunction of ˆ
zL  with eigenvalue = , so =  will always be found. 

 In (a), 0zL〈 〉 =  and in (c) zL〈 〉 = = .  
In (b), Eq. (3.81) gives 0.5( ) 0(0) 0.5 0zL〈 〉 = − + + == = . 
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7.32 Theorem 8 of Sec. 7.6 tells us that the probability of getting =  is 
1/2 2 1/2 2 1 1 1

6 3 2| 6 | | 3 |− −+ − = + =  and the probability of getting 0 is 1/2 2 1
2| 2 |i−− = . Use of 

Eq. (3.81) gives 1 1 1
2 2 2(0) .zL〈 〉 = + == =  

 

7.33 The first two functions in the linear combination each have 2L̂  eigenvalue 2 21(2) 2== =  
and the third function has 2L̂  eigenvalue 2 22(3) 6== = . Hence Theorem 8 of Sec. 7.6 says 
that the probability of getting 22=  is 1/2 2 1/2 2 1 1 2

6 2 3| 6 | | 2 |i− −+ − = + =  and the probability 

of getting 26=  is 1/2 2 1
3| 3 |−− = . Equation (3.81) gives 2 2 2 2102 1

3 3 3(2 ) (6 ) .L〈 〉 = + == = =  

7.34 The first two functions in the linear combination each have energy eigenvalue 
2

0/(4 )8e aπε−  and the third function has energy eigenvalue 2
0/(4 )18e aπε− . The 

probability of getting 2
0/(4 )8e aπε−  is 1/2 2 1/2 2 1 1 2

6 2 3| 6 | | 2 |i− −+ − = + =  and the 

probability of getting 2
0/(4 )18e aπε−  is 1/2 2 1

3| 3 |−− = . From (3.81),  
2 2 22 1 11

0 0 03 3 108[ /(4 )8 ] [ /(4 )18 ] ( /4 ).E e a e a eπε πε πε〈 〉 = − + − = −  

 
7.35 The 2L  value of 22=  means that just after the measurement the particle has angular-

momentum quantum number 1l = . Since the labeling of directions in space is arbitrary, 
the possible outcomes of a measurement of xL  are the same as the possible outcomes of a 
measurement of zL , namely, ,−=  0, and = . 

 
7.36 The first function in the linear combination is an eigenfunction of the particle-in-a-box Ĥ  

with eigenvalue 2 2/8h ml  and the second function is an eigenfunction of Ĥ  with 
eigenvalue 2 2 22 /8h ml . Hence the probability of obtaining 2 2/8h ml  is 

2 2 2 2 2 2 2 2 2 2/8 2 /8 /8 /8 /81 1 1 1 1 1
2 2 2 2 2 4| | ( ) * ( ) ( )( )ih t ml ih t ml ih t ml ih t ml ih t mle e e e e− − − −= = =  and the 

probability of obtaining 2 2 22 /8h ml  is 
2 2 2 2 2 2/2 2 /2 /2 31 1 1

2 2 2 4| 3 | ( 3 ) * ( 3 )i ih t ml i ih t ml i ih t mle e e e e eπ π π− − −= =  

 

7.37 The possible outcomes are the eigenvalues 2 2 2/8n h ml  of the energy (Hamiltonian) 
operator. The probabilities are given by Eq. (7.73) as 

1/2 7 1/2 2 2 8 2 3 2
0 0| (2/ ) sin( / )(105/ ) ( ) | (210/ ) | sin( / )( ) |l ll n x l l x l x dx l n x l x l x dxπ π− = −∫ ∫ .  

Use of a table of integrals or the website integrals.wolfram.com gives 
2 2 3 2sin (2 / )sin (2/ / ) cosx bx dx x b bx b x b bx= + −∫  and 
3 2 2 4 3 3sin (3 / 6/ )sin (6 / / ) cosx bx dx x b b bx x b x b bx= − + −∫ .  

Since sin 0nπ =  and sin 0 0= , the sine terms contribute nothing and the probability is 
8 4 3 3 2 2 3 3 3 3 2

0(210/ ) | [(2 / / ) cos( / ) (6 / / ) cos( / )] | |ll l n x l n n x l xl n x l n n x lπ π π π π π− − − =
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8 4 3 3 4 4 3 3 4 4 3 3 2(210/ ) | (2 / / )( 1) (6 / / )( 1) 2 / |n nl l n l n l n l n l nπ π π π π− − − − − − =
8 4 3 3 4 3 3 2 6 6 6 6 6 6(210/ ) | ( 4 / )( 1) 2 / | 210[16/ ( 1) 16/ 4/ ]n nl l n l n n n nπ π π π π− − − = + − + =
6 6(840/ )[5 4( 1) ]nn π + − . (For n = 1, 2, and 3, the probabilities are 0.87374, 0.1229, and 

0.0012, respectively.) 
 
7.38 This energy is the ground-state energy and Eq. (7.73) gives the probability of getting this 

energy as 2 3 1/2 / 3 1/2 3 / 2 2
0 0 0| (1/ ) (27/ ) sin |r a r aa e a e r dr d dππ π π θ θ φ∞ − − =∫ ∫∫   

2 6 4 / 2 2
0(27/ ) | 4 |r aa e r drπ π ∞ − =∫ 6 3 2(432/ ) |2( /4) | 27/64 0.421875.a a = =  

 

7.39 (a)  
1/2 1/2/ (2 ) / / (2 ) /

1 2 1 1 2 2
iEt i mE x iEt i mE xc e e c e e c f c f− − −Ψ = + ≡ += = = = . 

 (b)  1/2 1/2
1 1 1 1ˆ ( / ) / ( / )[ (2 ) / ] (2 )xp f i f x i i mE f mE f= ∂ ∂ = == = =  and 1/2

2 2ˆ (2 )xp f mE f= − . 

 (c)  The possible outcomes are the eigenvalues 1/2(2 )mE  and 1/2(2 )mE− , whose 
eigenfunctions occur in the linear combination in (a). The probabilities are proportional to 

2
1| |c  and 2

2| |c . (They are not equal to 2
1| |c  and 2

2| |c  because a free-particle wave 
function is not normalizable.) Let the proportionality constant be k. The probabilities add 
to 1, so 2 2

1 2| | | | 1k c k c+ =  and 2 2
1 21/(| | | | )k c c= + . The probability of getting 1/2(2 )mE  

is thus 2 2 2
1 1 2| | /(| | | | )c c c+  and the probability of getting 1/2(2 )mE−  is 

2 2 2
2 1 2| | /(| | | | )c c c+ . 

 
7.40 The sum of the probabilities in (7.74) must equal 1. Also, 1 ( 1)n− −  equals 0 if n is even 

and equals 2 if n is odd. Hence 2 6 6
1,3,5 2 (240/ ) 1n n π∞
=

=∑ … . Let ( 1)/2m n≡ − . Then m 

goes from 0 to ∞  in steps of 1, and 2 1n m= + . Hence 6 6
1[960/(2 1) ] 1m m π∞
=

+ =∑  and 
6 6

11 /(2 1) /960m m π∞
=

+ =∑ . 

 
7.41 (a)  From (7.76), (2.23), and (3.36) with A replaced by N and k by p, the desired 

probability is / 1/2 2
0| (2/ ) sin( / ) |l ipxNe l n x l dx dpπ−∫ == 2 2

0(2/ ) | | | sin( ) |l ibxl N e sx dx dp−∫ , 

 where /b p≡ =  and /s n lπ≡ . A table of integrals (or the website integrals.wolfram.com) 
gives 2 2 1sin( ) ( ) ( sin cos )ax axe sx dx a s e a sx s sx−∫ = + − . The probability is thus 

2 2 2 2 2
0(2/ ) | | ( ) | ( sin cos ) | |ibx ll N s b e ib sx s sx dp− −− − − =  2| [ ( 1) ] |ibl nA e s s dp− − − + ,  

where 2 2 2 2(2/ ) | | ( )A l N s b −≡ −  and we used sin sin 0sl nπ= =  and cos ( 1)nnπ = − . 
The probability is 

{ [ ( 1) ] }*{ [ ( 1) ] } { [ ( 1) ] }{ [ ( 1) ] }ibl n ibl n ibl n ibl nA e s s e s s dp A e s s e s s dp− − −− − + − − + = − − + − − + =
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2 2 2 2[ ( 1) ( ) ] 2 [1 ( 1) cos ]n ibl ibl nA s s e e s dp As bl dp−− − + + = − − =  
2 2 2 2 2(4/ ) | | [ /( ) ][1 ( 1) cos ]nl N s s b bl dp− − − , where (1.28) and (2.14) were used. 

 (b)  At /2p nh l= ± , we have / /b p n l sπ≡ = ± = ±= , so 2 2b s=  and the denominator in 
(a) is zero; also, 1 ( 1) cos 1 ( 1) cos( ) 1 ( 1) ( 1) 1 1 0n n n nbl nπ− − = − − ± = − − − = − = , so the 
numerator is also zero. Using l’Hospital’s rule, we differentiate the numerator and the 
denominator with respect to b. Thus 2 2 2lim {[1 ( 1) cos ]/( ) }n

b s bl s b→ − − − =  
2 2lim [ ( 1) sin /2( )( 2 )]n

b s l bl s b b→ − − − . Since bl nπ= ± , we again have 0/0. Differentiating 

again, we get 2 2 2 2 2 2 2 2lim [ ( 1) cos /(12 4 )] ( 1) /8 /8n n
b s l bl b s l s l s→ − − = − =  and the 

probability at /2p nh l= ±  is 21
2 | |l N dp . 

 

7.42 (a)  The displayed equation after Eq. (7.91) gives ( ) 1x dxδ
∞

−∞
=∫ . 

 (b)  Eq. (7.83) gives ( ) 0xδ =  for 1x−∞ ≤ ≤ − , so 
1

( ) 0x dxδ
−

−∞
=∫ . 

 (c)  
1 1 1

1 1 1
1 ( ) ( ) ( ) ( ) ( )x dx x dx x dx x dx x dxδ δ δ δ δ

∞ − ∞

−∞ −∞ − −
= = + + =∫ ∫ ∫ ∫ ∫ , where the result 

 of (b) and 
1

( ) 0x dxδ
∞

=∫  were used. 

 (d)  Since ( 3)xδ −  is zero except at 3x = , the integrand is zero for all points in the range 
from 1x =  to 2 and the integral is therefore zero. 

 

7.43 Let z x a≡ − . Then 2[ ( )] ( ) ( )x a dx z z dzδ δ δ∞ ∞
−∞ −∞− =∫ ∫ . Use of (7.91) with x replaced by 

z, with 0a = , and with f δ=  gives ( ) ( ) (0)z z dzδ δ δ∞
−∞ = = ∞∫ . 

 
7.44 We use the procedure used to derive Eq. (7.91), except that we set 0a =  and take the 

lower limit of the integral as 0 instead of −∞ .The first term on the right side of the 
equation that precedes (7.90) becomes 1

0 2( ) ( ) | ( ) (0)f x H x f f∞ = ∞ − , where (7.81) was 

used. The right side of the equation preceding (7.91) becomes 1
02( ) (0) ( ) |f f f x ∞∞ − − =  

1 1
2 2( ) (0) ( ) (0) (0)f f f f f∞ − − ∞ + =  and (7.91) becomes 1

0 2( ) ( ) (0)f x x dx fδ∞ =∫ . This 

result is intuitively clear from Fig. 7.5. 
 
7.45 From (7.82), the value of the δ  function equals the slope of the H versus x graph.  

The values of the Fig. 7.5 approximate δ  functions at and near the origin increase in 
going from function 1 to 2 to 3 and the width of the nonzero region decreases in going 
from 1 to 2 to 3. Hence the corresponding approximate H(x) graphs show an increasing 
slope and a decreasing width of the nonzero-slope region as we go to more-accurate 
approximations. Thus the figures are 
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7.46 Substitution of ( , ) ( ) ( )i iiq t c t qψΨ =∑  (Eq. 1) in (7.97) gives 

ˆ ˆ( / ) [ ( )/ ] ( ) ( ) ( ) ( ) ( )i i i i i ii i ii dc t dt q H c t q c t H qψ ψ ψ− = =∑ ∑ ∑=  ( ) ( )i i ii c t E qψ= ∑ . 

Multiplication by *( )m qψ  followed by integration over all space gives 

* *( / ) [ ( ) / ] ( ) ( ) ( ) ( ) ( )i m i i i m ii ii dc t dt q q d c t E q q dψ ψ τ ψ ψ τ− =∫ ∫∑ ∑= . Use of   

orthonormality gives ( / ) [ ( ) / ] ( )i mi i i mii ii dc t dt c t Eδ δ− =∑ ∑= , which becomes 

( / ) /m m mi dc dt c E− == . So 1 ( / )m m mc dc i E dt− = − = . Integration gives 

0 0ln[ ( ) / ( )] ( / )( )m m mc t c t iE t t= − −=  and 0( )/
0( ) ( ) miE t t

m mc t c t e− −= =  (Eq. 2).  

To find 0( )mc t , we multiply Eq. 1 at 0t t=  by *mψ  and integrate over all space to get 

0 0 0 0* ( , ) ( ) * ( ) ( ) ( ) ( )m i m i i mi mi iq t d c t q q d c t c tψ τ ψ ψ τ δΨ = = =∫ ∫∑ ∑ .  

Equation 2 becomes 0( )/
0( ) | ( , ) miE t t

m mc t q t eψ − −= 〈 Ψ 〉 =  (Eq. 3). Substitution of Eq. 3 into 

Eq. 1 gives 0( )/
0( , ) | ( , ) ( )miE t t

m mmq t q t e qψ ψ− −Ψ = 〈 Ψ 〉∑ = , which is (7.101). 

 
7.47 (a)  28 /3T ml h= = 31 10 2 34 168(9.11 10 kg)(2.00 10 m) /3(6.626 10 J s) 1.47 10 s− − − −× × × = × . 

 (b)  1 2 1 2/ / / /1/2 1/2 1/2 1/2
1 2 1 2* (2 2 )(2 2 )iE t iE t iE t iE te e e eψ ψ ψ ψ− −− − − −Ψ Ψ = + + == = = =  

2 1 2 1( ) / ( ) /2 21 1 1 1
1 1 2 2 1 22 2 2 2

i E E t i E E te eψ ψ ψ ψ ψ ψ− − −+ + + == =    

 2 21 1
1 2 2 1 1 22 2 cos[( ) / ]E E tψ ψ ψ ψ+ + − = , where (1.28) and (2.14) were used. 

 (c)  We plot 2 2 2sin ( ) sin (2 ) 2sin( )sin(2 )cos(2 /8)r r r rl x x x x jπ π π π πΨ = + +  vs. rx  for 
each j value. The results are shown on the next page. The 8j =  plot is the same as 0j = . 

 (d) A Mathcad worksheet (that can also be used for Prob. 7.48b) is shown below. In the 
Animate dialog box, let FRAME go from 0 to 100 at 10 frames per second.  
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1

2

-2

-1

0

1

2
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Animation-Particle in box- n=1 plus n = n

tr
FRAME

100
:= xr 0 0.01, 1..:= n 2:=

probden xr tr,( ) sin π xr⋅( )2 sin π n⋅ xr⋅( )2
+ 2 sin π xr⋅( )⋅ sin n π⋅ xr⋅( )⋅ cos 2 π⋅ tr⋅ n2 1−( )⋅⎡⎣ ⎤⎦⋅+:=

0 0.5 1
0

2

4

probden xr tr,( )

xr  
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Figures for Prob. 7.47(c): 
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7.48 (a)  Replacement of the 2 subscript in 2ψ  and 2E  by n in the derivation in Prob. 7.47 

gives 2 21 1
1 1 12 2* cos[( ) / ]n n nE E tψ ψ ψ ψΨ Ψ = + + − =  (Eq. 7.102′). The equations 

immediately after (7.102) become 1( ) / 2nE E T π− ==  and 

 12 /( )nT E Eπ= − == 2 28 /( 1)ml n h− . Using the expressions for 1ψ , nψ , and T, we get 
2 2 2| | sin ( ) sin ( ) 2sin( )sin( ) cos(2 / )r r r rl x n x x n x t Tπ π π π πΨ = + +  (Eq. 7.102′).  

 (b)  We have 1 1( ) ( ) ( ) ( )n nc t x c t xψ ψΨ = +  and 
2 2 2 2 2

1 1 1 1 1| | | ( ) | [ ( )] ( * * ) ( ) ( ) | ( ) | [ ( )]n n n n nc t x c c c c x x c t xψ ψ ψ ψΨ = + + + . With the origin at 
the center of the box, 1ψ  is an even function; nψ  is even for 3, 5,n = …  and is odd for  

 2, 4,n = …  . Therefore 2| |Ψ  is even for 3, 5,n = …  and for these values of n, 2| |Ψ  is 
symmetrical about the box midpoint at all times. 

 

7.49 (a)  
2 1 1 1 2 1 1 4 2 ( 1) 1 4 6 2
0 3 4 4 0 1 ( 3) 4 0 ( 1) ( 3) 4 12 12

− ⋅ + ⋅ ⋅ − + ⋅⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− ⋅ + − ⋅ ⋅ − + − ⋅ − −⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

AB  

 (b)  
1 1 2 1 1 2 ( 1) 0 1 1 ( 1) ( 3) 2 4
4 4 0 3 4 2 4 0 4 1 4 ( 3) 8 8

− ⋅ + − ⋅ ⋅ + − ⋅ −⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− ⋅ + ⋅ ⋅ + ⋅ − −⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

BA  

 (c)  
2 1 1 1 2 1 1 ( 1) 3 0
0 3 4 4 0 4 3 4 4 1

− + + −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ = + = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− + − +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

A B  

 (d)  
2 1 3 2 3 1 6 3

3 3
0 3 3 0 3 ( 3) 0 9

⋅ ⋅⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟− ⋅ ⋅ − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

A  

 (e)  4− =A B
2 1 1 1 2 4 1 4 2 5

4
0 3 4 4 0 16 3 16 16 19

− − + −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − − − − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
7.50 C is a 3 by 1 matrix and D is 1 by 3, so CD is a 3 by 3 matrix and DC is a 1 by 1 matrix. 

( )
5 5 5 2 5 1 5 10 5
0 2 1 0 0 2 0 1 0 0 0
1 ( 1) 2 ( 1) 1 2 1

i i
i i

i i

⋅ ⋅⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = ⋅ ⋅ ⋅ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − − ⋅ − ⋅ − − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

CD  

( ) ( ) ( )
5

2 1 0 5 2 0 1 ( 1) 1 5
1

i i i
⎛ ⎞
⎜ ⎟= = ⋅ + ⋅ + ⋅ − = − +⎜ ⎟
⎜ ⎟−⎝ ⎠

DC  

 
7.51 Let { }if  denote the orthonormal basis set. The matrix representative of the unit operator 

in this basis has matrix elements ˆ| 1 | |j k j k jkf f f f δ〈 〉 = 〈 〉 = . Hence the matrix 
representative is a unit matrix of dimension equal to the number of basis functions in { }if . 
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7.52 Let { }if  denote the basis set. We have 
ˆ ˆˆ| | | | | |ij i j i j i j ijD f D f f kC f k f C f kC= 〈 〉 = 〈 〉 = 〈 〉 = . 

 

7.53 Since the set { }if  is complete, we can expand the function ˆ
jAf  in terms of this set. We 

have ˆ
j k kkAf c f= ∑  (Eq. 1). To find the expansion coefficients, we multiply this 

equation by *mf  and integrate over all space to get 
ˆ| | |m j k m k k mk mk kf A f c f f c cδ〈 〉 = 〈 〉 = =∑ ∑ . Hence ˆ| |m m j m m jc f A f a δ= 〈 〉 = ,  

where the given expression for ˆ| |m jf A f〈 〉  was used. Hence Eq. 1 becomes 
ˆ

j k k j k j jkAf a f a fδ= =∑ , which shows jf  is an eigenfunction of Â  with eigenvalue ja . 

 
7.54 (a)  Expanding u in terms of the complete orthonormal set, we have i iiu b f= ∑ . 

Multiplication  by *kf , integration over all space, and use of orthonormality gives 

|k kb f u= 〈 〉  [Eq. (7.40)], so |i iiu f u f= 〈 〉∑ . Application of Â  gives 
ˆ ˆ ˆ| |i i i ii iAu A f u f f u Af= 〈 〉 = 〈 〉∑ ∑  (Eq. 1), since Â  is linear. Expanding ˆ

iAf  using the 

complete set, we have ˆ
i j jjAf c f= ∑  (Eq. 2). Multiplication by *mf  and integration over 

all space gives ˆ| |m m ic f A f= 〈 〉  (as in Prob. 7.53). Hence Eq. 2 becomes 
ˆ ˆ| |i j i jjAf f A f f= 〈 〉∑  (Eq. 3). Substitution of Eq. 3 into Eq. 1 gives 

( ) ( )ˆ ˆ ˆ| | | | | |i j i j j i i ji j j iAu f u f A f f f A f f u f= 〈 〉 〈 〉 = 〈 〉〈 〉∑ ∑ ∑ ∑ . 

 (b)  Multiplication of i iiu u f= ∑  by *jf , integration, and use of orthonormality gives 

|j ju f u= 〈 〉  or |i iu f u= 〈 〉  [Eq. (7.41)]. Hence the result of (a) is ( )ˆ
ji i jj iAu A u f=∑ ∑ . 

Comparison with ˆ
j jjAu w w f= = ∑  gives j ji iiw A u= ∑  (Eq. 3). Since A is an n by n 

matrix (where n is the number of basis functions and may be infinite) and u is an n by 1 
column matrix (whose elements are iu ), Au is an n by 1 column matrix whose element 
( ) jAu  is calculated from row j of A and column 1 (the only column) of u. Hence Eq. 3 

shows that each element of Au equals the corresponding element of w. Thus =Au w . 
 

7.55 The matrix elements are 2 2 2 2
ˆ| | |j jk k

j k

m mm m
z k k m mY L Y m Y Y m δ〈 〉 = 〈 〉 == =  (Eq. 1), where 

orthogonality follows from Theorem 2 in Sec. 7.2. The quantum numbers jm  and km  

each range from 2−  to 2. Equation 1 gives  



7-16 
Copyright © 2014 Pearson Education, Inc. 

 

2 0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0 2

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

=
=

=
=

 

 

7.56 (a)  From (5.11), 2 2 2 2 2ˆ ˆ( ) 2 | | 2 2 | | 2z z z z z z z z zL L L p L p p L pΔ = 〈 〉 − 〈 〉 = 〈 〉 − 〈 〉 . Since 

02 2zp p= , ˆ 2 0(2 ) 0z z zL p p= =  and 2ˆ ˆ ˆ ˆ2 ( 2 ) (0) 0z z z z z zL p L L p L= = = , so 
2( ) 0 0 0zLΔ = − = , and 0zLΔ = , which is obvious since 2 zp  is an eigenfunction of ˆ

zL  
and only zero will be obtained when zL  is measured. 

 (b)  2 2 2 2 2ˆ ˆ( ) 2 | | 2 2 | | 2z z z x z x x z xL L L p L p p L pΔ = 〈 〉 − 〈 〉 = 〈 〉 − 〈 〉  (Eq. 1). From (6.118), 
1/2 1/2 1/2

1 1 1 1 1 1
ˆ ˆ ˆ ˆ(2 ) 2 (2 2 ) 2 ( 2 2 ) 2 ( 2 2 )z x z z zL p L p p L p L p p p− − −

− − −= + = + = −= =  and 
2 1/2 1/2

1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ(2 ) [ (2 )] [2 ( 2 2 )] 2 ( 2 2 )z x z z x z z zL p L L p L p p L p L p− −

− −= = − = − == = = =
1/2 2 2

1 12 ( 2 2 )p p−
−+= = . We have 

2 1/2 1/2 2 2
1 1 1 1

ˆ2 | | 2 2 (2 2 ) | 2 ( 2 2 )x z xp L p p p p p− −
− −〈 〉 = 〈 + + 〉 == =  

21
1 1 1 1 1 1 1 12 [ 2 | 2 2 | 2 2 | 2 2 | 2 ]p p p p p p p p− − − −〈 〉 + 〈 〉 + 〈 〉 + 〈 〉 == 2 21

2 (1 0 0 1)+ + + == = .  

Also, 2 1/2 1/2 2
1 1 1 1

ˆ2 | | 2 2 (2 2 ) | 2 ( 2 2 )x z xp L p p p p p− −
− −〈 〉 = 〈 + − 〉 == =  

2 2 2 21 1
1 1 1 1 1 1 1 12 4( ) [ 2 | 2 2 | 2 2 | 2 2 | 2 ] (1 0 0 1) 0p p p p p p p p− − − −〈 〉 − 〈 〉 + 〈 〉 − 〈 〉 = − + − == = . 

Hence 2 2 2 2 2 2ˆ ˆ( ) 2 | | 2 2 | | 2z z z x z x x z xL L L p L p p L pΔ = 〈 〉 − 〈 〉 = 〈 〉 − 〈 〉 = =  and zLΔ = = . 

 

7.57 (a)  1 2/ /1 1
1 22 2 3iE t iE tie e eπψ ψ− −Ψ = += = , where 1 2 1 2, , ,E E ψ ψ  are particle-in-a-box 

stationary-state energies and wave functions with 1n =  and 2n = . Then 
|〈Ψ Ψ〉 = 1 2 1 2/ / / /1 1 1 1

1 2 1 22 2 2 23 | 3iE t iE t iE t iE ti ie e e e e eπ πψ ψ ψ ψ− − − −〈 + + 〉 == = = =

1 1 1 2 2 1/ / / / / /1 1 1
1 1 1 2 2 14 4 4| 3 | 3 |iE t iE t iE t iE t iE t iE ti ie e e e e e e eπ πψ ψ ψ ψ ψ ψ− − −−〈 〉 + 〈 〉 + 〈 〉 += = = = = =  

2 2/ /3
2 24 |iE t iE ti ie e e eπ π ψ ψ−− 〈 〉 == = 31

4 40 0 1+ + + = . 

 (b)  1 2/ /1 1
1 22 2

ˆ ˆ| | | | 3iE t iE tiE H H e e eπψ ψ− −〈 〉 = 〈Ψ Ψ〉 = 〈Ψ + 〉= =  = 
1 2/ /1 1

1 22 2
ˆ ˆ| 3iE t iE tie H e e Hπψ ψ− −〈Ψ + 〉= =  = 1 2/ /1 1

1 1 2 22 2| 3iE t iE tie E e e Eπψ ψ− −〈Ψ + 〉= =  = 
1 2 1 2/ / / /1 1 1 1

1 2 1 1 2 22 2 2 23 | 3iE t iE t iE t iE ti ie e e e E e e Eπ πψ ψ ψ ψ− − − −〈 + + 〉 == = = =

1 1 1 2 2 1/ / / / / /1 1 1
1 1 1 2 1 2 1 2 14 4 4| 3 | 3 |iE t iE t iE t iE t iE t iE ti ie e E e e e E e e e Eπ πψ ψ ψ ψ ψ ψ− − −−〈 〉 + 〈 〉 + 〈 〉 += = = = = =

2 2/ /3 3 31 1
2 2 2 1 2 1 24 4 4 4 4| 0 0iE t iE ti ie e e e E E E E Eπ π ψ ψ−− 〈 〉 = + + + = += = , which makes sense in 

view of the answer to Prob. 7.36. We get 2 213 /32E h ml〈 〉 = . 

 (c)  
1 2 1 2/ / / /1 1 1 1

1 2 1 22 2 2 2ˆ| | 3 | | 3iE t iE t iE t iE ti ix x e e e x e e eπ πψ ψ ψ ψ− − − −〈 〉 = 〈Ψ Ψ〉 = 〈 + + 〉 == = = =   
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1 1 1 2 1 2/ / ( / / ) ( / / )1 1 1

1 1 1 2 2 14 4 4| | 3 | | 3 | |iE t iE t i E t E t i E t E te e x e x e xπ πψ ψ ψ ψ ψ ψ− + − − + −〈 〉 + 〈 〉 + 〈 〉 += = = = = =

2 2/ /3
2 24 | |iE t iE ti ie e e e xπ π ψ ψ−− 〈 〉= = . From Fig. 2.4 (see also Prob. 3.48), 

1
1 1 2 22| | | |x l xψ ψ ψ ψ〈 〉 = = 〈 〉 . Also 1 2 2 1| | | |x xψ ψ ψ ψ〈 〉 = 〈 〉 . Hence, 

31 1
1 2 1 28 2 83 cos[ ( ) / ] | |x l E E t x lπ ψ ψ〈 〉 = + + − 〈 〉 +=  (Eq. 1), where a result of Prob. 1.29 

was used. We have 1 2 0| | (2/ ) sin( / )sin(2 / )lx l x x l x l dxψ ψ π π〈 〉 = ∫ . A table of integrals or 
use of the website integrals.wolfram.com gives 

 2 2
cos[( ) ] sin[( ) ] cos[( ) ] sin[( ) ]sin( )sin( )

2( ) 2( )2( ) 2( )
a b x x a b x a b x x a b xx ax bx dx

a b a ba b a b
− − + +

= + − −∫
− +− +

. So  

0 2 2
0

2 2 cos( / ) sin( / ) cos(3 / ) sin(3 / )sin(2 / )sin( / )
2( / ) 2(3 / )2( / ) 2(3 / )

l
l x l x x l x l x x lx x l x l dx

l l l ll l
π π π ππ π

π ππ π
⎡ ⎤

= + − − =∫ ⎢ ⎥
⎣ ⎦

2 21 1
1 29 9( / )[ 1 0 0 (1 0 0)] 16 /9 | |l l xπ π ψ ψ− + + − − + − − = − = 〈 〉 . Equation 1 becomes 

2 21
2 (8 3/9 ) cos( 6 /8 )x l l ht mlπ π π〈 〉 = − − . The cosine function ranges from 1−  to 1, so 

the minimum and maximum x〈 〉  values are 21
2 (8 3/9 ) 0.344l l lπ− =  and 

21
2 (8 3/9 ) 0.656l l lπ+ = . 

 

7.58 From (7.97) and its complex conjugate, ˆ/ ( / )t i H∂Ψ ∂ = − Ψ=  and ˆ*/ ( / )( )*t i H∂Ψ ∂ = Ψ= . 
So ˆ ˆ ˆˆ ˆ( */ ) ( / ) ( )* ( / ) ( )( )*t A d i H A d i A H dτ τ τ∂Ψ ∂ Ψ = Ψ Ψ = Ψ Ψ =∫ ∫ ∫= =  

ˆ ˆ( / )[ ( ) *( ) ]*i A H dτΨ Ψ =∫= ˆ ˆˆ ˆ( / )[ ( ) * ]* ( / ) *i HA d i HA dτ τΨ Ψ = ∫Ψ Ψ∫= = , where the 
Hermitian property of Ĥ  was used. Also ˆ ˆ ˆ* ( / ) ( / ) *A t d i AH dτ τΨ ∂Ψ ∂ = − Ψ Ψ∫ ∫= .  
The equation for /d A dt〈 〉  becomes 

ˆ ˆ ˆˆ ˆ/ * ( / ) ( / ) * ( )d A dt A t d i HA AH dτ τ〈 〉 = ∫Ψ ∂ ∂ Ψ + ∫Ψ − Ψ ==
ˆ ˆˆ/ ( / ) *[ , ]A t i H A dτ〈∂ ∂ 〉 + ∫Ψ Ψ=   

 
7.59 We set ˆ ˆA x=  in (7.113). Time t does not occur in the operator x̂ , so ˆ/ 0x t∂ ∂ = .  

From (5.8), ˆ ˆ ˆ[ , ] ( / ) xH x i m p= − =  and (7.113) becomes 
ˆ/ (1/ ) * / (1/ ) *( / )( / )x xd x dt m p d p m m i x dτ τ〈 〉 = Ψ Ψ = 〈 〉 = Ψ ∂Ψ ∂∫ ∫ = . Differentiation of 

this equation with respect to t gives 2 2 1/ /xd x dt m d p dt−〈 〉 = 〈 〉 . Setting xA p=  in (7.113), 
we have 

ˆ ˆ/ ( / ) *[ , ] ( / ) * ( / ) *x x x xd p dt i H p d i i V x d F d Fτ τ τ〈 〉 = Ψ Ψ = Ψ ∂ ∂ Ψ = Ψ Ψ = 〈 〉∫ ∫ ∫= = = . 

 
7.60 (a)  0 | | | | * | * |u u f cg f cg f f c f g c g f c c g g≤ 〈 〉 = 〈 − − 〉 = 〈 〉 − 〈 〉 − 〈 〉 + 〈 〉 =  

2| | | | | | | | | | |f f g f f g g g f g g f g g g f f g g g g g〈 〉 − 〈 〉〈 〉 〈 〉 − 〈 〉〈 〉 〈 〉 + 〈 〉〈 〉〈 〉 〈 〉
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0 | | | | .f f g f f g g g≤ 〈 〉 − 〈 〉〈 〉 〈 〉  Multiplication by the positive quantity |g g〈 〉  gives 
0 | | | | .f f g g g f f g≤ 〈 〉〈 〉 − 〈 〉〈 〉  

 (b)  ˆ ˆ ˆ ˆ| ( ) | ( ) ( ) | |f f A A A A A A A A〈 〉 = 〈 − 〈 〉 Ψ − 〈 〉 Ψ〉 = 〈 − 〈 〉 Ψ − 〈 〉 Ψ〉  (Eq. 1). Since the 
sum of two Hermitian operators is Hermitian, Â A− 〈 〉  is Hermitian, and Eq. 1 becomes 

2 2ˆ ˆ ˆ| | | ( ) * | ( ) | * [( ) ]*f f A A A A A A A〈 〉 = 〈Ψ − 〈 〉 − 〈 〉 Ψ〉 = 〈Ψ − 〈 〉 Ψ〉 = Δ , where (5.10) was 
used. The complex conjugate of this equation is 2| * ( )f f A〈 〉 = Δ . Equation (7.4) with  
m = n gives | * |f f f f〈 〉 = 〈 〉 , so 2| ( )f f A〈 〉 = Δ . The same arguments used for |f f〈 〉  
give 2| | * ( )g g g g B〈 〉 = 〈 〉 = Δ . 

 (c)  ( *) / 2 [( ) ( )] / 2 .z z i x iy x iy i y− = + − − =  Substitution of 2| ( )f f A〈 〉 = Δ  and 
2| ( )g g B〈 〉 = Δ  into the Schwarz inequality and use of the inequality proved in (c) in the 

text give 22 2 21
4( ) ( ) | ( | | ) .A B f g f g g fΔ Δ ≥ 〈 〉 ≥ − 〈 〉 − 〈 〉  

 (d)  Let A A≡ 〈 〉  and .B B≡ 〈 〉  Then, since Â A−  is Hermitian, we have 
ˆ ˆˆ ˆ| | * ( ) | ( ) * ( ) | ( ) | *f g g f B B A A B B A A〈 〉 = 〈 〉 = 〈 − Ψ − Ψ〉 = 〈 − Ψ − Ψ〉 =  

ˆ ˆˆ ˆ| ( ) | ( ) ** | ( ) | ( )A A B B A A B B〈Ψ − − Ψ〉 = 〈Ψ − − Ψ〉 =  
ˆ ˆˆ ˆ| | | | | | |AB B A A B AB〈Ψ Ψ〉 − 〈Ψ Ψ〉 − 〈Ψ Ψ〉 + 〈Ψ Ψ〉 =  ˆ ˆ| | .AB AB〈Ψ Ψ〉 −  

Interchanging f and g and Â  and B̂  in ˆ ˆ| | |f g AB AB〈 〉 = 〈Ψ Ψ〉 − , we get 
ˆˆ| | | .g f BA AB〈 〉 = 〈Ψ Ψ〉 −  Substitution of the last two equations into the last equation in 

(c) gives ( ) ( )2 22 2 1 1
4 4

ˆ ˆ ˆˆ ˆ ˆ( ) ( ) | | | | | [ , ] |A B AB BA A BΔ Δ ≥ − 〈Ψ Ψ〉 − 〈Ψ Ψ〉 = − 〈Ψ Ψ〉 . 

 (e)  From Prob. 7.13(b), the commutator is anti-Hermitian, so 
ˆ ˆˆ ˆ| [ , ] | | [ , ] | *A B A B〈Ψ Ψ〉 = −〈Ψ Ψ〉 , and the last equation in (d) becomes 

22 2 1 1
4 4

ˆ ˆ ˆˆ ˆ ˆ( ) ( ) | [ , ] | ( 1) | [ , ] | * | [ , ] | .A B A B A B A BΔ Δ ≥ − 〈Ψ Ψ〉 − 〈Ψ Ψ〉 = 〈Ψ Ψ〉  

 
7.61 In the following C++ program, xr is /x l  and fr is /f l . 

 #include <iostream> 
 #include <cmath> 
 using namespace std; 
 int main() { 
    double pi, xr, fr, sum; 
    int m, n; 
    pi = 3.1415926535897; 
    for (m=5; m<=20; m=m+5) { 
       cout << "Number of terms =  " << m << endl; 
          for (xr=0; xr<=1; xr=xr+0.1) { 
             sum = 0; 
                for (n=1; n<=m; n=n+1) { 
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                   sum=sum+pow(-1,n+1)*sin((2*n-1)*pi*xr)/pow(2*n-1,2); 
                } 
             fr=(4/(pi*pi))*sum; 
             cout << "xr =  " << xr << " fr =  " << fr << endl; 
          } 
       } 
    return 0; 
 } 

 
7.62 The derivation of Eq. (5.131) depends on the result of Prob. 7.11, which shows that 

2ˆ ˆ ˆ| | | 0A A Aψ ψ ψ ψ〈 〉 = 〈 〉 ≥  if Â  is a Hermitian operator. The Hermitian property 
2ˆ ˆ ˆ| | |A A Aψ ψ ψ ψ〈 〉 = 〈 〉  is valid only if ψ is a well-behaved function. [See the sentences 

following Eqs. (7.6), (7.11), and (7.17). ]  
 
7.63 See Section 7.1. 
 
7.64 (a)  F. [See, for example, Eq. (7.101).]    
 (b)  T.   (c)  F.    
 (d)  F. (This is only true if the eigenfunctions all have the same eigenvalue.)    
 (e)  F.   (f)  T.   (g)  F.   (h)  F.    
 (i)  F. (They must have different eigenvalues for us to be sure this is true.)   
 (j)  F.   (k)  T.   (l)  F.   (m)  F.   (n)  T.   (o)  T.    
 (p)  F. It is valid for all well-behaved functions.    
 (q)  T.   (r)  F. (Only true for stationary states.)  
 



8-1 
Copyright © 2014 Pearson Education, Inc. 

 

Chapter 8 

The Variation Method 

 
 
8.1 203.2 eV.≤ −  
 
8.2 (a) 
 
 
 
 
 
 
 
 
 
 
 We have ˆ ˆ ˆ| | | | | |H T Vφ φ φ φ φ φ〈 〉 = 〈 〉 + 〈 〉 . For the particle in a box (PIB), 0V =  inside 

the box, so the PIB Hamiltonian equals T̂ ; PIB
ˆ ˆH T= . Also the variation function 1φ  in 

(a) equals the normalized ground-state (gs) PIB wave function: 1 PIB,gsφ ψ= . So 
2 2

1 1 PIB,gs PIB PIB,gs PIB,gs PIB,gs PIB,gs PIB,gs
ˆ ˆ| | | | | /8T H E E h mlφ φ ψ ψ ψ ψ〈 〉 = 〈 〉 = 〈 〉 = = =  

2 2 2 2 24 /8 4.93480 /ml mlπ == = .   Using Appendix Eq. (A.2), we have 
3 /4 3 /42

1 1 0 0 /4/4
| | (2/ ) sin ( / ) ( / )[ ( /2 )sin 2 / )]|

l l
ll

V l V x l dx V l x l x lφ φ π π π〈 〉 = = − =∫
1 1 13 1 1

0 0 04 4 2[ (2 ) sin(3 /2) (2 ) sin( /2)] ( ) 0.818310V V Vπ π π π π− − −− − + = + = =
2 20.818310 /ml= , since V is zero in the first and last quarter of the box. Then 

2 2 2 2
1 1

ˆ| | (4.93480 0.81831) / 5.75311 /H ml mlφ φ〈 〉 = + == = . The error is 0.048%. 

 (b)  The variation function 1φ  in (b) is the same as that in Eq. (8.11) and PIB
ˆ ˆH T= . So 

2 3 2 3
2 PIB 2 2 2

ˆ ˆ| | /6 0.166667 / | |H l m l m Tφ φ φ φ〈 〉 = = = 〈 〉= = . Then 
3 /4 3 /42 2 2 3 4 5

2 2 0 0 /4/4
| | ( ) [ /3 2 /4 /5]|

l l
ll

V V x l x dx V l x lx xφ φ〈 〉 = − = − + =∫
3 4 5

3 4 5
5 5 2 30.75 0.75 0.75 1 1 1

0 03 2 5 3 4 2 4 5 4
( ) 0.026432 0.026432( / )V l V l m l

⋅ ⋅ ⋅
− + − + − = = = . So 

0

1

0 0.25 0.5 0.75 1

V /V 0

x /l
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2 3 2 3
2 2

ˆ| | (0.166667 0.026432) / 0.193099 /H l m l mφ φ〈 〉 = + == = . Also, Eq. (8.13) gives 
5

2 2* /30d lφ φ τ =∫ . So 2 2
2 2 2 2

ˆ| | / | 5.79297 /H mlφ φ φ φ〈 〉 〈 〉 = = . The error is 0.74%. 

8.3 
2 2 2 22 2 2 2 2/ ( 2 )/ 2 4cx cx cx cxd e dx d cxe dx ce c x e− − − −= − = − +  and 

2 2 2 22
2 2 2 2 2 2ˆ* ( 2 4 ) 2

2
cx cx cx cxH d e ce c x e dx m x e dx

m
φ φ τ π ν

∞ ∞− − − −
−∞ −∞

= − − + + =∫ ∫ ∫
=

2 2 22
2 2 2 2 2 2 2 2

0 0

2 ( 2 ) 4cx cx cxce c x e dx m x e dx
m

π ν
∞ ∞− − −− − + + =∫ ∫

=

2 1/2 2 2 1/2 2 2 1/2

1/2 3/2 3/2
4 4

(2 ) 4 (2 ) 4(2 )
c c m

m c m c c
π π π ν π

− + =
= = 2 1/2 1/2 1/2 2 1/2 5/2 2

1/2 3/2 1/2 3/22 2 8
c c m

m m c
π π π ν

− + =
= =

1/2 2 1/2 5/2 2

1/2 1/2 3/28 8
c m

m c
π π ν

+
= . 

 
8.4 Hint: Read carefully the statement of the variation theorem at the beginning of Sec. 8.1. 
  
8.5 From the last paragraph of Sec. 6.2, we know ψ has the form ( ) ( ) ( )f x g y h z , so we take 

( ) ( ) ( )x a x y b y z c zφ = − − − , which satisfies the boundary conditions of being zero on the 
walls of the box. Since f, g, and h have the form of Eq. (8.11), we use integrals evaluated 
in the first example in Sec. 8.1. We have 

2 2 2 2
0 0 0 0 0 0

* | ( ) ( ) ( ) | | ( ) | | ( ) | | ( ) |
c b a a b c

d f x g y h z dx dy dz f x dx g y dy z dzφ φ τ = = =∫ ∫ ∫ ∫ ∫ ∫ ∫
5 5 5( /30)( /30)( /30)a b c . Also, 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )[ ( ) ( ) ( )]x y z x y zH H H H f x g y h z ghH f f hH g fgH hφ = + + = + +  and 
2 2

0 0 0

2 2
0 0 0

2 2
0 0 0

ˆ ˆ* ( )* ( ) | ( ) | | ( ) |

ˆ| ( ) | | ( ) | ( )* ( )

ˆ| ( ) | | ( ) | ( )* ( )

a b c
x

a c b
y

a b c
z

H d f x H f x dx g y dy h z dz

f x dx h z dz g y H g y dy

f x dx g y dy h z H h z dz

φ φ τ = +

+

∫ ∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

 

2 3 5 5 5 5 2 3 5 5 2 3( /6 )( /30)( /30) ( /30)( /30)( /6 ) ( /30)( /30)( /6 )a m b c a c b m a b c m= + += = = . Then 
2 3 5 2 3 5 2 3 5ˆ* * ( /6 ) / ( /30) ( /6 ) / ( /30) ( /6 ) / ( /30)H d d a m a b m b c m cφ φ τ φ φ τ = + + =∫ ∫ = = =  

2 2

2 2 2 2 2 2 2
5 1 1 1 1 1 10.12665

4
h h

mm a b c a b cπ
⎛ ⎞ ⎛ ⎞+ + = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, compared with the true value 

2

2 2 2
1 1 1

8
h
m a b c
⎛ ⎞+ +⎜ ⎟
⎝ ⎠

. The error is 1.3%. 
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8.6 (a)  
2 2 2 5 5 5 5
0 0 0

* sin ( ) 4 ( /3 2 /4 /5) 2 /15
b

d d d b r r dr b b b b
π π

φ φ τ φ θ θ π π= − = − + =∫ ∫ ∫ ∫ . 

Since 0V =  inside the box and φ is independent of the angles, Eq. (6.8) gives 
2 2 2 1 2ˆ ( /2 )( / 2 / )( ) /H m d dr r d dr b r mrφ −= − + − == = . So 

22 1 2 2 3 1 1
2 30 0 0

ˆ* ( / ) sin ( ) (4 / ) ( )
b

H d m d d b r r r dr m b
π π

φ φ τ φ θ θ π−= − = − =∫ ∫ ∫ ∫= =
2 3 /6h b mπ  and 2 2 2 2 2ˆ* * 5 /4 0.126651 / ,H d d h mb h mbφ φ τ φ φ τ π= =∫ ∫  compared with 

the true value 2 20.125 /h mb . 

 (b)  Your function must vanish at r b=  and should have no nodes for r b< . 
 
8.7 To minimize W, we set 2 4/ 0 /2 45 /64W c m a c∂ ∂ = = −= , so 1/4 1/4 1/4 1/4 1/245 /32c m a= = . 

Then 1/4 1/4 1/4 1/4 1/2 2 3/4 3/2 3/4 3/4 3/4(45 /32 )( /2 ) (15 /64)32 /45W m a m a m a= + == = =  
1/4 3/2 3/40.7259795 /a m= . 

 
8.8 (a)  Since V is infinite for 0,x <  ψ  must be zero for 0.x <  Since ψ  must be continuous, 

it must be zero at 0.x =  

 (b)  2 2
3 30

2! 1| ,
(2 ) 4

cxx e dx
c c

φ φ
∞ −〈 〉 = = =∫  where Eq. (A.8) was used.  

3 2
4 40

3! 3ˆ| | .
(2 ) 8

cx bV bx e dx b
c c

φ φ
∞ −〈 〉 = = =∫  

2 2 2 2
2 2 2 2

20 0

( )ˆ| | ( 2 )
2 2 8

cx
cx cx cxd xeT xe dx c x e cxe dx

m m mcdx
φ φ

−∞ ∞− − −〈 〉 = − = − − =∫ ∫
= = =  

2

4
3ˆ| |

88
bH

mcc
φ φ〈 〉 = +

=         
2 2ˆ| | 3

| 2 2
H b cW

c m
φ φ
φ φ

〈 〉
= = +

〈 〉
=  

2

2
30
2

W b c
c mc

∂
= = − +

∂
=  and 

1/3

2
3 .
2
bmc ⎛ ⎞= ⎜ ⎟

⎝ ⎠=
 Substitution of this equation for c into W gives 

2/3 1/3 2/3 2/3 2/3 1/3 2/3 1/3

1/3 2/3 5/3 1/3 1/3
3 3 (1.3103707 0.6551853) 1.965556 .
2 2

b b bW
m m m

⎛ ⎞
= + = + =⎜ ⎟⎜ ⎟

⎝ ⎠

= = =   

The fact that V〈 〉  is twice T〈 〉 for this variation function is an example of the virial 
theorem (Sec. 14.4).  

 
8.9 Each function can be multiplied by a normalization constant and then substituted into the 

form (8.1) of the variation theorem. The normalized functions (denoted by a prime) are 
2 2 ( )N f cgφ′ = +  and 1 1 1( ) [ ( / ) ].N af bg N a f b a gφ′ = + = +  Defining 1 2N a N=  and 
/ ,b a c=  we see that these two functions are really the same function. 
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8.10  
2 2 2 2 2 3 3
0 0 0 0

* sin 2(2 ) 4 [2/(2 ) ] /cr crd e r dr d d e r dr c c
π π

φ φ τ θ θ φ π π π
∞ ∞− −= = = =∫ ∫ ∫ ∫ ∫ , 

where Eq. A.8 was used. From (6.60) and (6.6), 
2 2 2 2 2

2 1
2

0 0

2ˆ 0 ( 2 )
2 4 2 4

cr cr cr cr crd d Ze ZeH e e c e cr e e
r dr r rdr

φ
μ πε μ πε

− − − − − −⎛ ⎞
= − + + − = − − −⎜ ⎟⎜ ⎟

⎝ ⎠

= = , 

since the variation function φ is independent of the angles. So 
2 2 22 2 2 2 2

0 0 0
0

ˆ* ( 2 ) sin
2 4

cr cr crZeH d c r e cre re dr d d
π π

φ φ τ θ θ φ
μ πε

∞ − − −⎡ ⎤
= − − − =⎢ ⎥

⎣ ⎦
∫ ∫ ∫ ∫

=

2 2 2 2
2 3 2

2 2
0 0

2(2 ) (2 /8 2 /4 )
2 2(4 )4 4

Ze Zec c c c
cc c

π ππ
μ μπε πε

⎡ ⎤
− − − = −⎢ ⎥
⎣ ⎦

= = , where we used (A.8). So 

2 2 2
0

ˆ* / * /2 /4W H d d c Ze cφ φ τ φ φ τ μ πε≡ = −∫ ∫ =  (Eq. 1). To minimize W, we take 

/ 0W c∂ ∂ = = 2 2
0/ /4c Zeμ πε−= . So 2 2

0/4c Ze μ πε= = . Then Eq. 1 becomes 
2 4 2 2 2 4 2 2 2 4 2 2

0 0 0/2(4 ) /(4 ) /2(4 )W Z e Z e Z eμ πε μ πε μ πε= − = −= = = . From (6.94), this is 
the exact ground-state hydrogenlike energy, so there is no error. This is because the 
variation function has the same form as the true ground-state wave function.  

 

8.11 A reasonable guess might be the function 
2bxeφ −= , which has the form of the ground-

state harmonic-oscillator wave function. Then ˆ ˆ ˆ| | | | | |H T Vφ φ φ φ φ φ〈 〉 = 〈 〉 + 〈 〉 . From  
the second example in Sec. 8.1 and Prob. 8.3, 1/2 2 1/2ˆ| | ( /8) ( / )T m bφ φ π〈 〉 = = . Also, 

2 24 2 4 2 1/2 5/2 1/2 5/2
0

ˆ| | 2 (3 /4)[ / (2 ) ] 3 ( /2) / 16bx bxV c x e dx c x e dx c b c bφ φ π π
∞ ∞− −
−∞

〈 〉 = = = =∫ ∫ . 

Also 
22 1/2 1/2

0
* 2 /(2 )bxd e dx bφ φ τ π

∞ −= =∫ ∫ . So 
2 2ˆ| | / | /2 3 /16W H b m c bφ φ φ φ= 〈 〉 〈 〉 = += . To minimize W, we set 

2 3/ 0 /2 6 /16W b m c b∂ ∂ = = −= . Then 1/3 1/3 2/3(3/4) ( ) /b cm= =  and 
1/3 4/3 2/3 1/3 1/3 4/3 2/31 1

2 4( / )(3/4) ( ) 0.68142( / )W c m c m= + == =  compared with the Numerov 

value 1/3 4/3 2/30.66799 /c m= . 

 

8.12 (a)  
2

2 2 4 1
0

[ (2 1)]* ( )
(4 2)

l k k k kd x l x dk l
k

φ φ τ + Γ +
= − =

Γ +∫ ∫ . We have 

2 2 2 2 1 1ˆ ( / 2 )( / )[ ( ) ] ( / 2 )( / )[ ( ) ( ) ]k k k k k kH m d dx x l x m d dx kx l x kx l xφ − −= − − = − − − − == =  
2 2 2 1 1 2 1 1 2( / 2 )[ ( 1) ( ) ( ) ( ) ( 1) ( ) ]k k k k k k k km k k x l x k x l x k x l x k k x l x− − − − − −− − − − − − − + − −= . 

Then ˆ*H dφ φ τ =∫  
2

2 2 2 2 2 1 2 1 2 2 2
0
[ ( 1) ( ) 2 ( ) ( 1) ( ) ]

2
l k k k k k kk k x l x k x l x k k x l x dk

m
− − − −− − − − − + − − =∫

=
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2 4 1 2 4 1 4 1( 1) (2 1) (2 1) 2 (2 ) (2 ) ( 1) (2 1) (2 1)
2 (4 ) (4 ) (4 )

k k kk k l k k k l k k k k l k k
m k k k

− − −⎡ ⎤− Γ − Γ + Γ Γ − Γ + Γ −
− − +⎢ ⎥Γ Γ Γ⎣ ⎦

=

When we evaluate ˆ| | / |W Hφ φ φ φ≡ 〈 〉 〈 〉 , we have the factor 
(4 2) / (4 ) (4 1) (4 1) / (4 ) (4 1)(4 ) (4 ) / (4 ) 4 (4 1)k k k k k k k k k k kΓ + Γ = + Γ + Γ = + Γ Γ = + , 

where ( 1) ( )z z zΓ + = Γ  was used twice. Then 
2 2

2
4 (4 1) ( 1) (2 1) 2 (2 ) (2 ) ( 1) (2 1)

2 (2 1) (2 1) (2 1) (2 1)
k k k k k k k k k k kW

m k k k kl
⎡ ⎤+ − Γ − Γ Γ − Γ −

= − − +⎢ ⎥Γ + Γ + Γ + Γ +⎣ ⎦

=

2 2

2
4 (4 1) ( 1) 2 ( 1)

2 2 (2 1) (2 )(2 ) 2 (2 1)
k k k k k k kW

m k k k k k kl
⎡ ⎤+ − −

= − − +⎢ ⎥− −⎣ ⎦

=

2 2 2

2 2 2
(4 1) 1 1 (4 )1

2 1 2 1 4 (2 1)
k k k k h k kW

k kml ml kπ
+ − − +⎡ ⎤= − − + =⎢ ⎥− − −⎣ ⎦

= , where ( 1) ( )z z zΓ + = Γ  was 

used.  
 (b)  To minimize W, we set 

2 2 2 2 2 2

2 2 2 2 2 2
8 1 (4 )2 (8 1)(2 1) 8 2 8 8 10
2 1 (2 1) (2 1) (2 1)

W k k k k k k k k k
k kml k ml k ml k

⎛ ⎞∂ + + + − − − − −
= = − = =⎜ ⎟⎜ ⎟∂ − − − −⎝ ⎠

= = =  

so 28 8 1 0k k− − =  and 1/2(8 96 )/16 1.11237244k = + = . Then 2 20.125372( / )W h ml= , 
compared with the exact ground-state energy 2 20.125( / )h ml . The error is 0.30%. 

 
8.13 (a) 

 
 
 

  
 

 

 
2

22 2 2
0

0

( ) 2 2sin sin sin
2 2 2 4 2

l c
l c l c

c

x c z z l c zd dx dz
l c l c l c
π π πφ τ

π

+
+ +

−

+ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫ ∫  and 

2 2
2

l cdφ τ +
=∫   (Eq. I), where we used the substitution z x c≡ +  and Eq. (A.2). We 

have ˆ ˆ* * * .H d T d V dφ φ τ φ φ τ φ φ τ= +∫ ∫ ∫  Now 
22 2 2 2

2 2 2
( ) ( ) ( )ˆ sin sin sin

2 2 2 2 28 8 ( 2 )
d x c h x c h x cT

m l c l c l c l cdx m m l c
π π π πφ

π
+ + +⎛ ⎞= − = =⎜ ⎟+ + + ++⎝ ⎠

=  

 

V0 

x = –c x = l + c
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 so 
2 2

22
2 2

( )ˆ* sin
28 ( 2 ) 8 ( 2 )

l c

c

h x c hT d dx d
l cm l c m l c
πφ φ τ φ τ

+

−

+⎡ ⎤= = =⎢ ⎥++ +⎣ ⎦∫ ∫ ∫  

2 2

2
2 ,

2 16 ( 2 )8 ( 2 )
h l c h

m l cm l c
+

=
++

 where Eq. I was used. Also 

0

0 2 2 2 2 2
0 0 0 0 0 0 0

2*
2

l c l c l l

c l c

l cV d V dx V dx V dx V dx V V dxφ φ τ φ φ φ φ φ
+ +

− −

+
= + = − = −∫ ∫ ∫ ∫ ∫ ∫ , 

where Eq. I was used. We have 

2 2 2
00

( ) 2 2sin sin sin
2 2 2 4 2

l cl l l c

c
c

x c z z l c zdx dx dz
l c l c l c
π π πφ

π

+
++ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫ ∫  

2 2 ( ) 2sin sin
2 4 2 2
l l c l c c

l c l c
π π

π
+ +⎡ ⎤− −⎢ ⎥+ +⎣ ⎦

. Use of the identity 

1 1
2 2sin sin 2cos[ ( )]sin[ ( )]A B A B A B− = + −  gives 

2
0

2 2 ( 2 ) 2 22cos sin sin
2 4 2( 2 ) 2( 2 ) 2 2 2

l l l c l c l l l c ldx
l c l c l c

π π πφ
π π

⎡ ⎤+ + + ⎡ ⎤= − = +⎢ ⎥ ⎢ ⎥+ + +⎣ ⎦⎣ ⎦
∫ . So 

0 0
2* sin

2 2
l c lV d V c V

l c
πφ φ τ

π
+ ⎡ ⎤= − ⎢ ⎥+⎣ ⎦∫ . Then 2 2

ˆ ˆ ˆ* * ( )H d T V d
W

d d

φ φ τ φ φ τ

φ τ φ τ

+
≡ = =∫ ∫
∫ ∫

 

2

0 0
2 2 2 sin
2 16 ( 2 ) 2 2 2

h l c lV c V
l c m l c l c l c

π
π

⎡ + ⎤⎛ ⎞+ − =⎜ ⎟⎢ ⎥+ + + +⎝ ⎠⎣ ⎦
2

0 0
2

2 sin
2 28 ( 2 )

V c Vh l W
l c l cm l c

π
π

+ − =
+ ++

 (Eq. II). To minimize W, we set  

/ 0W c∂ ∂ = =  
2

0 0 0
3 2 2

2 4 2 cos .
2 22 ( 2 ) ( 2 ) ( 2 )

V V c V lh l
l c l cm l c l c l c

π
− + − +

+ ++ + +
 Multiplication by 

3 11
02 ( 2 )l c V −+  gives 

2
2

0
0 ( 2 ) 2 ( 2 ) ( 2 )cos

4 2
h ll c c l c l l c
mV l c

π
= − + + − + + + =

+
 

2

0
( 2 ) ( 2 )cos .

4 2
h ll c l l l c
mV l c

π
− + + + +

+
 Division by l gives 

2

0
0 2 ( 2 )cos

4 2
h ll c l c

mlV l c
π

= − + + + +
+

  (Eq. III). Since 0V  has not been specified, we 

cannot go further. 

 (b)  Substitution of 0V  into Eq. III gives 
2

0 2 ( 2 )cos .
20 2

ll l c l c
l c

π π
= − + + + +

+
 We have 

two lengths, c and l. To relate c to l, we define k as /k c l≡ . Substitution of c kl=  into the 

last equation gives after division by l, 
2

0 1 2 (1 2 )cos .
20 1 2

k k
k

π π
= − + + + +

+
 To solve this 

equation for k, we use the Solver in a spreadsheet or a graphing calculator with equation-
solving capability. One finds that the only positive solution is k = 0.1920400. Substitution 
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of 0.1920400c kl l= =  and 2 2 2
0 5 /V h mlπ=  into Eq. II gives 

2 2 2 2

2 2 2 2 3 2 2
10 5 sin 0.0824 .

1 28 (1 2 ) (1 2 )
h h k h hW

kml k ml k ml ml
π

π π
= + − =

++ +
 The true result is 

2 2 2(2.814/4 )( / )h mlπ = 0.07128 2 2( / )h ml . The percent error is 16%. 

 
8.14 Since the ground state is nondegenerate, we have 2 1 0c E E≡ − >  and 1 2E c E+ = . Let 

1
2b c≡ . Then b > 0 and 1 2 3 4E b E E E+ < ≤ ≤ "  (Eq. 1). Use of Eq. 1 in Eq. (8.4) gives 

2 2 2 2
1 1 1 1 12 2

ˆ| | | | | | | | | | ( )k k kk kH a E a E a E a E bφ φ ∞ ∞
= =

〈 〉 = + > + + =∑ ∑     
2 2

1 1 2| | | |k kk kE a b a∞ ∞
= =

+∑ ∑ . We have 2
1| | 1kk a∞
=

=∑  [Eq. (8.6)] and 2
2| | 0kkb a∞

=
>∑ , 

since 0b >  and at least one ka  is nonzero (since φ is not the ground-state wave function). 

Hence 1
ˆ| |H Eφ φ〈 〉 > . 

 
8.15 Hint: Consider the case where one of the parameters has a certain simple value. 
 
8.16 (a)  Let f obey the boundary conditions of being zero at 0x =  and at x l= . Let u f≡  and 

d f dx′′≡v . Then du f dx′=  and f ′=v . The integration-by-parts formula (7.16) gives 
/22 2 2 2

00 0 0 0 /2
| ( ) ( ) ( ) ( )

l l l l ll
l

ff dx ff f dx f dx f dx f dx′′ ′ ′ ′ ′ ′= − = − = − −∫ ∫ ∫ ∫ ∫ .   With fφ = , 

where f is defined by (7.35), we have 
3 3/2 2 2 2 2 2 3 31 1 1 1 1

2 2 4 3 80 /2

1| ( ) ( ) 2 ( )( ) ( )
3 8 12

l l

l

l lx dx l x dx l l l l l l lφ φ〈 〉 = + − = + − − + − =∫ ∫ . 

2 2 2
0 0

ˆ| | ( /2 ) * ( /2 ) ( )
llH m f f dx m f dxφ φ ′′ ′〈 〉 = − = =∫ ∫= =  

/2 /22 2 2 2 2 2 2 2
0 /2 0 /2

( /2 ) ( ) ( /2 ) ( ) ( /2 ) 1 ( /2 ) ( 1)
l l l l

l l
m f dx m f dx m dx m dx′ ′+ = + − =∫ ∫ ∫ ∫= = = =  

2 /2l m= .    So 2 2 2 2 2 2 2ˆ| | / | 6 / 3 /2 0.152 /H ml h ml h mlφ φ φ φ π〈 〉 〈 〉 = = == , compared with 
the true ground-state energy 2 20.125 /h ml  (a 21.6% error).  Alternatively, (7.85) and 
(7.86) give 1

21 2 ( )f H x l′ = − − , so 1 1
2 22( / ) ( ) 2 ( )f d dx H x l x lδ′′ = − − = − − . Then 

2 2 2 21 1
2 20 0

ˆ| | ( /2 ) * ( / ) ( ) ( / ) ( ) /2
llH m f f dx m f x l dx m f l l mφ φ δ′′〈 〉 = − = − = =∫ ∫= = = = . 

 (b)  2 2 2ˆ| | ( /2 ) * ( /2 ) ( )H m f f dx m f dxφ φ
∞∞

−∞ −∞
′′ ′〈 〉 = − = =∫ ∫= =  

02 2 2 2 2 2 2 2
0 0

( /2 ) ( ) ( /2 ) ( ) ( /2 ) ( ) 0 ( /2 ) ( ) 0
l l

l
m f dx m f dx m f dx m f dx

∞

−∞
′ ′ ′ ′+ + = + +∫ ∫ ∫ ∫= = = =

 2 2 2 2 2 3 2 31 1
2 30

( /2 ) ( 2 ) ( /2 )[ ( ) 4 ( ) 4( )] /6
l

m l x dx m l l l l l l m= − = − + =∫= = = . 
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8.17 (a)  
2 2

0
22 / 2 2 1/2 2 3/2

00 0 0
| sin 4 (1/ 2 ) ( / 2 )cr ae r dr d d a c

π π
φ φ θ θ φ π π

∞ −〈 〉 = = =∫ ∫ ∫  
3/2 3 3/2 3/2

0 / 2a cπ , where (A.10) was used. The variation function φ is a function of r only, 
so Eq. (6.8) gives: 

2 2
0/2 2 2 1ˆ ( /2 )( / 2 / )( )cr aT m d dr r d dr eφ −−= − + ==

2 2
0/2 2 2 4 2 2

0 0 0( /2 ) (4 / 2 / 4 / )cr am e c r a c a c a−− − −= .   
2 2

0
22 /2 2 4 4 2 2

0 00 0 0
ˆ| | ( / ) (2 / 3 / ) sincr aT m e c r a cr a dr d d

π π
φ φ θ θ φ

∞ −〈 〉 = − − =∫ ∫ ∫=
2 2 4 1/2 2 5/2 2 1/2 2 3/2

0 0 0 04 ( / )[(2 / )(3/8) ( / 2 ) (3 / )(1/4) ( /2 ) ]m c a a c c a a cπ π π− − ==  
2 3/2 5/2 1/2

03 /2a mcπ= , where (A.10) was used.    From (6.43), 
2 2 2

0 0
22 / 2 /2 2 1

0 0 20 0 0 0
| | ( /4 ) sin 4 ( /4 )( )cr a cw aV Z e e r dr d d Z e e dw

π π
φ φ πε θ θ φ π πε

∞ ∞− −〈 〉 = − = − =∫ ∫ ∫ ∫
 

2
02 /2 2 2 2

0 0 0 0 02 ( /4 )( /2 ) | /4cw aZ e a c e Ze a cπ πε π πε− ∞− − = − .   

So ˆ ˆ| | | | | |H T Vφ φ φ φ φ φ〈 〉 = 〈 〉 + 〈 〉 =  2 3/2 5/2 1/2
03 /2a mcπ= 2 2

0 0/4Ze a cπ πε− .    
ˆ| | / |W Hφ φ φ φ≡ 〈 〉 〈 〉 =  2 2

03 / 2c a m= 3/2 2 1/2 1/2
0 02 /4Ze c aπε π−   

Then 2 2 1/2 2 1/2 1/2
0 0 0/ 0 3 /2 2 /4W c a m Ze a cπε π∂ ∂ = = −=  and 

3 2 4 2 4 2 2 3 2 4 2 4 2 4 2 2 4 2
0 0 0 0[2 /9 (4 ) ] [2 /9 (4 ) ][ (4 ) / ] 8 /9c Z e m a Z e m m e Zπ πε π πε πε π= = == = =   

Substitution in W gives W = 
2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 04 /3 8 /12 4 /12 8 /12 4 /12Z a m Z e a Z e a Z e a Z e aπ πε π π ε π ε π ε− = − = −=
 = 2 2

0 00.42441 /4Z e aπε− , compared with the exact value 2 2
0 00.5 /4Z e aπε−  for an 

infinitely heavy nucleus. The error is 15.1%. 
 (b)  Time can be saved by suitably modifying the equations in (a). We have  

2 2
0

22 / 2 0 2 2 1/2 2 3/2
2 00 0 0

| | | sin (1/ 2 ) ( / 2 ) 1cr ae r dr Y d d a c
π π

φ φ θ θ φ π
∞ −〈 〉 = = ⋅ =∫ ∫ ∫  

1/2 3 7/2 3/2
0 / 2a cπ , since 0

2Y  is normalized. Equations (6.8) and (6.13) give 
2 2

0/2 2 2 1 2 2 2 0
2

ˆ ˆ( /2 )( / 2 / )( )cr aT m r r r r L e Yφ −− − −= − ∂ ∂ + ∂ ∂ − == =
2 2

0/2 2 2 4 2 2 2 2 0
0 0 2( /2 )[4 / 6 / 2(3) ] cr am c r a c a r e Y−− −− − −= = = .  

2 2
0

22 /2 2 4 4 2 2 0 2
0 0 20 0 0

ˆ| | ( / ) (2 / 3 / 3) | | sincr aT m e c r a cr a dr Y d d
π π

φ φ θ θ φ
∞ −〈 〉 = − − − =∫ ∫ ∫=  

2 2 4 1/2 2 5/2 2 1/2 2 3/2 1 1/2 1/2
0 0 0 0 0( / )[(2 / )(3/8) ( / 2 ) (3 / )(1/4) ( /2 ) 3(2 ) /(2 ) ]m c a a c c a a c a cπ π π−− − −=

= 2 1/2 9/2 1/2
027 /2a mcπ= . 

2 2
0

22 /2 0 2
0 20 0 0

| | ( /4 ) | | sincr aV Z e e r dr Y d d
π π

φ φ πε θ θ φ
∞ −〈 〉 = − =∫ ∫ ∫  

2
02 /2 1

0 2 0
( /4 )( ) cw aZ e e dwπε

∞ −− =∫
2
02 /2 2 2 21

0 0 0 0 02( /4 )( )( /2 ) | /4(4 )cw aZ e a c e Ze a cπε πε− ∞− − = − . 

Then ˆ ˆ| | | | | |H T Vφ φ φ φ φ φ〈 〉 = 〈 〉 + 〈 〉 = 2 1/2 9/2 1/2
027 /2a mcπ= 2 2

0 0/4(4 )Ze a cπε− . 
ˆ| | / |W Hφ φ φ φ≡ 〈 〉 〈 〉 =  2 2

027 /2c a m= 3/2 2 1/2 1/2
0 02 /4Ze c aπε π− . Then  
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 2 2 1/2 2 1/2 1/2
0 0 0/ 0 27 /2 2 /4W c a m Ze a cπε π∂ ∂ = = −=  and 

3 2 4 2 4 2 2 3 2 4 2 4 2 2 4 2 4 2
0 0 0 0[2 /729 (4 ) ] [2 /729 (4 ) ][(4 ) / ] 8 /729c Z e m a Z e m m e Zπ πε π πε πε π= = == = =

2 2 2 3/2 2 1/2 2 2 2 2

2 1/2 1/2
0 0 0 00 0 0 0

27 8 2 8 4 8 0.0471570
729 4 27 42 4 4 27

me Z Ze Z Z e Z eW
a aa m aπ πε π πεπε πε π π

−
= − = = −

=
=

 

The calculation gives an upper bound to the energy of the lowest level with 2l = , which 
is the 3n =  level. The true energy is 2 2 2 2 2

0 0 0 0(1 / 3 )( /8 ) 0.0555555( /4 ).Z e a Z e aπε πε− = −  

 
8.18 With the origin at the center of the box, the figure in Prob. 8.2 shows that V is an even 

function. As noted in Secs. 8.2 and 7.5, the ground-state wave function in this one-
dimensional problem will be an even function and the first excited state will be an odd 
function. The 2n =  particle-in-a-box (PIB) wave function is an odd function (see Fig. 
2.3) and so must be orthogonal to the true ground-state ψ, which is even. Hence using this 
function as the variation function will give an upper bound to the energy of the first 
excited state. Modifying the equations in the Prob. 8.2 solution, we have 

2 2 2
PIB,2 PIB PIB,2 PIB,2 PIB,2 PIB,2 PIB,2

ˆ ˆ| | | | | 2 /8T H E E h mlφ φ ψ ψ ψ ψ〈 〉 = 〈 〉 = 〈 〉 = = =  
2 2 2 2 24 /2 19.73921 /ml mlπ == = .   

3 /4 3 /42
0 0 /4/4

| | (2/ ) sin (2 / ) ( / )[ ( /4 )sin 4 / )]|
l l

ll
V l V x l dx V l x l x lφ φ π π π〈 〉 = = − =∫  

1 1 2 23 1
0 04 4[ (4 ) sin(3 ) (4 ) sin ] 0.5 0.5 /V V mlπ π π π− −− − + = = = . Then 

2 2 2 2
1 1

ˆ| | (19.73921 0.50000) / 20.23921 /H ml mlφ φ〈 〉 = + == = . The error is 0.016%. 

 
8.19 (a)  We use column 3, which has a zero, to expand the determinant: 
 

 1 1
2 2

1
2

3 1
2 4 3 1

2 4 0 0 ( 14 20) (12 2) 7 34
5 7 2 4

5 7

i
i i i
−

− = − + = − − + + = −
−

 

 
 (b)  We begin by adding column 4 to columns 2 and 3 and adding 2.5−  times column 4 to 

column 1. Then the fourth-row elements are used to expand the determinant: 

 

2 5 1 3 5.5 8 4 3
5.5 8 4 5.5 4 4

8 0 4 1 10.5 1 3 1
2 10.5 1 3 2 10.5 4 3

6 6 6 1 3.5 7 7 1
3.5 7 7 3.5 0 7

5 2 2 2 0 0 0 2

−
− −

− − −
= = − = − =

− −

   

5.5 4 4
5 7

2 5 0 7 2( 4) 2( 4)[5(7) 3.5(7)] 84.
3.5 7

3.5 0 7

−
= − = − − = −  
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In the first third-order determinant, the third column was subtracted from the second and 
then the first row was added to the second row. 

 
8.20 (a)   

           
0

0
0 0 0 00 0

0 0
0 0 0

a b c d
f g h

j kf g h
j k m

a af m afjj k
m

m
= + + + + = = =

"
"

""
" "

" ""
" # %

# # %"
# # # %

# # # # %

 

etc., where each determinant was expanded using the elements of the first column. 
 (b)  The expansion (8.22) of a second-order determinant has 2 terms. When we expand a 

third-order determinant, as in (8.23), we use 3 elements from the same row (or column), 
each element being multiplied by its cofactor, which is 1±  times a determinant of order 
3 1 2− = , which has 2 terms; hence there are 3(2) = 6 terms in the expansion of a third-
order determinant. When a fourth-order determinant is expanded, we use 4 elements from 
the same row (or column), each element being multiplied by its cofactor, which is 1±  
times a determinant of order 3, which has 3(2) terms. Hence there are 4(3)(2) terms in the 
expansion of a fourth-order determinant. Continuing in this manner, we see that an  
nth-order determinant has n! terms. 

 
8.21 Expanding using the elements of the top row, we get 

0 0
0 0 0 0

0 0
0 0

0 0

0 0
0 0

a b
d c

c d
e e

e
a b

⋅ ⋅
⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= −⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
⋅ ⋅

"
" "

"
" "

"
" "

"
" "

"
" "

"
" "

"

 

 Expanding the two determinants on the right of this equation using the top-row elements, 
we get 

e e e
a b

ad bc
c d

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

− =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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 A similar expansion of the second determinant on the right of this last equation completes 
the proof. 

 
8.22 (a)  123–even, 132–odd, 213–odd, 231–even, 321–odd, 312–even. 
 (b)  The first term on the right of (8.24) corresponds to the even permutation 123 and has 

a plus sign. The second term 11 23 32( )a a a−  has the odd permutation 132. The third term 
has the odd permutation 213. The fourth term 12 23 31( )a a a  has the even permutation 231. 
The fifth term has the even permutation 312. The sixth term 13 22 31( )a a a− has the odd 
permutation 321. 

 (c)  1 2( 1) i j npa a a±∑ " , where ij…p is one of the permutations of the integers 12…n, the 

sum is over the n! different permutations of these integers, and the sign of each term is 
positive or negative according to whether the permutation is even or odd, respectively. 

 
8.23  

1 1
2 2

3
2

2 1 4 2 16 1 2 1 8 1 2 1 8
3 0 1 4 5 3 0 1 4 5 0 7 1 29
2 1 1 2 8 2 1 1 2 8 0 2 3 4 8
4 6 2 1 3 4 6 2 1 3 0 4 10 5 35

− − −
− − − − − −

→ → →
− − − − −

− −

1 11
2 22

58 5814 2 14 25814 2
3 3 3 3 3 33 3 3

19 16 92 16 92
3 3 3 19 19

86 7 337 86 7 337
3 3 3 3 3 3

1 2 1 8 1 2 1 81 2 1 8
0 1 0 10 1
0 0 0 0 10 2 3 4 8
0 0 0 00 4 10 5 35

− −−
− − − −− −

→ → →
− −− − −

 

  

 

1
2

5814 2
3 3 3

16 92
19 19

1509 1509
57 57

1 2 1 8
0 1
0 0 1
0 0 0

−
− −

−
−

 

 The bottom row is 4(1509/57) 1509/57x = − , so 4 1x = − .  
The third row is 3 4(16/ 19) 92/19x x− = = 3 16/ 19x +  and 3 4x = . 
The second row is 2 3 4 2(14/3) (2/3) 58/3 56/3 2/3x x x x− + = − = − −  and 2 0x = .  
The first row is 1

1 2 3 4 12 2 8 0 8 1x x x x x− + + = = + + −  and 1 1x = .  

 
8.24 Division by a very small coefficient produces very large coefficients, which when added 

or subtracted from coefficients that are not large can lead to large errors in the solution, 
due to the fact that the computer or calculator uses a limited number of significant figures 
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to represent numbers. For example, suppose the equations are 10
1 21 10 1x x−× + =  and 

1 2 0x x− = . Further suppose that the computer is limited to 8 significant figures for each 

number. The correct solution is 10
1 2 1/ (1 1 10 ) 0.9999999999x x −= = + × = . If we divide 

the first equation by the 1x  coefficient we get 10 10
1 210 10x x+ =  (Eq. 1) and subtracting 

this equation from the second equation, we get 10 10
2(1 10 ) 10x− + = −  (Eq. 2). Because the 

computer is limited to 8 significant figures, the coefficient of 2x  (whose accurate value is 
101.0000000001 10− × ) is stored as 101.0000000 10− ×  and Eq. 2 becomes 

10 10
210 10x− = − , with solution 2 1x = . When this slightly inaccurate value is substituted 

into Eq. 1, we get 10 10
1 10 10x + = , which gives the very inaccurate result 1 0x = . 

8.25  
2 5 1 3 1 2.5 0.5 1.5 1 2.5 0.5 1.5
8 0 4 1 8 0 4 1 0 20 0 13

2 2
6 6 6 1 6 6 6 1 0 9 3 8
5 2 2 2 5 2 2 2 0 14.5 4.5 5.5

− − − −
= = =

− −
− − − − − − −

1 2.5 0.5 1.5 1 2.5 0.5 1.5
0 1 0 0.65 0 1 0 0.65

2( 20) 2( 20)
0 9 3 8 0 0 3 2.15
0 14.5 4.5 5.5 0 0 4.5 3.925

− = − =
− − −

− − − −

1 2.5 0.5 1.5 1 2.5 0.5 1.5
0 1 0 0.65 0 1 0 0.65

2( 20)3 120 120(0.7) 84
0 0 1 0.7166 0 0 1 0.7166
0 0 4.5 3.925 0 0 0 0.7

− = − = − = −
− −

−
… …

 

 
8.26 (a)  For a nontrivial solution to exist, the coefficient determinant must be zero. The 

coefficient determinant is 8(4) – (–3)(–15) = –13, so the solution is x = 0, y = 0. 
 (b)  The coefficient determinant is 15

44( ) 5 (3 ) 15 15 0,i i− − = − + =  so a nontrivial solution 

exists. (Note also that the second equation is the first equation multiplied by –5i/4.) Let 
.y k=  Then the first equation gives 3 3

4 4 ,x iy ik= =  so the solution is 3
4 ,x ik=  ,y k=  

where k is any number. (Alternatively, we can take 3 ,x ic=  4 ,y c=  where c is an 
arbitrary constant.) Use of the second equation instead of the first gives the same solution. 

 
8.27 (a)   
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1
5

7 7
5 5

18
5

1 2 3 0 1 2 3 0 1 2 3 0 1 0 0
3 1 2 0 0 5 7 0 0 1 0 0 1 0
2 3 1 0 0 1 5 0 0 1 5 0 0 0 0

→ − − → → →
− − − − −

1
5
7
5

1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 0 1 0

→       

 The last row gives 0z = . The first two rows give 0x =  and 0y = . As a check one finds 
that the coefficient determinant is nonzero. 

 (b) 
5
3

2 2
3 3

1 2 3 0 1 2 3 0 1 2 3 0 1 0 0
1 1 1 0 0 3 2 0 0 1 0 0 1 0
7 1 11 0 0 15 10 0 0 15 10 0 0 0 0 0

− → − − → →
− − − − −

 

 The last row reads 0 = 0, indicating that z can be assigned an arbitrary value. Let z k= , 
where k is an arbitrary constant. Then the first row gives 5 /3x k= −  and the second row 
gives 2 /3y k= − . As a check the coefficient determinant is zero, showing there is a 
nontrivial solution. 

 
8.28 A C++ program that avoids division by a coefficient that is zero or very small (see Prob. 

8.24) is the following: 
 

#include <iostream> 
#include <cmath> 
using namespace std; 
int i, j, n, s, w, k, r; 
double a[11][11], b[11], x[11], temp[11][11], tt, fac, sum, denom; 
int main() { 
 cout  <<  "Enter N (less than 11):  "; 
 cin  >>  n; 
 for (i=1;  i<=n;  i=i+1)  { 
  for (j=1;  j<=n;  j=j+1)  { 
   cout  <<  "i =  "  <<  i  <<  "  j =  "  << j  <<  "  Enter coef. a(i,j)  "; 
   cin  >> a[i][j]; 
  } 
  cout   <<  "i =  "  << i  <<  "  Enter b(i) "; 
  cin  >>  b[i]; 
 } 
 for (i=1; i<=n-1; i=i+1) { 
  if (fabs(a[i][i]) < 1e-6) { 
   for (s=i+1;  s<=n;  s=s+1) { 
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    if (fabs(a[s][i])<1e-6) 
     continue; 
    for (w=i;  w<=n;  w=w+1) { 
     temp[i][w] = a[i][w]; 
     a[i][w] = a[s][w]; 
     a[s][w] = temp[i][w]; 
    } 
    tt = b[i]; 
    b[i] = b[s]; 
    b[s] = tt; 
    goto label1; 
   } 
  cout  <<  "Failed; division by small number problem"; 
  return 0; 
  } 
  label1: denom=a[i][i]; 
  for (j=1; j<=n; j=j+1) { 
   a[i][j]=a[i][j]/denom; 
  } 
  b[i]=b[i]/denom; 
  for (k=1; k<= n-i; k=k+1) { 
   fac=a[i+k][i]; 
   for (j=i;  j<=n;  j=j+1) { 
    a[i+k][j]=a[i+k][j]-fac*a[i][j]; 
   } 
   b[i+k]=b[i+k]-fac*b[i]; 
  } 
 } 
 x[n]=b[n]/a[n][n]; 
 for (k=1; k<=n-1;  k=k+1) { 
  sum=0; 
  for (r=n-k+1; r<=n; r=r+1) { 
   sum=sum+a[n-k][r]*x[r]; 
  } 
  x[n-k]=b[n-k] - sum; 
 } 
 for (k=1; k<=n; k=k+1) { 
  cout <<  "k  =  " <<  k  <<  "  x(k) =  "  << x[k]  <<endl; 
 } 
 return 0; 
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} 
 

8.29 (a)  F;   (b)  T;   (c)  F;   (d)  F. 
 
8.30 We have 2 1 1 2| | * *f f f f b b〈 〉 = 〈 〉 = = , since b is real. Also, 

2 1 1 2
ˆ ˆ| | | | * *f H f f H f a a〈 〉 = 〈 〉 = = , since a is real and Ĥ  is Hermitian. The secular 

equation (8.56) is  

 24 2
0 (4 2 )(6 3 ) ( )

6 3
a bW a bW

a bW a bW a bW
a bW a bW
− −

= = − − − − =
− −

2 2 25 22 23b W abW a− +  

( )2 2 2 2 2
1 222 484 460 10 . 1.710102 / , 2.689898 /W ab a b b a b W a b W a b= ± − = = .  

The set of equations (8.54) for 1W  is  

 

1 1 1 2

1 1 1 2

(4 2 ) ( ) 0
( ) (6 3 ) 0

a bW c a bW c
a bW c a bW c

− + − =
− + − =  

1 2

1 2

0.579796 0.710102 0
0.710102 0.869694 0

ac ac
ac ac
− =

− + =  
 Either the first or the second equation gives 1 21.224745c c= . Normalization gives 

2 2
1 1 2 2 1 1 2 2 1 1 1 1 2 1 2 2 2 2| 1 | | 2 | |c f c f c f c f f f c c f f c f fcφ φ〈 〉 = = 〈 + + 〈 〉 + 〈 〉 + 〈 〉 =〉 =  

2 2 2
2 2 2 2(1.224745) (2 ) 2(1.224745) (3 )c b c c b c b+ +  so 2

28.449491 1bc =  and  

 1/2
2 0.344021c b−= .  1/2

1 21.224745 0.421338c c b−= = . The approximation to the  

ground-state wave function is 1/2 1/2
1 20.421338 0.344021b f b fφ − −= + . 

The set of equations (8.54) for 2W  is  

 1 2

1 2

1.379796 1.689898 0
1.689898 2.069694 0

ac ac
ac ac

− − =
− − =

 

 Either the first or the second equation gives 1 21.224745c c= − . Normalization gives 
2 2
1 1 1 1 2 1 2 2 2 21 | 2 | |f f c c f f c f fc 〈 〉 + 〈 〉 + 〈 〉 ==

2 2 2 2
2 2 2 2 2( 1.224745) (2 ) 2(1.224745) (3 ) 2.050510c b c c b c b bc− − + = , so 1/2

2 0.698343c b−=  

and 1/2
1 0.855292c b−= − . The approximation to the first excited-state wave function is 

1/2 1/2
1 20.855292 0.698343b f b fφ − −= − + . 

 
8.31 We have 21 12 12*H H H= = , since Ĥ  is Hermitian and the basis functions are real. Also 

21 2 1 1 2 1 2| | * |S f f f f f f= 〈 〉 = 〈 〉 = 〈 〉 . The secular equation is  

 11 11 12 12 2 2
11 11 12 12

12 12 11 11
( ) ( ) 0

H S W H S W
H S W H S W

H S W H S W
− −

= − − − =
− −

 

2 2
11 11 12 12( ) ( )H S W H S W− = − ,    11 11 12 12( )H S W H S W− = ± −   (Eq. 1),    
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11 12 11 12( )H H S S W=∓ ∓ ,     11 12 11 12( ) / ( )W H H S S= ∓ ∓   (Eq. 2) 
The equations of (8.54) are  

 11 11 1 12 12 2

12 12 1 11 11 2

( ) ( ) 0
( ) ( ) 0
H S W c H S W c
H S W c H S W c

− + − =
− + − =

 

 The first equation gives 2 1 11 11 12 12/ ( )/( ) 1( 1) 1c c H S W H S W= − − − = − ± = ∓  (Eq. 3), 
where Eq. 1 was used. The upper sign in Eq. 3 goes with the upper sign in Eq. 2.  

 
8.32 (a)  The particle-in-a-box (PIB) wave functions 1f  and 2f  are even functions (Fig. 2.3) if 

the origin is put at the center of the box. The potential energy in Prob. 8.2 is an even 
function and each wave function in this one-dimensional problem will be either even or 
odd (Secs. 8.2 and 7.5), with the lowest state being even, the first excited state being odd, 
the second excited state being even, etc. Because 1f  and 2f  are even, we will get upper 
bounds to the lowest two states of even parity, which are the states with energies 1E  and 

3E . 

 (b)  The (PIB) wave functions 1f  and 2f  are eigenfunctions of a Hermitian operator Ĥ  
and have different eigenvalues, so they must be orthogonal. 

 (c)  The PIB Hamiltonian has 0V =  inside the box so PIB
ˆ ˆH T=  inside the box and since 

1f  and 2f  are PIB eigenfunctions with quantum numbers 1n =  and 3, we have 
2 2

1 1 1 1
ˆ ( /8 )Tf f h ml fε= =  and 2 2

2 2 2 2
ˆ (9 /8 )Tf f h ml fε= = . So 

2 2 2 2 2 2 2
1 0/ 8 4 /8 4.934802 / 4.934802h ml ml ml Vε π= = = == =  and 

2 2 2 2 2 2 2
2 09 /8 (9)4 /8 44.413220 / 44.413220h ml ml ml Vε π= = = == = . Also 

ˆ| | | , 1, 2i j j i j j ijf T f f f iε ε δ〈 〉 = 〈 〉 = = .  

 (d)  Because of orthonormality of the PIB functions, ij ijS δ= .  We have 

ij ij ij ij j ijH T V Vδ ε= + = +  (Eq. 1).  The integral 1 1| |f V f〈 〉  was found in Prob. 8.2 and is 
3 /4 2

11 1 1 0/4
| | (2/ ) sin ( / )

l

l
V f V f l V x l dxπ= 〈 〉 = ∫ 00.818310V= = 2 20.818310 /ml= . 

22V =
3 /4 3 /42

2 2 0 0 /4/4
| | (2/ ) sin (3 / ) ( / )[ ( /6 )sin 6 / )]|

l l
ll

f V f l V x l dx V l x l x lπ π π〈 〉 = = − =∫
1 1 13 1 1

0 0 04 4 2[ (6 ) sin(9 /2) (6 ) sin(3 /2)] [ (3 ) ] 0.393897V V Vπ π π π π− − −− − + = − = =

2 20.393897 /ml= . Finally,
3 /4

12 21 1 2 0/4
| | (2/ ) sin( / )sin(3 / )

l

l
V V f V f l V x l x l dxπ π= = 〈 〉 = =∫  

3 /4 2 2
0 /4 0( / )[( /2 )sin(2 / ) ( /4 )sin(4 / )] | ( / ) 0.318310 /l

lV l l x l l x l V mlπ π π π π− = − = − = .  
Equation 1 gives 11 1 11 0 0 04.934802 0.818310 5.753112H V V V Vε= + = + = , 

12 21 12 00 0.318310H H V V= = + = − ,

22 2 22 0 0 044.413220 0.393897 44.807117H V V V Vε= + = + = . The secular equation is  
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 0 011 11 12 12

0 021 21 22 22

5.753112 0.318310
0

0.318310 44.807117
V W VH S W H S W

V V WH S W H S W
− −− −

= =
− −− −

 and 

2 2
0 050.560229 257.6790 0W WV V− + = . The roots are 2 2

044.80971 44.80971 /V ml= =  

and 2 25.750517 /ml= . The ground-state energy error is much less than when only 1f  was 
used.    To find the ground-state 1φ , we solve (8.54) with 05.750517W V= , which is  

 0 1 0 2

0 1 0 2

0.002595 0.318310 0
0.318310 39.056600 0

V c V c
V c V c

− =

− + =
 

 The second equation gives 2 10.0081500c c= . The normalization condition is 
2 2 2 2

1 1 2 2 1 1 2 2 1 1 1 1 2 1 2 2 2 2 1 2| 1 | | 2 | |c f c f c f c f f f c c f f c f f c ccφ φ〈 〉 = = 〈 + + 〈 〉 + 〈 〉 + 〈 〉 = +〉 = , 

so 2 2 2
1 11 (0.0081500)c c= +  and 1 20.999967, 0.0081497c c= = .  

1 1 20.999967 0.0081497f fφ = + . 

 To find  φ  for the 3E  state, we solve (8.54) with 044.80971W V= , which is  

 0 1 0 2

0 1 0 2

39.05660 0.318310 0
0.318310 0.00259 0

V c V c
V c V c

− − =

− − =
 

 The first equation gives 1 20.00814996c c= − . The normalization condition gives 
2 2 2 2 2
1 2 2 21 ( 0.00814996)c c c c= + = − + , and 2 10.999967, 0.0081497c c= = − .  

1 20.0081497 0.999967f fφ = − + . 

 (e)   We could take 1 2 3, ,f f f  as the 1, 2, 3n =  PIB wave functions.  

 

8.33 2 2
1 2( ), ( )f x l x f x l x= − = −    

2 2 4 2 5 6 7 71 2 1
11 5 6 70

( ) | ( ) ( 2 ) ( ) /105
l

S x l x x l x x l lx x dx l l= 〈 − − 〉 = − + = − + =∫  

2 2 2 4 3 3 2 4 5 6 7 61 4 4 1
22 3 4 5 6 70

( ) | ( ) ( 4 6 4 ) ( )
l

S x l x x l x x l l x l x lx x dx l= 〈 − − 〉 = − + − + = − + − +∫
 7 /105l=   

2 2 3 3 2 4 5 6 7 73 31 1
12 21 4 5 6 70

( ) | ( ) ( 3 3 ) ( ) /140
l

S S x l x x l x l x l x lx x dx l l= = 〈 − − 〉 = − + − = − + − =∫
2 2 2 2 3 2

1
ˆ ( /2 )( / )( ) ( / )(3 )Hf m d dx x l x m x l= − − = −= =

2 2 2 2 2 3 2
2

ˆ ( /2 )( / )( 2 ) ( / )(2 3 )Hf m d dx xl lx x m l x= − − + = −= =  
2 2 2 2 2 3 4

11 1 1 0
ˆ| | ( / ) ( ) | 3 ( / ) ( 4 3 )

l
H f H f m x l x x l m l x lx x dx= 〈 〉 = 〈 − − 〉 = − + −∫= =

2 5 5 231 4 1
3 4 5 15( / )( ) /l m l m= − + − == =

2 2 2 3 2 2 3 4
22 2 2 0

ˆ| | ( / ) ( ) | 2 3 ( / ) (2 7 8 3 )
l

H f H f m x l x l x m l x l x lx x dx= 〈 〉 = 〈 − − 〉 = − + −∫= =
2 5 5 27 8 32 1

2 3 4 5 15( / ) ( ) /m l l m= − + − == =
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2 2 2 2 2 3 4
12 1 2 0

ˆ| | ( / ) ( ) | 2 3 ( / ) (2 5 3 )
l

H f H f m x l x l x m l x lx x dx= 〈 〉 = 〈 − − 〉 = − +∫= =  
2 5 5 25 32 1

3 4 5 60( / ) ( ) /m l l m= − + == =  

 Since 11 22H H=  and 11 22S S= , the results of Prob. 8.30 apply. We have 
2 5 7 7 2 21 1

11 12 11 12 15 60( ) / ( ) ( / )( ) / ( /105 /140) 21( / )W H H S S l m l l ml= − − = − − == =  and 
2 5 7 7 2 21 1

11 12 11 12 15 60( ) / ( ) ( / )( ) / ( /105 /140) 5( / )W H H S S l m l l ml= + + = + + == = . The true 

energies are 2 2 2 2 2 2 2
1 /8 4 /8 4.93480 /E h ml ml mlπ= = == =  and 

2 2
2 14 19.73921 /E E ml= = = . The errors are 1.3% and 6.4%.  

       From Eq. 3 of Prob. 8.30, the ground-state φ has 2 1/ 1c c = ∓ , where the plus sign goes 
with the ground state. Normalization gives 

2 2 2
1 1 2 2 1 1 2 2 1 11 1 2 12 2 22 1 11 12 22| 1 | 2 ( 2 )c f c f c f c f S c c S c S c S S Scφ φ〈 〉 = = 〈 + + + + = + =〉 = ∓

2
1 11 122 ( )c S S∓ , so 1/2

1 11 12[2( )]c S S −= ∓ . For the ground state, 
1/2

1 1 2 11 12( )/[2( )]f f S Sφ = + + . For the first excited state 1/2
2 1 2 11 12( )/[2( )]f f S Sφ = − − . 

The nodes of 2
1 ( )f x l x= −  are at 0 and l. To find its extrema, we set 2

1 0 2 3f xl x′ = = −  
and we get 0x =  and 2

3x l= . Since 1f  is zero at the ends of the box and is positive 

everywhere inside the box, 2
3x l=  must be a maximum. The nodes of 2

2 ( )f x l x= −  are 

at 0 and l. We set 2 2
2 0 3 4f x lx l′ = = − +  and get x l=  and 1

3x l= . Since 2f  is zero at 

the ends of the box and is positive everywhere inside the box, 1
3x l=  must be a 

maximum. (A little thought shows that if we flip the 1f  graph about the center of the box, 
we get the 2f  graph.) The ground state is 

2 2
1 2( ) [ ( ) ( ) ] ( )[ ( )] ( )N f f N x l x x l x Nx l x x l x Nlx l x+ = − + − = − + − = − . This parabolic 

function has nodes at 0 and l and by setting its derivative equal to zero, we find a 
maximum at the center of the box. The first excited state is 

2 2
1 2( ) [ ( ) ( ) ] ( )[ ( )] ( )(2 )N f f N x l x x l x N x l x x l x N x l x x l′ ′ ′ ′− = − − − = − − − = − − . This 

function has nodes at 0, l, and l/2. Its derivative is zero at 1
2( 3/6) 0.79x l l= + =  and at 

1
2( 3/6) 0.21x l l= − = . Since this function is zero at x = 0 and is negative for very small 

x, 0.21l is a minimum. Sketches (not to scale) are  

0 0.5 1

x 2(l –x )

0 0.5 1

x (l –x )2

 
x/l
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0 0.5 1

f 1 + f 2

x /l
0 0.5 1

f 1  – f 2

 
 

8.34 1
2x x l′= +  and the functions are 2 21 1 1 1

1 22 2 2 2( )( ), ( ) ( ) ,f x l l x f x l l x′ ′ ′ ′= + − = + −   
2 21 1 1 1

3 42 2 2 2( )( )( ), ( ) ( ) ( )f x l l x x f x l l x x′ ′ ′ ′ ′ ′= + − − = + − − . Replacing x′  by x′− , we see 
that 1f  is even, 2f  is even, 3f  is odd, and 4f  is odd. 

 

8.35 2 2 6 5 2 4 3 3
12 1 2 0

| ( ) | ( ) ( 3 3 )
l

S f f x l x x l x x lx l x l x dx= 〈 〉 = 〈 − − 〉 = − + − + =∫   
7 73 31 1

7 6 5 4( ) /140.l l− + − + =

2 2 2 2 8 7 2 6 3 5 4 4
22 2 2 0

| ( ) | ( ) ( 4 6 4 )
l

S f f x l x x l x x lx l x l x l x dx= 〈 〉 = 〈 − − 〉 = − + − + =∫
9 961 4 4 1

9 8 7 6 5( ) /630l l− + − + = . 
2 2 2 2 2

1
ˆ ( /2 )( / )( ) /Hf m d dx xl x m= − − == = .   

2 2 2 2 4 3 2 2
12 21 2 1 0

ˆ| | ( ) | / ( / ) ( 2 )
l

H H f H f x l x m m x lx l x dx= = 〈 〉 = 〈 − 〉 = − + =∫= =
2 5 2 51 2 1

5 4 3( / )( ) /30l m l m− + == = . 
2 2 2 2 2 3 4 2 2 2

2
ˆ ( /2 )( / )( 2 ) ( / )( 6 6 )Hf m d dx x l x l x m l xl x= − − + = − − += =  

2 2 2 2 2
22 2 2

ˆ| | ( / ) ( ) | 6 6H f H f m x l x l xl x= 〈 〉 = − 〈 − − + 〉 ==
2 6 5 2 4 3 3 4 2

0
( / ) (6 18 19 8 )

l
m x lx l x l x l x dx− − + − + =∫=

2 7 2 76 18 19 8 1
7 6 5 4 3( / )( ) /105l m l m− − + − + == = . 

 
8.36  

2 5 7 2 7 9

33 33 34 34
2 7 9 2 9 11

43 43 44 44

40 840 280 50400

280 5040 1260 27720

l l l lW WH S W H S W m m
H S W H S W l l l lW W

m m

− −− −
= =

− −
− −

= =

= =
 

 We multiply row 1 by 55040 /m l  and row 2 by 755440 /m l  to get  



8-20 
Copyright © 2014 Pearson Education, Inc. 

 

 
2 2 2 2 4

2 6 2 4 2 4 2
2 2 2 2 4

126 6 18
0 120 1980

198 11 44 2

ml W l ml W
m l W ml W l

ml W l ml W

− −
= = − +

− −

= =
= =

= =
 (Eq. 1) 

 The quadratic formula gives 
2 2 2 2 2 2 21

2( / )[60 (120) 4(1980)] 19.75078 / , 100.2492 /W ml ml ml= ± − == = =  
2 2 2 20.5002930 / , 2.5393425 /W h ml h ml= . 

 
8.37 The percent error (PE) is 1 1 1PE 100( ) / .φ ψ ψ= −  Letting / ,X x l≡  we have 

 
2 2 1/2

1/2
100[4.404 (1 ) 4.990 (1 ) 2 sin( )PE

2 sin( )
X X X X X

X
π

π
− + − −

=  

 provided 0X ≠ . In making the graph, we start and end at numbers like X = 0.000001 and 
0.999999 to avoid the indeterminate number 0/0 at 0 and 1. We get 

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.0 0.2 0.4 0.6 0.8 1.0

PE

X

 
 
8.38 The form of 2φ  is shown in Eq. (8.69). We use the form of the coefficients given in the 

determinant of Eq. 1 in Prob. 8.35. Substitution of 2 2
2 0.50029030 /W h ml=  gives  

 
2 (2) 2 2 (2)

3 4
2 (2) 2 2 (2)

3 4

0.189859 0.044348 0

0.487824 0.113947 0

h c h l c

h c h l c

− =

− + =
 

 We get (2) 2 (2)
3 40.233582c l c= . The normalization condition gives 

2 2
3 3 4 4 3 3 4 4 3 3 3 3 4 3 4 4 4 4| 1 | | 2 | |c f c f c f c f f f c c f f c f fcφ φ〈 〉 = = 〈 + + 〈 〉 + 〈 〉 + 〈 〉 =〉 =  

2 2 4 7 2 9 2 11
4 4 4 4(0.233582) /840 2(0.233582) /5040 /27720c l l c c l l c l+ + . We get 
11/2

4 71.848c l−= . Then 2 7/2
3 40.233582 16.782c l c l−= = . So 

7/2 11/2 2 21 1
2 2 216.78 ( )( ) 71.848 ( ) ( )l x l x l x l x l x l xφ − −= − − + − − . 

The form of 3φ  is shown in Eq. (8.69). We use the form of the coefficients given in the 

determinant that precedes Eq. (8.71). Substitution of 2 2
3 1.293495 /W h ml=  gives  



8-21 
Copyright © 2014 Pearson Education, Inc. 

 

 
2 (3) 2 2 (3)

1 2
2 (3) 2 2 (3)

1 2

16.33581 3.525861 0

10.57758 2.283026 0

h c h l c

h c h l c

− − =

− − =
 

 We get (3) 2 (3)
1 20.215836c l c= − . The normalization condition gives 

2 2
1 1 2 2 1 1 2 2 1 1 1 1 2 1 2 2 2 2| 1 | | 2 | |c f c f c f c f f f c c f f c f fcφ φ〈 〉 = = 〈 + + 〈 〉 + 〈 〉 + 〈 〉 =〉 =  

2 2 4 5 2 7 2 9
2 2 2 2( 0.215836) /30 2( 0.215836) /140 /630c l l c c l l c l− + − + . We get 9/2

2 132.72c l−= . 

Then 2 5/2
1 20.215836 28.646c l c l−= − = − . So 

5/2 9/2 2 2
3 28.646 ( ) 132.72 ( )l x l x l x l xφ − −= − − + − . 

 

8.39 (a) We have i i ic a ib= +  and *
i i ic a ib= − . We start with W as a function of the ia ’s and 

ib ’s, and then make the substitutions *( )/2i i ia c c= +  and *( )/2i i ib c c i= −  for each ia  and 

ib . This converts W to a function of the ic ’s and *
ic ’s, where we consider ic  and *

ic  as 
independent of each other. The chain rule [Eq. (5.53)] gives 

1 1
2 2

i i

i i i i i i i

a bW W W W W
c a c b c a i b

∂ ∂∂ ∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂ ∂ ∂ ∂
 and 

* * *
1 1
2 2

i i

i i i ii i i

a bW W W W W
a b a i bc c c

∂ ∂∂ ∂ ∂ ∂ ∂
= + = −
∂ ∂ ∂ ∂∂ ∂ ∂

.  

(Terms involving / jW a∂ ∂ and / jW b∂ ∂  with j i≠  do not occur because / 0j ia c∂ ∂ =  and 

/ 0j ib c∂ ∂ = .) Setting / 0iW a∂ ∂ =  and / 0iW b∂ ∂ = , we get / 0iW c∂ ∂ =  and */ 0iW c∂ ∂ = . 

 (b)  Since the coefficients can be complex, each jc  in (8.45) is changed to *jc  to give 

* *j k j k jk j k j k jkW c c S c c H∑ ∑ = ∑ ∑  (Eq. 1). Taking / ic∂ ∂  of Eq. 1 with the *jc ’s being 
considered as independent of the ic ’s and hence being held constant, we have 

* * *( / ) ( / ) ( / )i j k j k jk j k j k i jk j k j k i jkW c c c S W c c c S c c c H∂ ∂ ∑ ∑ + ∑ ∑ ∂ ∂ = ∑ ∑ ∂ ∂

* * *( / )i j k j k jk j k j ki jk j k j ki jkW c c c S W c S c Hδ δ∂ ∂ ∑ ∑ + ∑ ∑ = ∑ ∑  

* *0 j j ji j j j iW c S c H+ ∑ = ∑  [where (8.46) was used] so *[( ) ] 0j j i ji jH WS c∑ − = , which is 

the complex conjugate of (8.53). Taking */ ic∂ ∂  of Eq. 1 with the ic ’s being considered as 

independent of the *
ic ’s, we have 

* * * * * *( / ) ( / ) ( / )i j k j k jk j k j i k jk j k j i k jkW c c c S W c c c S c c c H∂ ∂ ∑ ∑ + ∑ ∑ ∂ ∂ = ∑ ∑ ∂ ∂

* *( / )i j k j k jk j k ji k jk j k ji k jkW c c c S W c S c Hδ δ∂ ∂ ∑ ∑ + ∑ ∑ = ∑ ∑  
0 k k ik k k ikW c S c H+ ∑ = ∑  so ( ) 0k ik ik kH S W c∑ − = , which is (8.53). 
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8.40 (a)  Use of (8.40) gives ( )ˆ ˆ| | | |i i k kkf H W f H W c fα
α α αφ〈 − 〉 = 〈 − ∑ 〉 =  

( ) ( )ˆ ˆ| | [ | | | ] 0k i k k i k i kk kf H W f c f H f W f f cα α
α α∑ 〈 − 〉 = ∑ 〈 〉 − 〈 〉 =  for 1, 2, ,i n= … .  

 (b)  Use of (8.40) gives 
( ) ( )ˆ ˆ ˆ| | | | | | 0k k k kk kH W c f H W c f H Wβ β

β α α α α α αφ φ φ φ〈 − 〉 = 〈∑ − 〉 = ∑ 〈 − 〉 = , since 
ˆ| |kf H Wα αφ〈 − 〉  was shown to be zero in (a) for all k. The labels α and β are arbitrary, 

and interchange of α and β gives ˆ| | 0H Wα β βφ φ〈 − 〉 = . Taking the complex conjugate, 

we get ˆ| | * 0H Wα β βφ φ〈 − 〉 = . 

 (c)  We have ˆ ˆ| | | | *H W H Wβ α α α β βφ φ φ φ〈 − 〉 = 〈 − 〉   (Eq. 1). The left side of Eq. 1 is 
ˆ| | |H Wβ α α β αφ φ φ φ〈 〉 − 〈 〉   (Eq. 1-ls).  The right side of Eq. 1 is 
ˆ ˆ| | * [ | | | ]*H W H Wα β β α β β α βφ φ φ φ φ φ〈 − 〉 = 〈 〉 − 〈 〉 = ˆ| | * | *H Wα β β α βφ φ φ φ〈 〉 − 〈 〉 =
ˆ| | |H Wβ α β β αφ φ φ φ〈 〉 − 〈 〉   (Eq. 1-rs). Equating the last expression in Eq. 1-rs to the last 

expression in Eq. 1-ls, we have ˆ ˆ| | | | | |H W H Wβ α β β α β α α β αφ φ φ φ φ φ φ φ〈 〉 − 〈 〉 = 〈 〉 − 〈 〉 , 
which becomes ( ) | 0W Wα β β αφ φ− 〈 〉 = . So if W Wβ α≠ , we have | 0β αφ φ〈 〉 = . 

 (d)  The result ˆ| | mg H g E〈 〉 ≥  follows from | 1g g〈 〉 =  and  Eq. (8.19) with 1k m= −  
and gφ = .  

 (e)  We showed in part (b) that ˆ| | 0H Wα β βφ φ〈 − 〉 = , so ˆ0 | | |H Wα β β α βφφ φ φ〈= 〈 〉 − 〉  
(Eq. 2).  We showed in (c) that | 0β αφ φ〈 〉 =  if W Wβ α≠ , and the φ functions can be 

chosen to be orthogonal when W Wβ α= . So Eq. 2 becomes ˆ0 | |Hα βφ φ= 〈 〉  for α β≠ . 

 (f)  1 1 1 1
ˆ ˆ ˆ| | | | * | |m m m mg H g b H b b b Hα α α β β β α β α β α βφ φ φ φ= = = =〈 〉 = 〈∑ ∑ 〉 = ∑ ∑ 〈 〉 . Since 

ˆ| | 0Hα βφ φ〈 〉 =  for α β≠ , when we do the sum over β, only the term with β α=  is 

nonzero, and 2
1 1

ˆ ˆ| | * | | | |m mg H g b b H b Wα α α α α α α αφ φ= =〈 〉 = ∑ 〈 〉 = ∑   (Eq. 3), where the 
first equation in (8.44) with φ normalized was used. 

 (g)  Since g is normalized, we have 

1 1 1 11 | | * |m m m mg g b b b bα α α β β β α β α β α βφ φ φ φ= = = == 〈 〉 = 〈∑ ∑ 〉 = ∑ ∑ 〈 〉 1 1 *m m b bα β α β αβδ= == ∑ ∑ =
2

1 | |m bα α=∑ . 

 (h)  Since α goes from 1 to m in the sums in (f) and (g) and since the W’s are numbered in 
order of increasing value, we have mW Wα ≤  and 2 2

1 1| | | |m m
mb W b Wα α α α α= =∑ ≤ ∑ . Hence 

Eq. 3 in part (f) gives 2 2
1 1

ˆ| | | | | |m m
m m mg H g b W W b Wα α α α= =〈 〉 ≤ ∑ = ∑ = . 

 (i)  From parts (h) and (d), ˆ| |m mW g H g E≥ 〈 〉 ≥ . 
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8.41  
7 3 0

* 2 2
1 4 2

i i i
i

⎛ ⎞
⎜ ⎟= + − −⎜ ⎟
⎜ ⎟−⎝ ⎠

A           T
7 2 1
3 2 4
0 2

i i
i

i

− +⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

A           
7 2 1
3 2 4
0 2

i i
i
i

+ −⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

†A   

 
8.42 (a)  Only F is real.   (b)  C and F are symmetric.   (c)  D and F are Hermitian. 
 

8.43 Since =†U U I , we have *( ) ( ) ( ) ( )ij ij ij k ik kj k ki kju uδ = = = ∑ = ∑† †I U U U U , where (8.90) 

was used. 
 

8.44 * *1 | | | |i i i j j j i j i i j j i j i j i j i j i j ijf f f f f f δ= 〈 〉 = 〈∑ ∑ 〉 = ∑ ∑ 〈 〉 = ∑ ∑ 〈 〉 = ∑ ∑v v v v v v v v v v  
2| |i i= ∑ v . Similarly, 2| | 1i iw∑ = .  

Also, * * *0 | | |i i i j j j i j i j i j i j i j ij i i iw w f f w f f w wδ= 〈 〉 = 〈∑ ∑ 〉 = ∑ ∑ 〈 〉 = ∑ ∑ = ∑v v v v v . 

 
8.45 The characteristic equation (8.81) for A is  

 20 1
det( ) 0 2 3

3 2ij ijA
λ

λδ λ λ
λ

− −
− = = = − +

−
 

 The roots are 1
2 [2 4 12] 1 2 , 1 2i iλ = ± − = + − . The sum of the eigenvalues is 2, 

which is the trace of the matrix.  
        For 1 1 2 ,iλ = +  the equations (8.82) are  

 
(1) (1) (1) (1)
1 2 1 2

(1) (1) (1) (1)
1 2 1 2

(1 2 ) 0

3 (2 ) 3 (1 2 ) 0

c c i c c

c c c i c

λ

λ

− − = − + − =

+ − = + − =
 

 The first equation gives (1) (1)
2 1(1 2 )c i c= − + . As a check, the second equation gives 

(1) (1) (1) (1)
2 1 1 1

3 3 1 2 (1 2 )
1 2 1 2 1 2

ic c c i c
i i i

+
= − = − = − +

− − +
 

 The normalization condition (8.83) is 
(1) 2 (1) 2 (1) 2 (1) 2 (1) 2
1 2 1 1 11 | | | | | | ( 1 2 )( 1 2 ) | | 4 | |c c c i i c c= + = + − − − + = . So (1) 1

1 2| |c = . If we take 
(1) 1
1 2c = , then (1) (1) 1 1

2 1 2 2(1 2 ) 2c i c i= − + = − − . Infinitely many other choices are 

possible. For example, (1) 2 1
1 4| |c =  so normalization means that (1) 2 3

2 4| |c = . If we take 

(1) 1
2 2 3c = , then (1) (1) 1 1

1 2 6 6
1 2 3 6

3
ic c i−

= − = − + . 

         For 2 1 2 ,iλ = −  the equations (8.82) are  
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(2) (2) (2) (2)
1 2 1 2

(2) (2) (2) (2)
1 2 1 2

(1 2 ) 0

3 (2 ) 3 (1 2 ) 0

c c i c c

c c c i c

λ

λ

− − = − − − =

+ − = + + =
 

 The first equation gives (2) (2)
2 1(1 2 )c i c= − − . As a check, the second equation gives 

(2) (2) (2) (2)
2 1 1 1

3 3 1 2 (1 2 )
1 2 1 2 1 2

ic c c i c
i i i

−
= − = − = − −

+ + −
 

 The normalization condition (8.83) is 
(2) 2 (2) 2 (2) 2 (2) 2 (2) 2
1 2 1 1 11 | | | | | | ( 1 2 )( 1 2 ) | | 4 | |c c c i i c c= + = + − − − + = . So (2) 1

1 2| |c = . If we 

take (2) 1
1 2c = , then (2) (2) 1 1

2 1 2 2(1 2 ) 2c i c i= − − = − + . (Other choices are possible.)  

             The eigenvectors of A are 
1 1
2 2(1) (2)

1 1 1 1
2 2 2 22 2i i

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − − +⎝ ⎠ ⎝ ⎠

c c  

            The characteristic equation (8.81) for B is  

 22 0
det( ) 0 4 4

9 2ij ijB
λ

λδ λ λ
λ

−
− = = = − +

−
 

 The roots are 1
2 [4 16 16] 2, 2λ = ± − = . The sum of the eigenvalues is 4, which is the 

trace of the matrix.  
          For 1 2,λ =  the equations (8.82) are  

 
(1) (1) (1) (1)
1 2 1 2

(1) (1) (1) (1)
1 2 1 2

(2 ) 0 0 0 0

9 (2 ) 9 0 0

c c c c

c c c c

λ

λ

− + = + =

+ − = + =
 

 The second equation gives (1)
1 0c = . Normalization gives (1)

2| | 1c =  and we can take 
(1)
2 1c = . The second root equals the first root and the second eigenvector is the same as the 

first eigenvector. 
             The characteristic equation (8.81) for C is  

 
4 0

det( ) 0 (4 )(4 )
0 4ij ijC
λ

λδ λ λ
λ

−
− = = = − −

−
 

 The roots are 4, 4λ = . The sum of the eigenvalues is 8, which is the trace of the matrix.  
          For 1 4,λ =  the equations (8.82) are  

 
(1) (1) (1) (1)
1 2 1 2

(1) (1) (1) (1)
1 2 1 2

(4 ) 0 0 0 0

0 (4 ) 0 0 0

c c c c

c c c c

λ

λ

− + = + =

+ − = + =
 

 These equations give no information. Normalization requires that (1) 2 (1) 2
1 21 | | | |c c= + . Any 

values of (1)
1c  and (1)

2c  that satisfy this condition can be used. A simple choice is 
(1)
1 1c = and (1)

2 0c = . A simple choice of the second eigenvector is (1)
1 0c =  and (1)

2 1c = . 
(Any two normalized linear combinations of these two eigenvectors can be used.) 
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8.46 The characteristic equation (8.81) is  

 
11

22 11 22 33

33

0 0
0 0 0 ( )( )( )
0 0

a
a a a a

a

λ
λ λ λ λ

λ

−
− = = − − −

−
 

The roots are 11 22 33, ,a a aλ = . For 11aλ = , the equations (8.82) are  

 

(1) (1) (1)
11 11 1 2 3
(1) (1) (1)

22 111 2 3
(1) (1) (1)

33 111 2 3

( ) 0 0 0

0 ( ) 0 0

0 0 ( ) 0

a a c c c

c a a c c

c c a a c

− + + =

+ − + =

+ + − =

 

 Since 11 22 33a a a≠ ≠ , we have (1)
2 0c =  and (1)

3 0c = . To satisfy normalization, we take 
(1)
1 1c = . Similarly, the components of the eigenvector for 22aλ =  are 0,  1,  0 and the 

components of the 33aλ =  eigenvector are 0,  0,  1. 

 
8.47 (a)  The characteristic equation (8.81) is  

 22 2
det( ) 0 6

2 1ij ijA
λ

λδ λ λ
λ

−
− = = = − −

− −
 

 The roots are 3, 2λ = − . For 1 3λ = , the equations (8.82) are  

 
(1) (1) (1) (1)
1 2 1 2

(1) (1) (1) (1)
1 2 1 2

(2 ) 2 1 2 0

2 ( 1 ) 2 4 0

c c c c

c c c c

λ

λ

− + = − + =

+ − − = − =
 

 These equations give (1) (1)
1 22c c= . The normalization condition (8.83) is 

(1) 2 (1) 2 (1) 2 (1) 2 (1) 2
1 2 2 2 21 | | | | 4 | | | | 5 | |c c c c c= + = + = . So (1) 1/2

2| | 1/5c = . We take (1) 1/2
2 1/5c = . 

Then (1) (1) 1/2
1 22 2/5c c= = . For 2 2λ = − , the equations (8.82) are  

 
(2) (2) (2) (2)
1 2 1 2

(2) (2) (2) (2)
1 2 1 2

(2 ) 2 4 2 0

2 ( 1 ) 2 0

c c c c

c c c c

λ

λ

− + = + =

+ − − = + =
 

 These equations give (2) (2)1
1 22c c= − . The normalization condition (8.83) is 

(2) 2 (2) 2 (2) 2 (2) 2 (2) 251
1 2 2 2 24 41 | | | | | | | | | |c c c c c= + = + = . So (2) 1/2

2| | 2/5c = . We take (2) 1/2
2 2/5c = . 

Then (2) (2) 1/21
1 22 1/5c c= − = − .  

 (b)  A is real and symmetric. It is also Hermitian. 
 (c)  As noted in Sec. 8.6, the eigenvector matrix  
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1/2 1/2

1/2 1/2

2 1
0.89442719 0.4472135955 5

1 2 0.447213595 0.89442719
5 5

⎛ ⎞−⎜ ⎟ −⎛ ⎞⎜ ⎟= = ⎜ ⎟
⎜ ⎟ ⎝ ⎠
⎜ ⎟
⎝ ⎠

C  

 for the real symmetric matrix A is orthogonal and is unitary. The orthogonality of the two 
eigenvectors is readily verified. Also 

 
1/2 1/2 1/2 1/2

T

1/2 1/2 1/2 1/2

2 1 2 1
1 05 5 5 5

1 2 1 2 0 1
5 5 5 5

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟ ⎛ ⎞⎜ ⎟⎜ ⎟= = = ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎝ ⎠−⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

†C C C C  

 (d)  

           
1/2 1/2

1 T

1/2 1/2

2 1
5 5

1 2
5 5

−

⎛ ⎞
⎜ ⎟
⎜ ⎟= =
⎜ ⎟−⎜ ⎟
⎝ ⎠

C C  

 (e)  1− =C AC  

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

2 1 2 1 2 1 6 2
2 2 3 05 5 5 5 5 5 5 5

1 2 2 1 1 2 1 2 3 4 0 2
5 5 5 5 5 5 5 5

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞−⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟= =⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

8.48 (a)  The characteristic equation (8.81) is  

 22 2
det( ) 0 4 ( 4)

2 2ij ij
i

A
i
λ

λδ λ λ λ λ
λ

− −
− = = = − = −

−
 

 The roots are 0, 4λ = . For 0λ = , the equations (8.82) are  

 
(1) (1) (1) (1)
1 2 1 2

(1) (1) (1) (1)
1 2 1 2

(2 ) 2 2 2 0

2 (2 ) 2 2 0

c ic c ic

ic c ic c

λ

λ

− − = − =

+ − = + =
 

 These equations give (1) (1)
1 2c ic= . The normalization condition (8.83) is 

(1) 2 (1) 2 (1) 2 (1) 2 (1) 2
1 2 2 2 21 | | | | | | | | 2 | |c c c c c= + = + = . So (1) 1/2

2| | 1/2c = . We take (1) 1/2
2 1/2c = . Then 

(1) (1) 1/2
1 2 /2c ic i= = . For 4λ = , the equations (8.82) are  

 
(2) (2) (2) (2)
1 2 1 2

(2) (2) (2) (2)
1 2 1 2

(2 ) 2 2 2 0

2 (2 ) 2 2 0

c ic c ic

ic c ic c

λ

λ

− − = − − =

+ − = − =
 

 These equations give (2) (2)
1 2c ic= − . The normalization condition (8.83) is 

(2) 2 (2) 2 (2) 2 (2) 2 (2) 2
1 2 2 2 21 | | | | | | | | 2 | |c c c c c= + = + = . So (2) 1/2

2| | 1/2c = . We take (2) 1/2
2 1/2c = . 

Then (2) (2) 1/2
1 2 /2c ic i= − = − .  
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 (b)  A is not real and is not symmetric. It is Hermitian. 
 (c)  The eigenvector matrix C for the Hermitian matrix A is unitary. The orthogonality of 

the eigenvectors is readily verified. Also  

           
1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2

1
1 02 2 2 2

1 1 1 0 1
2 2 2 2

i i i

i

⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟ ⎛ ⎞
⎜ ⎟⎜ ⎟= = ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎝ ⎠
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

†C C  

 (d)   

            
1/2 1/2

1

1/2 1/2

1
2 2

1
2 2

i

i
−

⎛ ⎞−⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟
⎝ ⎠

†C C  

 (e)   

1/2 1/2 1/2 1/2 1/2 1/2 1/2
1

1/2 1/2 1/2 1/2 1/2 1/2 1/2

1 1 402 2 0 02 2 2 2 2 2 2
1 2 2 1 1 1 4 0 40

2 2 2 2 2 2 2

i i i i i
i

i i i
−

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟= = =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

C AC  

8.49 For 2 1λ = − , the equations (8.82) are 

 
(2) (2) (2) (2)
1 2 1 2

(2) (2) (2) (2)
1 2 1 2

(3 ) 2 4 2 0

2 (0 ) 2 0

c ic c ic

ic c ic c

λ

λ

− + = + =

− + − = − + =
 

 So (2) (2)1
1 22c ic= − . Normalization gives (2) 2 (2) 2 (2) 2 (2) 2 (2) 251

1 2 2 2 24 41 | | | | | | | | | |c c c c c= + = + = . 

So (2) 1/2
2| | 2/5c = . We take (2) 1/2

2 2/5c = . Then (2) (2) 1/21
1 22 /5c ic i= − = − .  

 
8.50 The characteristic equation (8.81) is 

 2
1 0 2

1 2
0 0 5 0 (5 ) (5 )( 6)

2 2
2 4 2

λ
λ

λ λ λ λ λ
λ

λ

− − −
− − −

= − = − = − − −
− −

− −
 

 One root is 5λ = . The other roots are found from 2 6 0λ λ− − =  and are 3λ =  and 
2λ = − .  

            For 1 5λ = , the equations (8.82) are 

 

(1) (1) (1) (1) (1) (1)
1 2 3 1 2 3

(1) (1) (1) (1) (1) (1)
1 2 3 1 2 3

(1) (1) (1) (1) (1) (1)
1 2 3 1 2 3

( 1 ) 0 2 6 0 2 0

0 (5 ) 0 0 0 0 0

2 4 (2 ) 2 4 3 0

c c c c c c

c c c c c c

c c c c c c

λ

λ

λ

− − + − = − + − =

+ − + = + + =

− + + − = − + − =

 

 We set (1)
3c k= , where the constant k will be found from normalization. The first equation 

gives (1) (1)1 1
1 33 3c c k= − = − . The third equation gives 
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(1) (1) (1)3 3 71 1
2 1 32 4 6 4 12c c c k k k= + = − + = . Normalization gives 

(1) 2 (1) 2 (1) 2 2 2 2 249 2091
1 2 3 9 144 1441 | | | | | | | | | | | | | |c c c k k k k= + + = + + =  and 

1/2| | 12/(209) 0.8300574k = = . We take 0.8300574k = . So (1) 1
1 3 0.2766858c k= − = − , 

(1) 7
2 12 0.4842001c k= = , (1)

3 0.8300574c k= = .  
        For 2 3λ = , the equations (8.82) are 

 

(2) (2) (2) (2) (2) (2)
1 2 3 1 2 3

(2) (2) (2) (2) (2) (2)
1 2 3 1 2 3

(2) (2) (2) (2) (2) (2)
1 2 3 1 2 3

( 1 ) 0 2 4 0 2 0

0 (5 ) 0 0 2 0 0

2 4 (2 ) 2 4 0

c c c c c c

c c c c c c

c c c c c c

λ

λ

λ

− − + − = − + − =

+ − + = + + =

− + + − = − + − =

 

 The second equation gives (2)
2 0c = . The first equation gives (2) (2)1

1 32c c= − . Normalization 

gives (2) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 251
1 2 3 3 3 34 41 | | | | | | | | | | | |c c c c c c= + + = + =  and (2) 1/2

3| | 2/5c = . We take 
(2) 1/2
3 2/5 0.8944272c = = . So (2) 1/2

1 1/5 0.4472136c = − = − . 

         For 3 2λ = − , the equations (8.82) are 

 

(3) (3) (3) (3) (3) (3)
1 2 3 1 2 3

(3) (3) (3) (3) (3) (3)
1 2 3 1 2 3

(3) (3) (3) (3) (3) (3)
1 2 3 1 2 3

( 1 ) 0 2 0 2 0

0 (5 ) 0 0 7 0 0

2 4 (2 ) 2 4 4 0

c c c c c c

c c c c c c

c c c c c c

λ

λ

λ

− − + − = + − =

+ − + = + + =

− + + − = − + + =

 

 The second equation gives (3)
2 0c = . The first equation gives (3) (3)

1 32c c= . Normalization 

gives (3) 2 (3) 2 (3) 2 (3) 2 (3) 2 (3) 2
1 2 3 3 3 31 | | | | | | 4 | | | | 5 | |c c c c c c= + + = + =  and (3) 1/2

3| | 1/5c = . We 

take (3) 1/2
3 1/5 0.4472136c = = . So (3) 1/2

1 2/5 0.8944272c = = . The eigenvectors are  

     
0.2766858

0.4842001
0.8300574

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

            
0.4472136

0
0.8944272

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

           
0.8944272

0
0.4472136

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

8.51 
1 0 2 1 0 0 1 0 2 1 0 0 1 0 2 1 0 0

0 5 0 0 1 0 0 5 0 0 1 0 0 5 0 0 1 0
2 4 2 0 0 1 2 4 2 0 0 1 0 4 6 2 0 1

− − − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟→ → →⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 1 1 1
5 5 5

4 1 2 1
5 3 15 6

1 0 2 1 0 0 1 0 2 1 0 0 1 0 2 1 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 4 6 2 0 1 0 0 6 2 1 0 0 1

⎛ ⎞ ⎛ ⎞− − −⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ → → →⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − − − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 

1 4 1
3 15 3

1
5

1 2 1
3 15 6

1 0 0
0 1 0 0 0
0 0 1

⎛ ⎞− −
⎜ ⎟
⎜ ⎟
⎜ ⎟− −⎝ ⎠

 

 The inverse is  
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1 4 1
3 15 3

1 1
5

1 2 1
3 15 6

0 0−

⎛ ⎞− −
⎜ ⎟

= ⎜ ⎟
⎜ ⎟− −⎝ ⎠

A  

 
8.52  The matrix is  

 

5 17 26 37
3 5 6 7

5 13 20 29
3 5 6 7

13 25 34
5 7 8

17 20 25 5241
5 6 7 9 10
26 29 34 6141
6 7 8 9 11

37 52 61
7 10 11

1 2.5
2 5

2.5 3 5
4

5
5 5 6

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

B  

 A graphing calculator with eigenvalue capability or a computer-algebra program gives the 
eigenvalues as –3.3664014, 24.5567896, –0.00499050, –0.1852766, 61.0597948 10−− × ,    
–0.0001200235 and gives the eigenvector matrix as  

 

0.6695666 0.3237631 0.3036389 0.5896587 0.0136789 0.0823222
0.4293335 0.3276050 0.6635074 0.2630438 0.1242886 0.4283293
0.1791639 0.3583884 0.0015726 0.4983841 0.4297147 0.6375061
0.0604158 0.4055325 0.4559910

− −
− − − −
− −

− − − 0.3688083 0.697981 0.0277208
0.2863645 0.4635497 0.315732 0.0260194 0.536420 0.562548
0.4995987 0.5292213 0.3999305 0.4450026 0.1574374 0.2959183

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⎜ ⎟− − −
⎜ ⎟⎜ ⎟− − − − −⎝ ⎠

 

 where the columns are in the order of the eigenvalues given above. 
 
8.53 With 1, 1 as the initial guess for the elements of x, Excel gives 1 2.0000006λ = − .  The 

elements of the x that gives this eigenvalue are –0.4473249 and 0.8943717, and these are 
the elements of the 1λ  eigenvector. With an initial guess of 1, 1 for the elements of y, and 

with the constraints that y be normalized and orthogonal to the x previously found, Excel 
gives 2 2.99999998λ =  and gives the y eigenvector elements as 0.8943716 and 

0.4473248. (When entering matrix elements into Excel, hold down Control and Shift and 
then press Enter.) More-accurate values can be found by using Options in the Solver 
Parameters box to decrease the Precision to 10–10 after the preceding eigenvalues and 
eigenvectors have been found with the default precision of 10–6. Excel then gives 

1 1.9999999999988λ = −  with eigenvector components –0.447213850 and 0.894427064 

and gives 2λ  = 2.999999999954 with eigenvector components 0.894427064 and 

0.447213850.  
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8.54 In Excel, after viewing the initial graphs, double-click on the y axis and set the maximum 
and minimum on the y axis scale to something like 1E13 and –1E13. The graph of the 
altered polynomial shows only 10 roots (as compared with 20 for the original 
polynomial). The missing 10 roots are imaginary numbers (as can be verified using a 
computer-algebra program or a calculator with root-finding capability). 

 
8.55 Multiplication of 1−=B M AM  by M on the left gives 1−= = =MB MM AM IAM AM . 

Multiplication of =MB AM  by 1−M  on the right gives 1− =MBM A . Substitution of 
this expression for A in the eigenvalue equation i i iλ=Ac c  gives 1

i i iλ− =MBM c c . 

Multiplication of this equation by 1−M  on the left gives 1 1( ) ( )i i iλ− −=B M c M c , so the 

eigenvalues of B are the same as those of A and the eigenvectors of B are 1
i

−M c , where 

ic  are the eigenvectors of A. 

 
8.56 We have i i iλ=Ac c . Multiplication of this equation by A on the left gives 

2 2
i i i i i i i iλ λ λ λ= = =A c Ac c c , so the eigenvalues of 2A  are 2

iλ  and the eigenvectors are 

the same as those of A.  
 

8.57 (a)  *| | | [ | ]jm j m i i j i k km k i k i j i km k i ij k i k kmg g a f a f a f a f a f f aδ = 〈 〉 = 〈∑ ∑ 〉 = ∑ ∑ 〈 〉 = ∑ ∑ 〈 〉  
(Eq. 1). We have | ( )k i k km k ik km imf f a S a∑ 〈 〉 = ∑ = SA , where the matrix-multiplication 

rule (7.110) was used. From (8.90), *( ) ji i ja=†A . Also ( ) jm jmδ=I . Hence Eq. 1 becomes 

( ) ( ) ( ) ( )jm i ji im jm= ∑ =† †I A SA A SA . Therefore = †I A SA . 

 (b)  Equation (8.53) gives 1 1
n n
k ik k k ik kH c W S c= =∑ = ∑  (Eq. 2). By the matrix-multiplication 

rule (7.110), 1
n
k ik kH c=∑  is the ith element of the column vector Hc and 1

n
k ik kS c=∑  is the 

ith element of the column vector Sc, so Hc = WSc. Adding the index j to label the 
eigenvalues and eigenvectors, we rewrite this last equation as ( ) ( )j j

jW=Hc Sc and rewrite 

Eq. 2 as ( ) ( )
1 1

n j n j
k ik j k ikk kH c W S c= =∑ = ∑  (Eq. 3) . As in the text and equations following 

 Eq. (8.87), we have ( )( ) j
ij k ik kH c= ∑HC  and ( )( ) j

kj jkc W=CW . Then 
( )( ) ( ) j

ij k ik kj k ik jkS S c W= ∑ = ∑SCW CW . Use of Eq. 3 shows ( ) ( )ij ij=HC SCW , so 

=HC SCW . 

 (c)  We have 1 1 1 1− − − −= = =† †A HAA C A SAA CW IA CW A CW  (Eq. 4). Defining 
′ ≡ †H A HA  and 1−′ ≡C A C , we write Eq. 4 as ′ ′ ′=H C C W . 
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8.58 (a)  Since U is unitary, 1− = †U U  and = =† †U U UU I . Multiplication of = †s U SU  by 

U on the left and by †U  on the right gives = = =† † †UsU UU SUU ISI S .  

 (b)  We have 2 1/2 1/2 1/2 1/2 1/2 1/2= = = = = =† † † † †M MM Us U Us U Us Is U Us s U UsU S , 
where the result of part (a) was used. So 1/2=M S . 

 (c)  1/2 1/2 1/2 1/2 1/2 1/2− − −= = = = = =† † † † † †MN Us U Us U Us Is U Us s U UIU UU I . 

 (d)  * * *(( ) ) ( ) ( )*i j ji k jk ki k jk kib c b c= = ∑ = ∑†BC BC  and 

**( ) ( ) ( )ij k ik kj k ki jkc b= ∑ = ∑† † † †C B C B . Since the (i, j)th elements of ( )†BC  and † †C B  

are equal, we have ( )†BC  = † †C B  (Eq. 1). Setting =C DE  in ( )†BC  = † †C B , we have  

( )†BDE  = ( ) =† † † † †DE B E D B  (Eq. 2), where Eq. 1 was used. The matrix A is chosen 

as 1/2−= †A Us U , so 1/2 1/2( ) ( ) ( )− −= =† † † † † † †A Us U U s U  (Eq. 3), where Eq. 2 was 
used. The conjugate transpose is formed by taking the transpose of the matrix and 
replacing each element by its complex conjugate. The matrix 1/2−s  is a diagonal square 
matrix, so taking its transpose does not change it; the matrix elements of 1/2−s  are real 
numbers, so taking the complex conjugates of the elements does nothing. Hence 

1/2 1/2( )− −=†s s . Also, taking the conjugate transpose twice takes the transpose twice and 
takes the complex conjugate twice; the net effect is to bring us back to the original matrix. 

Hence ( ) =† †U U . So Eq. 3 becomes 1/2−=† †A Us U . So 
1/2 1/2 1/2− − −= =† † † †A SA Us U SA Us U SUs U . But from part (a), =†U SU s , so 
1/2 1/2− −=† †A SA Us ss U . The matrices 1/2−s  and s are diagonal square matrices of the 

same order. The product C of two diagonal matrices A and B is a diagonal matrix whose 
diagonal elements are the products of the corresponding elements of A and B; 

( )( )ij k ik kj k ik ik kj kjc a b a bδ δ= ∑ = ∑ ; each term in the sum is zero unless i k j= = , so ijc  is 

zero unless i j=  and ii ii iic a b= . The matrix product 1/2−ss  is thus a diagonal matrix with 

diagonal elements 1/2 1/2
i i is s s− = , so the matrix product 1/2 1/2( )− −s ss  is diagonal with 

diagonal elements 1/2 1/2 1i is s− = . Hence 1/2 1/2− −s ss  is the unit matrix of order n.  Hence 
1/2 1/2− −= = = =† † † †A SA Us ss U UIU UU I . 

 

8.59 Use of the linearity of Â  gives ( ) ( ) ( )ˆ ˆn n n
k k k k n k kk k kA c f c A f a c f∑ =∑ = ∑ . Multiplication by 

*if  followed by integration over all space gives ( ) ( )ˆ| | |n n
k i k n k i kk kc f A f a c f f∑ 〈 〉 = ∑ 〈 〉  

and ( ) ( )n n
k ik k n ikk kc A a c δ∑ = ∑ , which can be written as ( )( ) 0n

k ik n ik kA a cδ∑ − = . 

 
8.60 (a)  In ˆ| |jk j kT f T f= 〈 〉 , the kinetic-energy operator equals the particle-in-a-box (PIB) 

Hamiltonian operator PIB
ˆ ˆ( )T H=  and the f functions are PIB wave functions. Hence 
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2 2 2 2
PIB PIB

ˆ| | | ( 4 /8 )jk j k j k jkT f H f E f f k mlπ δ= 〈 〉 = 〈 〉 = = . The reduced energy and 

length are 2 2/( / )rE E ml= =  and /rx x l= . One has the program evaluate jk jk jkH T V= + . 
Because the PIB basis functions are orthonormal, ij ijS δ=  in (8.55) and (8.58), and (8.79) 
applies. The eigenvalues of the H matrix give the optimized values iW  of the variational 
integral and the eigenvectors of H give the coefficients of the PIB basis functions. Before 
graphing the variational functions, normalize them by dividing by the square root of the 
sum of the squares of the coefficients. Using Mathcad with TOL set as 910− , one finds the 
following results. For 4 basis functions, the rE  values in the variation function are 
47.599135, 53.418896, 117.149785, 151.09691. For 8 basis functions, we get as the 
lowest four energies 46.281200, 46.309366, 113.994381, 143.584363. For 16 basis 
functions, we get 45.850738, 46.138686, 113.944461, 143.384175. For 32 basis functions, 
45.807849, 46.111840, 113.938854, 143.358149. The coefficients for the 32-basis-
function case show that for the ground state, the coefficients are 0.64118 for the 1n =  PIB 
ψ, 0.73485 for 3n = , 0.21774 for 5n = ; all other coefficients are less than 0.03 in 
magnitude. For the first excited state, the 32 basis-function calculation has coefficients 
0.88039 for the 2n =  PIB ψ, 0.46888 for 4n = , and less than 0.06 in magnitude for all 
other coefficients. The figure on the next page shows a Mathcad sheet with 4 basis 
functions. 

 (b)  For 4 basis functions, one finds the following. The function corresponding to the 
lowest-energy eigenvalue of 47.599 is 2 40.887 0.463u ψ ψ≡ +  (where nψ is a PIB wave 
function with quantum number n) and the function corresponding to the next-lowest 
eigenvalue 53.419 is 1 30.690 0.723w ψ ψ≡ + . With the origin at the center of the box, u is 
an odd function with one interior node [see the graph of phim(1,xr) on the next page] and 
w is an even function. (The function w dips slightly below the xr axis at the center of the 
box, so w has two interior nodes, one slightly to the left of the box center, and one slightly 
to the right of the center. When more basis functions are added, the function 
corresponding to w remains above the xr axis at the center of the box and has no interior 
nodes.) Hence w corresponds to the ground state, even though its variational energy is 
larger than that of u. The linear-variation theorem (8.61) is not violated by this result. We 
have 1 45.802E = , 2 46.107E =  (where the numbering on the true energies corresponds to 
the true ordering of the states) and 1 47.599W = , 2 53.419W =  (where the numbering 
corresponds to the ordering of the W values, which is not necessarily the true ordering of 
the states). Hence the (8.61) relations 1 1W E≥  and 2 2W E≥  are not violated, even though 
the states are incorrectly ordered with this small number of basis functions. It makes the 
most sense to apply the linear variation method separately to the even states and to the odd 
states (as is done in Prob. 8.60). 
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0

0
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0
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⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

C m〈 〉 eigenvec Hr eigm,( ):=
m 1 2, n..:=

eig

47.59913500

53.41889638

117.14978470

151.09690901

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=eig sort eigenvals Hr( )( ):=

Hr

86.766

2.495− 10 15−×

31.831−

9.793 10 15−×

2.063− 10 15−×

69.739

6.977 10 15−×

42.441−

31.831−

6.213 10 15−×
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⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

Hrj k, Trj k, Vrj k,+:=Vrj k,
1
4

3
4

xrV0r fj j xr,( )⋅ fk k xr,( )⋅
⌠
⎮
⎮
⌡

d:=
Trj k, j2 π2

⋅
δ j k,( )

2
⋅:=

fk k xr,( ) 20.5 sin k π⋅ xr⋅( )⋅:=fj j xr,( ) 20.5 sin j π⋅ xr⋅( )⋅:=

k 1 2, n..:=j 1 2, n..:=n 4:=V0r 100.:=TOL 1 10 9−⋅:=ORIGIN 1:=

Double well (barrier of height V0 from L/4 to 3L/4)--Linear Variation-PIB basis
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8.61 We modify the Mathcad sheet for Prob. 8.60 by adding the definition p:=0 if we want to 
include only basis functions with PIB quantum number ,2, 4, 6n = …  (the odd-function 
states ) or by adding p:=1 to include only the ,1, 3, 5n = …  PIB states (the even-function 
states). In the fj, fk, and j,kTr  definitions, j is replaced by 2j – p and k is replaced by  

2k – p. With 16 even basis functions, the lowest two eigenvalues are 45.807849 and 
113.938854. With 16 odd basis functions, the lowest two eigenvalues are 46.111840 and 
143.358149. These numbers agree with those found in Prob. 8.59 using 32 basis functions. 

 
8.62 The Mathcad sheet for Prob. 8.60 is modified by changing V0r to 200, by changing the 

limits in the j,kVr  integral to 0 and 1, and by inserting a factor of xr in the integrand of the 

j,kVr  integral. With 8 basis functions, one finds the four lowest eigenvalues 63.468669, 

110.971574, 150.048599, 187.092431; with 12 basis functions, one finds 63.466117, 
 110.966517, 150.039184, 187.068173. The lowest four approximate wave functions have 
 0, 1, 2, and 3 interior nodes. Graphs of the 12-basis-function four lowest variational 

functions are 
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 The plots show that as the energy of the state increases, the probability of finding the 

particle in the right half of the box (where V is greatest) increases. In the normalized 
variation functions, PIB functions whose coefficient is greater than 0.1 in magnitude are  
n = 1, 2, 3, and 4 for the ground state and n = 1, 3, 4, and 5 for the first excited state.  

 
8.63 The fj and fk definitions are revised as indicated in the text. In the j,kTr  definition, the 2 in 

the denominator is changed to 200. In the j,kVr  definition, V0r is replaced by (xr2/2) and 
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the limits are changed to –5 and 5. The xr definition becomes xr:= –5,–4.95..5. One finds 
13 basis functions are needed to get three-decimal-place accuracy; the lowest 5 
eigenvalues are 0.500000002, 1.50000125, 2.5000019, 3.5002147, 4.500204. In the 
normalized variation functions, PIB functions whose coefficient is greater than 0.1 in 
magnitude are n = 1, 3, and 5 for the ground state and n =2, 4, 6, and 8 for the first excited 
state. 

 
8.64 The fj and fk definitions are modified to resemble those in Prob. 8.63. In the j,kTr  

definition, the 2 in the denominator is changed to 98 or 162 for the box lengths of 7 and 9 
units, respectively. In the j,kVr  definition, V0r is replaced by xr4 and the limits are 

appropriately modified. The xr definition is suitably modified. When the number of basis 
functions is increased from 9 to 10, an odd basis function is being added, and this changes 
the energy of the second lowest state (which is an odd function) but has no effect 
whatever on the energies of the first and third states (which are even functions). Hence, to 
be sure the three lowest energies are not changing in the third decimal place, one must 
check that these energies remain unchanged in the third decimal place for three successive 
values of the number of basis functions. For a box length of 7 units, this first occurs for 
13, 14, and 15 basis functions. With 15 basis functions, the three lowest reduced energies 
are 0.6680, 2.39365, and 4.6968, in good agreement with the values in Prob. 4.32. For a 
box length of 9 units, stability in the third decimal place first occurs with 16, 17, and 18 
basis functions. The 18-basis-function lowest energies are 0.6680. 2.39365, and 4.6978. 
The wave functions resemble those for the harmonic oscillator. 

 
8.65 1 1 1

PIB, PIB,( ) ( , ) [ ( )] ( , ) ( ) ( , )m m m
l j j j l j j j l j j jr F r Y r c r Y c r r Y c fφ θ φ ψ θ φ ψ θ φ− − −= = ∑ = ∑ = ∑ , 

so 1
PIB, ( ) ( , )m

j j lf r r Yψ θ φ−= . Then 
22 2

0 PIB, PIB, 0 0| ( ) ( ) * sinm m
jk j k j k l l jkS f f r r r r dr Y Y d dπ πψ ψ θ θ φ δ∞ −= 〈 〉 = =∫ ∫ ∫ , since the 

spherical harmonics are normalized and the PIB functions are orthonormal.  
          Also, ˆ| |jk j kH f H f= 〈 〉 . The H-atom Hamiltonian has the form (6.8) and kf  has 

the form (6.16), with R in (6.16) replaced by 1
PIB,k rψ − . So ˆ

kHf  is given by the left side of 

(6.17) with R in (6.17) replaced by 1
PIB,k rψ − , with R′  replaced by 1

PIB,( / )( )kd dr rψ − =  
2 1

PIB, PIB,k kr rψ ψ− − ′− +  with R′′  replaced by 2 2 1
PIB,( / )( )kd dr rψ − =  

3 2 1
PIB, PIB, PIB,2 2k k kr r rψ ψ ψ− − −′ ′′− + , with 2 /V e r′= − , and with l = 0, since we consider 

only the l = 0 states. With these substitutions, the left side of (6.17) becomes ˆ
kHf =  

2
3 2 1 1 2 1 2 1 1

PIB, PIB, PIB, PIB, PIB, PIB,{2 2 2 ( )}
2 k k k k k kr r r r r r Ze r rψ ψ ψ ψ ψ ψ
μ

− − − − − − − −′ ′′ ′ ′− − + + − + − =
=

1 2 2
PIB, PIB,[ ( /2 ) ( / ) ]k kr Ze rμ ψ ψ− ′′ ′− −= . Then ˆ| |jk j kH f H f= 〈 〉  = 
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22 2 2 2
0 PIB, PIB, PIB, 0 0( )[ ( /2 ) ( / ) ] * sinm m

j k k l lr Ze r r r dr Y Y d dπ πψ μ ψ ψ θ θ φ∞ −′′ ′− − =∫ ∫ ∫=
2 2

0 PIB, PIB, 0 PIB, PIB,( )[ ( /2 ) ] ( )[ ( / ) ]l l
j k j kr dr r Ze r drψ μ ψ ψ ψ′′ ′− − − =∫ ∫= jk jkT V+  ( PIBψ  is zero 

for r greater than the box length).  
        Since 2 2 2( /2 )( / )d drμ− =  in jkT  is the PIB Hamiltonian operator, we have 

2 2 2 2
PIB, PIB PIB, PIB PIB, PIB,

ˆ| | | ( 4 /8 )jk j k j k jkT H E k lψ ψ ψ ψ π μ δ= 〈 〉 = 〈 〉 = = , as in Prob. 8.59a. 

When we switch to reduced (r) units, Eq. (6.139) shows that 
4 2 2 2 2 2 4 2 2 2 4 4 2 2

, / ( 4 /8 ) / ( /2 )j k jk jk jkTr T e k l e k e lμ π μ δ μ π μ δ− −′ ′ ′= = == = = = . The reduced 

length is given by (6.139) as 2 2/rl e lμ ′= = , so 
2 2 4 2 4 4 2 2 4 2 2 2

, ( /2 ) ( /2 )j k r jk r jkTr k e e l k lπ μ μ δ π δ′ ′= == = .  

        Since the reduced length is taken as 27 in this problem, the Trj,k expression in Prob. 
8.59 is modified by replacing the 2 in the denominator with 2(27)2. Also fj(j,xr) becomes 
(2/27)0.5⋅sin(j⋅π⋅xr/27) and fk is similarly changed. In Vrj,k, the integration limits are 0 and 
27 and V0 in Vrj,k in Prob. 8.59 is changed to (–1/xr). With 28 basis functions, one finds 
the three lowest eigenvalues are –0.47334, –0.12143, and –0.05396, as compared with the 
true values –0.5/n2 = –0.50000, –0.12500, and –0.05555… . The accuracy is mediocre. 
(With 40 basis functions, one finds –0.48852, –0.12351, and –0.05463.) 

 
8.66 (a)  T;   (b)  T;   (c)  T;   (d)  T;   (e)  T;   (f)  T;   (g)  T;   (h)  F;   (i)  T;   (j)  F;   (k)   F 

(This is true only if 1−A  exists.);  (l)  T;   (m)  T;   (n)  T (This was mentioned in the Sec. 
8,6 example.). 
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Chapter 9 

Perturbation Theory 
 
 
9.1 (a)  

V

0 l

C

0

to∞ to∞

 
 (b)  The perturbation on the particle in a box is Ĥ C′ =  for 0 x l≤ ≤ . So 

(1) (0) (0) (0) (0)ˆ| | | .n n n n nE H C Cψ ψ ψ ψ′= 〈 〉 = 〈 〉 =  

 
9.2 (a)  (2) 2 (0) (0)| | /( ).n m n mn n mE H E E≠ ′= ∑ −   (0) (0) (0) (0)ˆ| | | 0,mn m n m nH H Cψ ψ ψ ψ′ ′= 〈 〉 = 〈 〉 =  

since the unperturbed particle-in-a-box (pib) functions are orthogonal. So (2) 0.nE =  

 (b)  We have (1) (0)
n m n m maψ ψ≠= ∑ , where (0) (0) (0) (0)ˆ| | /[ ]m m n n ma H E Eψ ψ′= 〈 〉 − . Since 

(0) (0) (0) (0)ˆ| | | 0m n m nH Cψ ψ ψ ψ′〈 〉 = 〈 〉 = , it follows that 0ma =  and (1) 0.nψ =  

 (c)  From Prob. 4.52, addition of the constant C to the pib potential energy leaves the 
wave functions unchanged and simply adds C to the energy eigenvalues. The results 

(1) 0nψ = , (1) ,nE C=  and (2) 0nE =  are thus consistent with Prob. 4.52. 

 

9.3 From (9.22) and (4.57), 
2(1) (0) (0) 3 1/2 2 3 4ˆ| | (4 / ) ( )x

n n nE H x e cx dx dxαψ ψ α π ∞ −
−∞′= 〈 〉 = + =∫  

2 2 23 1/2 5 6 3 1/2 6
02( / ) [ ] 4( / )x x xc x e dx d x e dx d x e dxα α αα π α π∞ − ∞ − ∞ −

−∞ −∞+ = =∫ ∫ ∫
23 1/2 6 3 1/2 4 1/2 7 1/2 2

04( / ) 4( / ) (3 5/2 )( / ) (15/4)( / )xd x e dx d dαα π α π π α α∞ − = ⋅ = =∫
2 2 2 215 /16d mπ ν= , where (4.53), (4.33), and (A.10) were used. 

 

9.4 (a)  Since V is zero inside the box for the particle in a box, we have 0Ĥ V′ =  for 
31

4 4l x l≤ ≤  and ˆ 0H ′ =  elsewhere. So 
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3 /4 3 /4(1) (0) (0) 2 1
0 0/4 /42

ˆ| | (2/ ) sin ( / ) (2 / )[ ( /4 )sin(2 / )] |l l
n n n l lE H l V n x l dx V l x l n n x lψ ψ π π π′= 〈 〉 = = −∫
1

0 02 ( /2 )[sin(3 /2) sin( /2)]V V n n nπ π π= − −  with 2 2
0 /V ml= = , where (A.2) was used.  

 (b)  (0) 2 2 2 2 2 2 2/8 /2nE n h ml n mlπ= = = . For 1n = , 
(1) 1 1 2 2 1 2 21

01 2[ (2 ) (sin 3 /2) (2 ) (sin /2)] ( / )(0.5 ) 0.8183099( / )E V ml mlπ π π π π− − −= − + = + == =

and (0) (1) 2 2
1 1 5.753112 /E E ml+ = = . For 2n = , 

(1) 1 1 2 21 1
02 2 2[ (4 ) (sin 3 ) (4 ) (sin )] ( / )E V mlπ π π π− −= − + = =  and 

(0) (1) 2 2
2 2 20.23921 /E E ml+ = = . The beginning of Sec. 9.4 explains why these results are 

the same as the variation results of Probs. 8.2a and 8.17. 
 
9.5 0V  is a constant and (1)

nE  equals 0V  times the area under the 2
nψ  curve from l/4 to 3l/4. 

This area in the central region of the box is greatest for the n = 1 wave function, which has 
no interior nodes and has its maximum in 2ψ  at the box center. Other states have interior 
nodes and have maxima in 2ψ  away from the center, and will have a smaller portion of 
the area under the 2ψ  curve in the central region. 

 

9.6 From (9.27), (1) (0) 1/2(2/ ) sin( / )n m n m m m n ma l a m x lψ ψ π≠ ≠= ∑ = ∑ . To find ma , which is 

given by (9.26), we need (0) (0)ˆ| |m n mnH Hψ ψ′ ′〈 〉 = . We have 
3 /4(0) (0)

0/4
ˆ| | (2/ ) sin( / )sin( / )l

mn m n lH H l V m x l n x l dxψ ψ π π′ ′= 〈 〉 = =∫  
3 /4

0

/4

2 sin[( ) / ] sin[( ) / ]
2( ) 2( )

l

l

V l m n x l l m n x l
l m n m n

π π
π π

⎡ ⎤− +
− =⎢ ⎥− +⎣ ⎦

2

2
sin[3( ) /4] sin[( ) /4] sin[3( ) /4] sin[( ) /4]

( ) ( )
m n m n m n m n

m n m nml
π π π π

π π
⎡ ⎤− − − + − +

−⎢ ⎥− +⎣ ⎦

=  

 Then (0) (0) (0) (0) 2 2 2 2ˆ| | /[ ] 8 /( )m m n n m mna H E E ml H n m hψ ψ′ ′= 〈 〉 − = − . 

 
9.7 (a)  With the origin at the center of the box, the perturbation is an even function (see the 

figure in Prob. 8.2). The n = 1 PIB wave function is an even function. The m = 2, 4, 6,… 
PIB wave functions are odd functions, and the integrand is an odd function. Hence the 
integral is zero.  

 (b)  (2) 2 (0) (0) 2 2 2 2
1 1 3,5,7 11 1| | /( ) (8 / ) | | /(1 )m m m m mE H E E ml h H m≠ =′ ′= ∑ − = ∑ − =…  

2 2 2 2 2
3,5,7 1(2 / ) | /(1 )m mml H mπ = ′∑ −…= , where 1mH ′  is given by the expression in the Prob. 

9.6 solution with 1n = . If one evaluates (2)
1E  by summing through 1999m = , the last 

term has the value 15 2 25.15 10 ( / )ml−− × =  and (2) 2 2
1 0.002733825( / )E ml= − = . (Because 

the terms decrease slowly with increasing m, one needs to continue summing until the 
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terms become extremely small.) Use of (0) (1) 2 2
1 1 5.753112 /E E ml+ = =  from Prob. 9.4b 

gives (0) (1) (2)
1 1 1E E E+ + =  2 25.750378 /ml= , which is much closer to the true value 

2 25.750345 /ml=  than the (0) (1)
1 1E E+  value. 

9.8 (a)  Since V is zero inside the box for the particle in a box, we have 0Ĥ V′ =  for 

(0.25 ) (0.75 )c l x c l+ ≤ ≤ +  and ˆ 0H ′ =  elsewhere. So (1) (0) (0)ˆ| |E Hψ ψ′= 〈 〉 =  
(0.75 ) 2 (0.75 )1

0 0(0.25 ) (0.25 )2(2/ ) sin ( / ) (2 / )[ ( /4 )sin(2 / )] |c l c l
c l c ll V n x l dx V l x l n n x lπ π π+ +

+ += − =∫  
1

0 02 ( /2 ){sin[(1.5 2 ) ] sin[(0.5 2 ) ]},V V n c n c nπ π π− + − +  where (A.2) was used. 

 (b)  (1)
0/ 0.5 (0.5/ ){sin[(1.5 2 ) ] sin[(0.5 2 ) ]}.E V c cπ π π= − + − +  The graph is 

  
 For 0,c =  the high potential-energy region is in the central region of the box, where the 

unperturbed probability density is greatest. As c increases, the high potential-energy 
region moves to where the unperturbed probability density is lower. (1)E  decreases as c 
increases, because an increase in c decreases the probability that the particle will be found 
in the high potential-energy region. 

 
9.9 With the assumption that the charge is uniformly distributed in the nucleus, the 

unpenetrated charge Q equals e times the fraction of nuclear volume occupied by a sphere 
of radius r. So ( )3 3 34 4

3 3 ( / )n nQ r R e r R eπ π= = , where 1510  mnR −≡ . We shall use (1)E  

to estimate the energy shift. (Evaluation of higher-order corrections is much too hard to be 
feasible.) The electron’s potential energy is affected by the finite nuclear size only when 
the electron has penetrated the nucleus, so Ĥ ′  is nonzero only for 0 nr R≤ ≤ . We have 

0 2
0

ˆ ˆ /4H T e rπε= − , and 0
ˆ ˆ /4H T eQ rπε= −  for 150 10  mr −≤ ≤ . So 

(1)
0/E V  
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2 2 2
0

3
0 0 0

1ˆ ˆ ˆ
4 4 4 n

eQ e e rH H H
r r r Rπε πε πε

⎛ ⎞
′ = − = − + = −⎜ ⎟⎜ ⎟

⎝ ⎠
 for 150 10  mr −≤ ≤  and 

(1) (0) (0)ˆ| |E Hψ ψ′= 〈 〉 =
2

22 / 4 3
0 003

0

1 ( / ) sin
4

nR r a
n

e e r r R dr d d
a

π πθ θ φ
πεπ

− − ∫ ∫∫ . Since 

100.5 10a −= ×  m >> Rn, 2 /r ae−  differs negligibly from 1 in the integration range. So 
(1)E = 3 2 2 5 3 2 3 21

0 002(1/ )( /4 )(4 )( /5 ) | ( / )(0.3 )nR
n na e r r R e a Rπ πε π π ε− = =

19 2 30 2 10 3 12 2 1 2(1.602 10  C) (0.3)(10  m ) / [ (0.529 10  m) (8.854 10  C  N  m )]π− − − − − −× × × =
271.87 10−×  J = 81.17 10−×  eV, which is negligible compared with the –13.6 eV  

ground-state energy. 
 

9.10 The formula is (2) 2 (0) (0)| | /( )n m n mn n mE H E E≠ ′= ∑ −  for a nondegenerate level. If n is the 

(nondegenerate) ground state, then (0) (0)
n mE E−  is always negative and 2| |mnH ′  is never 

negative, so (2)
nE  must be negative or zero. It will be zero if all the mnH ′  integrals are 

zero, as in Prob. 9.2. 
 
9.11 (a)  (1) (0) 3 (0)| | 0E cxψ ψ= 〈 〉 =v v v ; the harmonic-oscillator ψ’s have definite parity, so 

(0) 2| |υψ  is an even function and the integrand is an odd function. Hence the integral from 
−∞  to ∞  is zero. 

 (b)  From (9.35), 
(2) (0) (0) 2 (0) (0) 1 (0) 3 (0) 2ˆ| | | | /( ) ( ) | | | | /( )m m m m mE H E E h cx mψ ψ ν ψ ψ−

≠ ≠′= ∑ 〈 〉 − = ∑ 〈 〉 −v v v v v v v . 

To evaluate (0) (0) 2ˆ| | | |m Hψ ψ′〈 〉v  from the formula given for (0) (0)ˆ| |m Hψ ψ′〈 〉v , we use 
2( )ij ijδ δ=  and 0 for ij ik k jδ δ = ≠ , which follow from the Kronecker-delta definition. So  

 

(2)

3 3
, 3 , 1 , 1 , 3

3

( 1)( 2) 3) 9( 1) 9 ( 1) 2)
8

m m m m

m

E

c
mh

δ δ δ δ
α ν

+ + − −

≠

=

+ + ( + + + + + − ( −
−∑

v

v v v v

v

v v v v v v v v
v

 

 (2) 3 31 1
3 33 [ ( 1)( 2) 3) 9( 1) 9 ( 1) 2)]

8
cE
hα ν

= − + + ( + − + + + − ( −v v v v v v v v v  

 (2) 2
3 (30 30 11)

8
cE
hα ν

= − + +v v v  

 (c)  From (9.27), (1)ψ v  contains a contribution from the state (1)
mψ  if (0) 3 (0)| | 0m cxψ ψ〈 〉 ≠v . 

The formula given in the problem shows that this integral is nonzero when m is 3+v , 
1+v , 1−v , or 3−v . (The 3−v  contribution is absent when v  is 0, 1, or 2. The 1−v  

contribution is absent when v  is 0.) 
 



9-5 
Copyright © 2014 Pearson Education, Inc. 

 

9.12 The variational integral is given by (9.64) with 1Z = , so 
2 2 25

0 016
ˆ| | (1 ) ( /4 ) (11/16) 2(13.60 eV) =H e aφ φ πε〈 〉 = − − = −  –12.86 eV, which is higher 

than the H-atom ground-state energy –13.60 eV, so this trial function predicts H– is 
unstable with respect to dissociation to an H atom and an electron. 

 
9.13 The unperturbed Hamiltonian is the sum of two hydrogenlike Hamiltonians, each with 

nuclear charge Z – 5/16. Hence each unperturbed wave function has the form (1) (2)f g , 
where f and g are hydrogenlike functions with nuclear charge Z – 5/16. From (9.48), the 
ground-state (0)E  is 2(2 5/16) (1 1)(13.60 eV) 77.46 eV− − + = − . The ground-state 
unperturbed wave function is 1s(1)1s(2), where the nuclear charge is 27/16; this is (9.56) 
with 27/16.ζ =  We have (1) 2

0 12 1 2( /4 ) 1s(1)1s(2) |1/ 5/16 5/16 |1s(1)1s(2)E e r r rπε= 〈 − − 〉 . 
From (9.61), 12 01s(1)1s(2) |1/ |1s(1)1s(2) 5 /8r aζ〈 〉 = . The equations between (9.60) and 
(9.61) give 1 2 01s(1)1s(2) |1/ |1s(1)1s(2) 1s(1)1s(2) |1/ |1s(1)1s(2) /r r aζ〈 〉 = 〈 〉 = . Hence 

(1) 2
0 0 0[5 /8 (5/16)( / ) (5/16)( / )] 0E e a a aζ ζ ζ′= − − = . Note that (0) (1)E E+  is more 

accurate than the perturbation result (9.54) and equals the variation result (9.64). 
 
9.14 Substitution of (9.123) into (9.52) and multiplication by 0 0

0 0( )*4Y Y π  gives  

 ( ) 1 0 2 0
6 2

1 2 / 2 / 2 2
1 2 1 26 10 0

00 0

16 1      
2 14

ll
Zr a Zr a

l
l m l

rZ eE e e r r dr dr
la rπε

∞ ∞ ∞ − − <
+

= =− >

=
+∑ ∑ ∫ ∫  

( ) ( )
2 0

1 1 0 1 1 1 1 10 0
, * , sinm

lY Y d d
π π

θ φ θ φ θ θ φ⎡ ⎤× ⎣ ⎦∫ ∫  

( ) ( )2 0
0 2 2 2 2 2 2 20 0

, * , sinm
lY Y d d

π π
θ φ θ φ θ θ φ⎡ ⎤× ⎣ ⎦∫ ∫  

 Use of the orthonormality of the spherical harmonics [Eq. (7.27)] gives 

( ) ( )
6 2

1
1 2 ,0 ,0 ,0 ,06 0 0

00 0

16 1    
2 14

l

l m l m
l m l

Z eE dr dr
la

δ δ δ δ
πε

∞ ∞ ∞

= =−
=

+∑ ∑ ∫ ∫ "  

 The Kronecker deltas make all terms vanish except the single term with m = 0 = l, so  

( ) 1 0 2 0
6 2

1 2 / 2 / 2 2
1 2 1 26 0 0

0 0

16 1   
4

Zr a Zr aZ eE e e r r dr dr
a rπε

∞ ∞ − −

>

= ∫ ∫  

 If we integrate first over 1r  then in the range 1 20 ,r r≤ ≤  we have 2;r r> =  in the range 

2 1 ,r r≤ ≤ ∞  we have 1.r r> =  Therefore 
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 ( ) 22 0 1 0 1 0

2

2 26 2
2 / 2 / 2 /1 2 1 1

2 1 1 26 0 0
0 0 2 1

16
4

rZr a Zr a Zr a

r

r rZ eE e r e dr e dr dr
a r rπε

∞ ∞− − −⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ ∫

( ) ( ) ( )22 0 1 0 1 02 0

2

6 2 6 2
2 / 2 / 2 /1 2 /2 2

2 1 1 2 2 1 1 26 60 0 0
0 0 0 0

16 16
4 4

rZr a Zr a Zr aZr a
r

Z e Z eE e r e r dr dr e r e r dr dr
a aπε πε

∞ ∞ ∞− − −−= +∫ ∫ ∫ ∫
Using the indefinite integrals (A.6) and (A.7) in the Appendix, we do the 1r  integrals to 
obtain 2r  integrals that are evaluated using (A.8) The result is 

 ( )
2

1

0 0

5  
8 4
Z eE

aπε
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

 9.15 From (9.64) and (6.106), the energy is proportional to em . The 4
2 He  nuclear mass mα  is 

about 4 times the proton mass, which in turn is 1836 times the electron mass, so mα  is 

about 7350 times em . Then 2/( ) 7350 /7351 0.999864e e e em m m m m mα αμ = + = = , and use 
of μ  multiplies the energies by 0.999864. 

 

9.16 (0) (0) 2 1 (0) 2 (0)
12 12 12 0 0 121 / |1 / | | 1/ | ( /4 ) | /4 |r r r e e rψ ψ ψ ψ πε ψ πε ψ−〈 〉 = 〈 〉 ≈ 〈 〉 = 〈 〉 =  

2 1 (0) (0) 2 1 19
0 0

ˆ( /4 ) | | ( /4 ) (34.0 eV)(1.602 10 J/eV)e H eπε ψ ψ πε− − −′〈 〉 = × =   
2 18 19 2 12 2 2 18

0(4 )(5.45 10 J) (1.602 10  C) (4 8.854 10  C /N-m )(5.45 10  J)e πε π− − − − − −× = × ⋅ × ×  
10 12.36 10  m−= ×  and 1 10

121 / 0.42 10  m.r − −〈 〉 ≈ ×  A more accurate value can be found by 
replacing Z in (9.53) with 5

16 1.6875Z − = , Eq. (9.63). This gives 
10 1

121 / (1.6875/2)(2.36 10  m )r −〈 〉 = × =  10 11.99 10  m−×  and 1 10
121 / 0.50 10  m.r − −〈 〉 ≈ ×  

The value found from an accurate He ground-state wave function is 
1 10

121 / 0.56 10  mr − −〈 〉 ≈ ×  [Pekeris, Phys. Rev., 115, 1216 (1959)]. 

 
9.17 The trial function (9.56) has the form 1 (1)1 (2)s sζ ζφ = , where the subscript indicates use 

of ζ  in φ. Then 1 1 11 (1)1 (2) | | 1 (1)1 (2) 1 (1) | |1 (1)r s s r s s s r sζ ζ ζ ζ ζ ζ〈 〉 = 〈 〉 = 〈 〉 , since 1 (2)sζ  
is normalized. The integral 11 (1) | | 1 (1)s r sζ ζ〈 〉  is the same as occurs in the calculation of 

r〈 〉  for the hydrogenlike atom, except that Z is replaced by ζ . So 1 3 /2r a ζ〈 〉 = . 

 
9.18 (a)  Since 21 12( )* (2 )* 2 ,H H b b′ ′= = =  the secular equation (9.84) is  

 
(1) (1)

11 12 (1) 2 (1) 2
(1) (1)

21 22

4 2
0 ( ) 10 20

2 6

H E H b E b
E bE b

H H E b b E

′ ′− −
= = = − +

′ ′ − −
 

 (1) 2.7639 , 7.2361E b b=  

 (b)  The equations (9.82) for (1) 2.7639E b=  are  
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(1) (1)

11 1 12 2 1 2 1 2
(1) (1)

21 1 22 2 1 2 1 2

( ) 0 (4 ) 2 1.2361 2

( ) 0 2 (6 ) 2 3.2361

H E c H c b E c bc bc bc

H c H E c bc b E c bc bc

′ ′− + = = − + = +

′ ′+ − = = + − = +
 

 These equations give 1 21.6180c c= − . The normalization condition (9.86) is 
2 2 2 2 2
1 2 2 2 2| | | | 1 | 1.6180 | | | 3.6179 | |c c c c c+ = = − + =  and 2 0.5257c = , 1 0.8506c = − .  

 The equations (9.82) for (1) 7.2361E b=  are  

 
(1)

1 2 1 2
(1)

1 2 1 2

0 (4 ) 2 3.2361 2

0 2 (6 ) 2 1.2361

b E c bc bc bc

bc b E c bc bc

= − + = − +

= + − = −
 

 These equations give 1 20.6180c c= . The normalization condition (9.86) is 
2 2 2 2 2
1 2 2 2 2| | | | 1 | 0.6180 | | | 1.3819 | |c c c c c+ = = + =  and 2 0.8507c = , 1 0.5257c = . 

The correct zeroth-order functions are (0) (0)
1 20.8506 0.5257ψ ψ− +  for (1) 2.7639E b=  and 

(0) (0)
1 20.5257 0.8507ψ ψ+  for (1) 7.2361E b= . 

 
9.19 Solving (9.86) for (1)E  amounts to finding the eigenvalues of the matrix with elements 

miH ′ . As noted in the Example in Sec. 8.6,, the sum of the eigenvalues of a matrix equals 
the sum of the diagonal elements of the matrix. Since 11 22 10H H b′ ′+ = , this must be the 

sum of the (1)E  values. 
 

9.20 (0) (0) (0) 0 (0) (0) 0 (0) (0) (0)ˆ ˆ ˆ ˆ ˆ| | | | | | | |m i m i m i m iH H H H Hψ ψ ψ ψ ψ ψ ψ ψ′ ′〈 〉 = 〈 + 〉 = 〈 〉 + 〈 〉 =  
(0) (0) (0) (0) (0) (0) (0) (0)ˆ ˆ| | | | |n m i m i n mi m iE H E Hψ ψ ψ ψ δ ψ ψ′ ′〈 〉 + 〈 〉 = + 〈 〉 , since all the unperturbed 

wave functions of the degenerate level have the same energy eigenvalue (0)
nE . So 

(0) (0) (0) (0) (0)ˆ ˆ| | | |m i n mi m iH E Hψ ψ δ ψ ψ′〈 〉 − = 〈 〉 . Substitution of this expression for 
(0) (0)ˆ| |m iHψ ψ′〈 〉  into (9.83) converts it to the equation in the problem. 

 

9.21 (0) (0) (0) (0) (0) (0)
1 1 1 1 1 1* *1 | | |d d d d d d

n n i i i j j j i j i j i j i j i j ijc c c c c cφ φ ψ ψ ψ ψ δ= = = = = == 〈 〉 = 〈∑ ∑ 〉 = ∑ ∑ 〈 〉 = ∑ ∑  
2

1 | |d
i ic== ∑ , where (9.74) and (9.80) were used. 

 

9.22 (a)  Since ˆ ˆ ˆ
x yH H H= + , the results of Sec. 6.2 give the wave function as the product 

1/2 1/2(2/ ) sin( / ) (2/ ) sin( / )x yl n x l l n y lπ π⋅ . 

 (b)  3 /4 3 /4(1) (0) (0) 2 2
/4 /4

ˆ| | (2/ )(2/ ) sin ( / )sin ( / )l l
n n n x yl lE H l l b n x l n y l dx dyψ ψ π π′= 〈 〉 = =∫ ∫   

3 /4 3 /42 2
/4 /4(2/ )(2/ ) sin ( / ) sin ( / )l l

x yl ll l b n x l dx n y l dyπ π∫ ∫ , which is valid for nondegenerate 

unperturbed levels.  In Prob. 9.4, we found that 
3 /4 2 1
/4 2(2/ ) sin ( / ) [sin(3 /2) sin( /2)]/2l

ll n x l dx n n nπ π π π= − −∫  (Eq. 1) so 
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(1) 1 1
2 2{ [sin(3 /2) sin( /2)] 2 }{ [sin(3 /2) sin( /2)] 2 }n x x x y y yE b n n n n n nπ π π π π π= − − − − .  

For the ground state, 1xn = , 1yn =  and (1) 21
2( 1/ ) 0.6696E b bπ= + = . 

     The unperturbed first excited level is degenerate; the states 2xn = , 1yn =  (state 1) and 
1xn = , 2yn =  (state 2) have the same energies for a square box. We have 

3 /4 3 /42 2
11 /4 /4(2/ )(2/ ) sin (2 / ) sin ( / )l l

l lH l l b x l dx y l dyπ π′ = ∫ ∫ . Eq. 1 with n = 2 and with n = 1 

gives 1 1 1
11 2 2 4( )( 1/ ) (1 2/ ) 0.4092H b b bπ π′ = + = + = . Similarly 

3 /4 3 /42 2
22 /4 /4(2/ )(2/ ) sin ( / ) sin (2 / )l l

l lH l l b x l dx y l dyπ π′ = =∫ ∫ 0.4092b. Then  

 3 /4 3 /4
12 /4 /4(2/ )(2/ ) sin(2 / )sin( / ) sin( / )sin(2 / )l l

l lH l l b x l x l dx y l y l dyπ π π π′ = ∫ ∫ . Use of the  

Prob. 9.6 result 3 /4
/4(2/ ) sin( / )sin( / )l

ll m x l n x l dxπ π =∫  
sin[3( ) /4] sin[( ) /4] sin[3( ) /4] sin[( ) /4]

( ) ( )
m n m n m n m n

m n m n
π π π π

π π
− − − + − +

−
− +

 

 gives 12 210H H′ ′= = , since sin(3 /4) sin( /4)π π= . The secular determinant in (9.84) is 

diagonal and [Eq. (9.90)] (1)
111 0.4092E H b′= =  and (1)

222 0.4092E H b′= = . As noted in 
Sec. 9.6, we already have the correct zeroth-order functions, which are given by the 
expression in part (a) with 2xn = , 1yn =  and with 1xn = , 2yn = . 

  
9.23 To achieve a block-diagonal determinant, we group the m = 0 functions together, 

numbering the functions as follows: 0 1 11 2 , 2 2 , 3 2 , 4 2s p p p−= = = = . By Eq. (7.50), 
we have 13 31 14 41 23 32 24 42 34 430 H H H H H H H H H H′ ′ ′ ′ ′ ′ ′ ′ ′ ′= = = = = = = = = = . The 
functions 1, 2, 3, 4 are orthonormal. The perturbation H ′  is an odd function. From Prob. 
7.28d, function 1 is even and functions 2, 3, and 4 are odd functions. Therefore 

11 22 33 440 H H H H′ ′ ′ ′= = = = , since these integrals have odd integrands. The only nonzero 
H ′  integrals are 12 21H H′ ′= =  

21 4 4 5 / 2
0 0 0 02 | cos | 2 (32 ) (2 / ) cos sinr ae s r p e a r r a e dr d dπ πθ π θ θ θ φ∞− − −〈 〉 = − =∫ ∫ ∫E E

1 4 5 1 6(32 ) (2 4! 5! )(2/3)(2 ) 3e a a a a e aπ π− − −⋅ − = −E E , where the substitution cosw θ≡  
was used. The secular equation (9.84) is  

 

(1)

(1)
(1) 2 (1) 2 2

(1)

(1)

3 0 0

3 0 0
0 ( ) [( ) (3 ) ]

0 0 0

0 0 0

E e a

e a E
E E e a

E

E

− −

− −
= = −

−

−

E

E
E  

 (1) 0, 0, 3 , 3E e a e a= −E E . The third and fourth functions 12 p  and 12 p−  are correct 

zeroth-order functions. The correct zeroth-order function for (1) 3E e a= − E  is found from  
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(1)

1 2 1 2
(1)

1 2 1 2

3 0 3 3

3 0 3 3

E c e ac e ac e ac

e ac E c e ac e ac

− − = = −

− − = = − +

E E E

E E E
 

 which give 1 2c c= . Normalization gives 1/2
1 2c −= , so the third zeroth-order function is 

1/2
02 (2 2 )s p− + . Similarly, the fourth zeroth-order function is 1/2

02 (2 2 )s p− − . 

 
9.24 By analogy to (9.103), (9.104), and (9.110), the correct zeroth-order functions are  

 1/2 1/22 [1 (1)3 (2) 3 (1)1 (2)] 2 [1 (1)3 (2) 3 (1)1 (2)]s s s s s s s s− −− +  

 1/2 1/22 [1 (1)3 (2) 3 (1)1 (2)] 2 [1 (1)3 (2) 3 (1)1 (2)]x x x xs p p s s p p s− −− +  

 1/2 1/22 [1 (1)3 (2) 3 (1)1 (2)] 2 [1 (1)3 (2) 3 (1)1 (2)]y y y ys p p s s p p s− −− +  

 1/2 1/22 [1 (1)3 (2) 3 (1)1 (2)] 2 [1 (1)3 (2) 3 (1)1 (2)]z z z zs p p s s p p s− −− +  

 2 2 2 2
1/2 1/22 [1 (1)3 (2) 3 (1)1 (2)] 2 [1 (1)3 (2) 3 (1)1 (2)]z z z zs d d s s d d s− −− +  

 2 2 2 2 2 2 2 2
1/2 1/22 [1 (1)3 (2) 3 (1)1 (2)] 2 [1 (1)3 (2) 3 (1)1 (2)]x y x y x y x ys d d s s d d s− −

− − − −− +  

 1/2 1/22 [1 (1)3 (2) 3 (1)1 (2)] 2 [1 (1)3 (2) 3 (1)1 (2)]xy xy xy xys d d s s d d s− −− +  

 1/2 1/22 [1 (1)3 (2) 3 (1)1 (2)] 2 [1 (1)3 (2) 3 (1)1 (2)]xz xz xz xzs d d s s d d s− −− +  

 1/2 1/22 [1 (1)3 (2) 3 (1)1 (2)] 2 [1 (1)3 (2) 3 (1)1 (2)]yz yz yz yzs d d s s d d s− −− +  

 (The imaginary forms of the p or d orbitals could also be used.) The two 1s3s functions 
have different energies and give two nondegenerate energy levels. The 1s3p functions 
give two levels, each level being threefold degenerate; 1s3p functions with the minus sign 
belong to a lower level than 1s3p functions with the plus sign. The 1s3d functions give 
two levels, each level being fivefold degenerate; 1s3d functions with the minus sign 
belong to a lower level than 1s3d functions with the plus sign. The 1s3s levels lie lowest. 
The 1s3d levels lie highest. 

 

9.25 From (9.48), (0) 2 21 1
0 04 42 ( )( /8 ) 2(13.6 eV) 27.2 eVE e aπε= − + = − = − , as compared with 

the He+ ground-state energy [Eq. (6.94)] 2 2
02 ( /8 ) 4(13.6 eV)e aπε− = − = –54.4 eV. The 

first-order correction (1)E  for He is 2
0 122 (1)2 (2) | / 4 | 2 (1)2 (2)s s e r s sπε〈 〉 . This integral 

has a positive integrand and is positive, which will make the 2s2 He energy larger than  
–27.2 eV, making even stronger the conclusion that the 2s2 He configuration is unstable 
with respect to loss of an electron.  

 

9.26 2 2 2 2
0 12 0 12 1 2 1 21 (1)2 (2) | /4 |1 (1)2 (2) [1 (1)] [2 (2)] ( /4 ) s ss s e r s s s s e r d d Jπε πε τ τ〈 〉 = =∫ ∫  (Eq. 

1). The labeling of the variables in a definite integral does not affect the integral’s value. 
Hence interchange of 1 and 2 in Eq. 1 gives 2

0 21 1 21 (2)2 (1) | /4 |1 (2)2 (1) s ss s e r s s Jπε〈 〉 = . 
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Use of (9.104) or (9.103) gives 
21

0 122 1 (1)2 (2) 1 (2)2 (1) | /4 |1 (1)2 (2) 1 (2)2 (1)s s s s e r s s s sπε〈 ± ± 〉 =   
2 21 1

0 12 0 122 21 (1)2 (2) | /4 |1 (1)2 (2) 1 (1)2 (2) | /4 |1 (2)2 (1)s s e r s s s s e r s sπε πε〈 〉 ± 〈 〉 ±
2 21 1

0 12 0 122 21 (2)2 (1) | /4 |1 (1)2 (2) 1 (2)2 (1) | /4 |1 (2)2 (1)s s e r s s s s e r s sπε πε〈 〉 + 〈 〉 =
1 1 1 1

1 2 1 2 1 2 1 2 1 2 1 22 2 2 2s s s s s s s s s s s sJ K K J J K± ± + = ± . 

 
9.27 As 0s → , the numerator and denominator both go to zero, so we use l’Hôpital’s rule: 

0 0lim ( 1)/ lim ( /1)as as
s se s ae a→ →− = = . 

 

9.28 0 0
0| | (2/ ) sin( / )sin( / )l

m nQx Q a x m x l n x l dxψ ψ π π〈 〉 = =∫   

2 2 2 2 2 2
0

2 1 cos[( ) / ] sin[( ) / ] cos[( ) / ] sin[( ) / ]
2 ( ) / ( ) /( ) / ( ) /

l
Q m n x l x m n x l m n x l x m n x l
a m n l m n lm n l m n l

π π π π
π ππ π

⎡ ⎤− − + +
+ − −⎢ ⎥− +− +⎣ ⎦

 

 2 2 2 2 2 2
( 1) 1 ( 1) 1

( ) / ( ) /

m n m nQ
a m n l m n lπ π

− +⎡ ⎤− − − −
= −⎢ ⎥

− +⎣ ⎦
 

 since sin 0kπ =  and cos ( 1)kkπ = −  where k is an integer. The integral was found from a 
table or by using integrals.wolfram.com. Since 2( 1) ( 1) ( 1) ( 1)m n m n n m n− − +− = − − = − , we 

have 
2

0 0
2 2 2

1 1| | [( 1) 1]
( ) ( )

m n
m n

QlQx
a m n m n

ψ ψ
π

− ⎡ ⎤
〈 〉 = − − −⎢ ⎥

− +⎣ ⎦
. If m n−  is an even 

number, then ( 1) 1 1 1 0m n−− − = − =  and the particle-in-a-box (PIB) transition is not 
allowed. So the PIB selection rule is that the change in the quantum number must be odd. 

 

9.29 The transition will be allowed if at least one of the integrals 0 0| |m nQxψ ψ〈 〉 , 
0 0| |m nQyψ ψ〈 〉 , 0 0| |m nQzψ ψ〈 〉  is nonzero. The three-dimensional PIB wave function is the 

product ( ) ( ) ( )f x g y h z  of three one-dimensional PIB functions. We have 
0 0| | ( ) ( ) ( ) | | ( ) ( ) ( ) ( ) | | ( )m nQx Q f x g y h z x f x g y h z Q f x x f xψ ψ〈 〉 = 〈 〉 = 〈 〉 , since g and h 

are normalized. The integral ( ) | | ( )f x x f x〈 〉  was shown in Prob. 9.27 to be nonzero only 
if the change in quantum number xnΔ  is an odd integer. Similarly, 0 0| |m nQyψ ψ〈 〉  is 

nonzero only if ynΔ  is odd and 0 0| |m nQzψ ψ〈 〉  is nonzero only if znΔ  is odd. Thus three-

dimensional PIB transitions involving unpolarized radiation are allowed if and only if one 
or more of the three quantum numbers changes by an odd integer. 

 

9.30 (a)  Equation (7.41) becomes ˆ ˆ|s i iBS g BS g= ∑ 〈 〉 . Operating with Â , we have 
ˆ ˆ ˆˆ ˆ ˆ| |s i i s i iABS A g BS g g BS Ag= ∑ 〈 〉 = ∑ 〈 〉 , since Â  is linear. Multiplication by *R  and 
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integration over all space gives 
ˆ ˆ ˆˆ ˆ ˆ| | | | | | | | |s i i s i iR AB S g BS R A g R A g g B S〈 〉 = ∑ 〈 〉〈 〉 = ∑ 〈 〉〈 〉 . 

 (b)  
(0) (0) 2 (0) (0) (0) (0) (0) (0) (0) (0)ˆ ˆ ˆ ˆ ˆ| | | | | | * | | | | | |m n m n m n n m m nH H H H Hψ ψ ψ ψ ψ ψ ψ ψ ψ ψ′ ′ ′ ′ ′〈 〉 = 〈 〉 〈 〉 = 〈 〉〈 〉

 and Eq. (9.35) becomes (2) (0) (0) (0) (0)ˆ ˆ(1/ ) | | | |n m n n m m nE E H Hψ ψ ψ ψ≠ ′ ′≈ Δ ∑ 〈 〉〈 〉 =  
(0) (0) (0) (0) (0) (0) (0) (0)ˆ ˆ ˆ ˆ(1/ ) [ | | | | | | | | ]m n m m n n n n nE H H H Hψ ψ ψ ψ ψ ψ ψ ψ′ ′ ′ ′Δ ∑ 〈 〉〈 〉 − 〈 〉〈 〉 =

(0) 2 (0) (0) (0) 2ˆ ˆ(1/ ) [ | ( ) | | | ].n n n nE H Hψ ψ ψ ψ′ ′Δ 〈 〉 − 〈 〉  

 
9.31 (a)  T;     (b)  F  (This is true only for wave functions with the same energy.);    

(c)  F;     (d)  F. 
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Chapter 10 

Electron Spin and the Spin–Statistics Theorem 

 
 

10.1 1/2 1/2 34 3531 1
2 2 2[ ( 1)] ( ) 3(6.62607 10  J s)/2 9.133 10  J s.s s π− −= + = ⋅ = × = ×S = =  

 
10.2 From Fig 10.1, 1/2 1/2 1/231 1

2 2 2cos [ ( 1)] [ ( )] 1/3 0.57735sm s sθ = + = = == =  and 

0.95532θ =  rad = 54.74°. 
 
10.3 (a) 

2 2 2 2 2 2
1 2 1 2 1 2 1 2

ˆ ˆ ˆ( ) ( 1) ( 1) ( 1) ( ),S c c c S c S c s s c s s s s c cα β α β α β α β+ = + = + + + = + += = =  

where 1
2 .s =  Also, 1 1

1 2 1 2 1 22 2
ˆ ˆ ˆ( ) .z z zS c c c S c S c cα β α β α β+ = + = −= =  

2 21 1 1
1 2 1 2 1 2 1 22 2 4

ˆ ˆ ˆ ˆ( ) [ ( )] ( ) ( ).z z z zS c c S S c c S c c c cα β α β α β α β+ = + = − = += = =   

 (b)  1/2
1 2 1 21/21 [( )* ( )]

sm c c c cα β α β=−= ∑ + + =  2 1/2
1 1/2 * ( ) ( )

s s smc m mα α=−∑ +  
21/2 1/2 1/2

1 2 2 1 21/2 1/2 1/2( )* * ( )* * *
s s sm m mc c c c cα β β α β β=− =− =−∑ + ∑ + ∑  = 2 2

1 21 0 0 1c c⋅ + + + ⋅  

[where (10.11) and (10.12) were used]; so 2 2
1 2 1.c c+ =  

 
10.4 (a)  , ( 1) , , ( 1) ,s s s s− − + −= = … = =  

(b)  Since the labels on the directions of space are arbitrary, the answer is the same as in  
part (a), namely , ( 1) , , ( 1) ,s s s s− − + −= = … = = . 

 (c)  For 1
2s = , the only experimentally observable value of 2S  is 2 23 31

2 2 4== = . The 

observable values of each of xS , yS , and zS  are 1
2− =  and 1

2 = , so the only observable 

value of each of 2
xS , 2

yS , and 2
zS  is 21

4 = . The relation 2 2 2 23 1 1 1
4 4 4 4= + += = = =  shows that 

2 2 2 2
x y zS S S S= + +  is satisfied with observable values.  

      For 1s = , the observable value of 2S  is 22= . The observable values of each of xS , 

yS , and zS  are −= , 0, and = , and the observable values of 2
xS , 2

yS , and 2
zS  are 2=  and 0. 

The relation 2 2 22 0= + += = =  shows that 2 2 2 2
x y zS S S S= + +  can be satisfied with 

observable values. 
      For 3

2s = , the observable value of 2S  is 2 23 5 15
2 2 4== = . The observable values of each 

of xS , yS , and zS  are 3
2− = , 1

2− = , 1
2 = , and 3

2 = , and the observable values of 2
xS , 2

yS , 

and 2
zS  are 29

4 =  and 21
4 = . The possible observable combinations for 2 2 2

x y zS S S+ +  are 
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2 2 21 1 1
4 4 4+ += = = , 2 2 291 1

4 4 4+ += = = , 2 2 29 91
4 4 4+ += = = , and 2 2 29 9 9

4 4 4+ += = = , none of 

which equals 215
4 = , so 2 2 2 2

x y zS S S S= + +  cannot be satisfied with observable values.  

 
10.5 (a)  Fermion.   (b)  Fermion.   (c)  Fermion.   (d)  Boson.    

(e)  The 12C nucleus has 12 fermions (6 protons and 6 neutrons); with an even number of 
fermions, it is a boson.    
(f)  The 13C nucleus has 13 fermions (6 protons and 7 neutrons); with an odd number of 
fermions, it is a fermion. 
(g)  The 12C atom has 18 fermions (6 protons, 6 electrons, and 6 neutrons); with an even 
number of fermions, it is a boson.    
(h)  The 13C atom has 19 fermions (6 protons, 6 electrons, and 7 neutrons); with an odd 
number of fermions, it is a fermion.    
(i)  The 14N atom has 21 fermions (7 protons, 7 electrons, and 7 neutrons); with an odd 
number of fermions, it is a fermion.  
(j)  The 15N atom has 22 fermions (7 protons, 7 electrons, and 8 neutrons); with an even 
number of fermions, it is a boson. 
 

10.6 (a) 12 1 2 3
ˆ ˆ[ , ] ( , , )P T f q q q =  

2 2 2 2 2 2 2 2
12 1 2 3 1 2 3 1 2 3 12 1 2 3
ˆ ˆ( /2 )( ) ( , , ) ( /2 )( ) ( , , )e eP m f q q q m P f q q q− ∇ +∇ +∇ − − ∇ +∇ +∇ == =

2 2 2 2 2 2 2 2 2 2 2
12 1 2 3 1 2 3 2 1 3
ˆ ( /2 )( / / / ) ( /2 )( ) ( , , )e eP m f q f q f q m f q q q− ∂ ∂ + ∂ ∂ + ∂ ∂ + ∇ +∇ +∇ == =

2 2 2 2 2 2 2
2 1 3 2 2 1 3 1 2 1 3 3( /2 )[ ( , , )/ ( , , )/ ( , , )/ )]em f q q q q f q q q q f q q q q− ∂ ∂ + ∂ ∂ + ∂ ∂ +=

2 2 2 2 2 2 2
2 1 3 1 2 1 3 2 2 1 3 3( /2 )[ ( , , )/ ( , , )/ ( , , )/ )]em f q q q q f q q q q f q q q q∂ ∂ + ∂ ∂ + ∂ ∂ ==  0.  

Let 1/2
0/(4 ) .e e πε′ ≡  We have 12 1 2 3

ˆ ˆ[ , ] ( , , )P V f q q q =  
2 2 2 2 2 2

12 1 2 3 12 13 23 1 2 3
ˆ [( / / / / / / ) ( , , )]P Ze r Ze r Ze r e r e r e r f q q q′ ′ ′ ′ ′ ′− − − + + + −

2 2 2 2 2 2
1 2 3 12 13 23 12 1 2 3

ˆ( / / / / / / ) ( , , )Ze r Ze r Ze r e r e r e r P f q q q′ ′ ′ ′ ′ ′− − − + + + =
2 2 2 2 2 2

2 1 3 21 23 13 2 1 3( / / / / / / ) ( , , )Ze r Ze r Ze r e r e r e r f q q q′ ′ ′ ′ ′ ′− − − + + + −
2 2 2 2 2 2

1 2 3 12 13 23 2 1 3( / / / / / / ) ( , , )Ze r Ze r Ze r e r e r e r f q q q′ ′ ′ ′ ′ ′− − − + + + = 0. It follows from 

(5.4) that 12
ˆ ˆ[ , ] 0P H = . 

 (b)  12 23 1 2 3 12 23 1 2 3 23 12 1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ[ , ] ( , , ) ( , , ) ( , , )P P f q q q P P f q q q P P f q q q= − =  

12 1 3 2 23 2 1 3 2 3 1 3 1 2
ˆ ˆ( , , ) ( , , ) ( , , ) ( , , ) 0P f q q q P f q q q f q q q f q q q− = − ≠ . 

 (c)  If f is antisymmetric, then 12 1 2 3 1 2 3
ˆ ( , , ) ( , , )P f q q q f q q q= −  and 

23 1 2 3 1 2 3
ˆ ( , , ) ( , , )P f q q q f q q q= − . So 

12 23 1 2 3 12 23 1 2 3 23 12 1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ[ , ] ( , , ) ( , , ) ( , , )P P f q q q P P f q q q P P f q q q= − =

2 2
1 2 3 1 2 3( 1) ( , , ) ( 1) ( , , ) 0f q q q f q q q− − − = . 
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10.7 We must prove that 

1 2 12 1 2 1 2 1 2 12 1 2 1 2
ˆ ˆ[ ( , )]* ( , ) ( , ) [ ( , )]*f q q P g q q d d g q q P f q q d dτ τ τ τ=∫ ∫ ∫ ∫ , that is, we must 

show that 1 2 2 1 1 2 1 2 2 1 1 2[ ( , )]* ( , ) ( , )[ ( , )]*f q q g q q d d g q q f q q d dτ τ τ τ=∫ ∫ ∫ ∫  (Eq. 1). 
Since the integration variables in definite integrals are dummy variables, we can rename 
them in any way we please. On the left side of Eq. 1, let 1q  be relabeled as 2q  and let 2q  
be relabeled as 1q . Then the left side of Eq. 1 becomes 2 1 1 2 2 1[ ( , )]* ( , )f q q g q q d dτ τ∫ ∫ , 
which is the same as the right side of Eq. 1. 

 
10.8 (1)  Neither symmetric nor antisymmetric;   (2)  antisymmetric;   (3)  symmetric;    

(4)  neither;   (5)  symmetric;   (6)  symmetric. 
 
10.9 With a spin of zero, electrons would be bosons and would require a symmetric wave 

function. There would be no exclusion principle to limit the number of electrons in the 
same orbital. Since the spin is zero, no spin factor is needed in the wave function. The 
zeroth-order ground-state wave function would be 1s(1)1s(2)1s(3), and the first excited 
state would be 1/23 [1 (1)1 (2)2 (3) 1 (1)2 (2)1 (3) 2 (1)1 (2)1 (3)]s s s s s s s s s− + +  

 
10.10 This function is antisymmetric, whereas the spatial factor in the He ground-state wave 

function is symmetric. 
 
10.11 (a)  1/2 1/2

12
ˆ ˆ[ (1) (2)] 2 [ (1) (2) (1) (2)] 2 [ (1) (2) (1) (2)]A f g f g g f f g P f g− −= − = − =  

1/2
12
ˆ2 (1 ) (1) (2)P f g− − , so 1/2

12
ˆ ˆ2 (1 )A P−= − .  

 (b)  Use of Eqs. (10.36) and (10.37) gives 

1/2

1/2

(1) (1) (1)
ˆ (1) (2) (3) (3!) (2) (2) (2)

(3) (3) (3)

6 [ (1) (2) (3) (2) (1) (3) (3) (2) (1) (1) (3) (2) (3) (1) (2) (2) (3) (1)]

f g h
Af g h f g h

f g h

f g h f g h f g h f g h f g h f g h

−

−

= =

− − − + + =

 1/2
12 13 23 12 13 13 12
ˆ ˆ ˆ ˆ ˆ ˆ ˆ6 (1 ) (1) (2) (3)P P P P P P P f g h− − − − + +  

 1/2
12 13 23 12 13 13 12

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ6 (1 )A P P P P P P P−= − − − + +  

 Other answers are possible. For example, 13 12
ˆ ˆP P  could be replaced by 12 23

ˆ ˆP P . 

 
10.12 Writing the original determinant, we first add 1c−  times column 1 to column 3 and then 

add 2c−  times column 2 to column 3: 
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1 2

1 2

1 2

1 (1) (1) 1 (1) (1) 1 (1)[ (1) (1)]
1 (2) (2) 1 (2) (2) 1 (2)[ (2) (2)]
1 (3) (3) 1 (3) (3) 1 (3)[ (3) (3)]

s s s c c
s s s c c
s s s c c

α β α β
α β α β
α β α β

+
+ =
+

2

2

2

1 (1) (1) 1 (1) (1) 1 (1) (1)
1 (2) (2) 1 (2) (2) 1 (2) (2)
1 (3) (3) 1 (3) (3) 1 (3) (3)

s s s c
s s s c
s s s c

α β β
α β β
α β β

=

1 (1) (1) 1 (1) (1) 0
1 (2) (2) 1 (2) (2) 0 0
1 (3) (3) 1 (3) (3) 0

s s
s s
s s

α β
α β
α β

=  

 
10.13 To construct wave functions for bosons. 
 
10.14 Since the muon is not identical to an electron, the wave function need not be 

antisymmetric with respect to interchange of an electron and a muon, and the ground state 
has both electrons in the 1s orbital and the muon in a 1s orbital.  

 
10.15 (a)  Grouping together terms in (0)ψ  that have the same spin factor, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1/2

1/2

1/2

6 1 1 2 2 1 3 1 1 1 2 2 3 1 2 3

6 1 1 1 2 2 3 2 1 1 2 1 3 1 2 3

6 2 1 1 2 1 3 1 1 2 2 1 3 1 2 3

s s s s s s

s s s s s s

s s s s s s

ψ β α α

α β α

α α β

−

−

−

= −⎡ ⎤⎣ ⎦

+ −⎡ ⎤⎣ ⎦

+ −⎡ ⎤⎣ ⎦

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 1 2 3 1 2 3a b c A B Cψ β α α α β α α α β= + + = + +  

 where the spatial function multiplying the spin function ( ) ( ) ( )1 2 3β α α  is called a and 

where ( ) ( ) ( )1 2 3 ,A aβ α α=  with similar definitions for b, c, B, and C. We have  

 ( ) ( )1 0 2| |E H dψ τ= ′∫  

 
( )1 2 2 2| |  | |  | |  *  *  

*  *  *  *  

E A H d B H d C H d A BH d B CH d

A CH d AB H d BC H d AC H d

τ τ τ τ τ

τ τ τ τ

′ ′ ′ ′ ′= + + + +

+ ′ + ′ + ′ + ′

∫ ∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

 

 Because of the orthogonality of the different spin functions in A, B, and C, the last six 
integrals in (1)E  are zero. 

 (b)  Since the spin functions are normalized, summation over spins in the first three 
integrals in (1)E  gives one. Therefore 

 ( )1 2 2 2
1 2 3 1 2 3 1 2 3E a H d d d b H d d d c H d d d= ′ + ′ + ′∫∫∫ ∫∫∫ ∫∫∫v v v v v v v v v  

 (c) If we relabel the electrons in the a term in (0)ψ  as follows: 1 2, 2 3, 3 1,→ → →  
then a is converted to b. H ′  is unchanged by this relabeling. Since the value of a definite 
integral is independent of how we label the integration variables, the first and second 
integrals in the last equation are equal. If we relabel the electrons in the a term as follows: 
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1 3, 2 1, 3 2,→ → →  then a is converted to c. Therefore the first and third integrals in 
(1)E  are equal. Hence (1) 2

1 2 33E a H d d d′= ∫ ∫ ∫ v v v .  

 (d)  We have 2 2 2 21 1
2 23 [1 (1)2 (2)1 (3)] [1 (1)] 1 (2)2 (2)1 (3)2 (3) [1 (1)1 (2)2 (3)]a s s s s s s s s s s s= − +  

and 2
12 13 23(1/ 1/ 1/ ).H e r r r′ ′= + +  Because of the orthogonality of 1s(3) and 2s(3), the 

middle term in 23a  does not contribute to the 121/r  integral and 
2 2

12 1 2 33 ( / )a e r d d d′ =∫ ∫ ∫ v v v  
2 2 21

12 1 22 [1 (1)] [2 (2)] ( / )s s e r d d′ +∫ ∫ v v 2 2 21
12 1 22 [1 (1)] [1 (2)] ( / )s s e r d d′ =∫ ∫ v v

1 1
1 2 1 12 2s s s sJ J+  Because of the orthogonality of 1s(2) and 2s(2), the middle term in 23a  

does not contribute to the 131/r  integral and 2 2
13 1 2 33 ( / )a e r d d d′ =∫ ∫ ∫ v v v  

2 2 21
13 1 22 [1 (1)] [1 (3)] ( / )s s e r d d′ +∫ ∫ v v 2 2 21

13 1 22 [1 (1)] [2 (3)] ( / )s s e r d d′ =∫ ∫ v v
1 1

1 1 1 22 2s s s sJ J+  Finally, 2 2
23 1 2 33 ( / )a e r d d d′ =∫ ∫ ∫ v v v  

2 2 21
23 1 22 [2 (2)] [1 (3)] ( / )s s e r d d′∫ ∫ v v 2

23 1 21 (2)2 (2)1 (3)2 (3)( / )s s s s e r d d′− +∫ ∫ v v
2 2 21

23 1 22 [1 (2)] [2 (3)] ( / )s s e r d d′∫ ∫ v v = 1 1
1 2 1 2 1 22 2s s s s s sJ K J− + . Adding these three 

integrals, we get (1) 2
1 2 3 1 2 1 1 1 23 2 s s s s s sE a H d d d J J K′= = + −∫ ∫ ∫ v v v . 

 
10.16 (1) 2 2 2 2 2 2

12 13 23 1 2 3[1 (1)] [1 (2)] [2 (3)] ( / / / )E s s s e r e r e r d d dυ υ υ′ ′ ′= + + =∫ ∫ ∫  
2 2 2

12 1 2[1 (1)] [1 (2)] ( / )s s e r d dυ υ′ +∫ ∫ 2 2 2
13 1 3[1 (1)] [2 (3)] ( / )s s e r d dυ υ′ +∫ ∫

2 2 2
23 2 3 1 1 1 2[1 (2)] [2 (3)] ( / ) 2s s s ss s e r d d J Jυ υ′ = +∫ ∫ , since the orbitals are normalized. The 

exchange integral in the correct result (10.51) is missing. 
 
10.17 2 1/231

2 2| | ( /2 ) | | ( /2 )( )S e e e eg e m g e m= = ⋅ =m S =   
1/2 19 34 311

4 3 [(2.0023)(1.60218 10  C)(6.6261 10  J s)/[2 (9.1094 10  kg)]π− − −× × × =  

1.6082 2310−×  J/T, since 1 T = 1 N C–1 m–1 s = 1 kg C–1 s–1.  
 
10.18 (a)  ( /2 ) ( /2 ) | | | | cos ( /2 ) | |S e e e e e e zE g e m g e m g e m Sθ= − = − = − = − =m ·B S·B S B B   

1
2( /2 )( )| | ( /4 )| | .e e e eg e m g e m− ± =B B= ∓ =  

 (b)  The energy difference between the two levels in part (a) is ( /2 )| |e eg e m B= , so 
| |/ ( /4 )| |e eE h g e mν π= Δ = =B

19 31[(2.0023)(1.60218 10  C)/[4 (9.1094 10  kg)](1.00 T)π− −× × =2.80 × 1010 s–1, since  
1 T = 1 N C–1 m–1 s = 1 kg C–1 s–1.  
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 (c)  The proton, like the electron, has a spin quantum number of ½. Replacement of em  by 

pm  and eg  by Ng  in part (b) gives ( /4 )| |N pg e mν π= =B  
19 27[(5.5857)(1.60218 10  C)/[4 (1.6726 10  kg)](1.00 T)π− −× × =  42.58 MHz. 

10.19 (a) 1/2 1/2 34 343 5 1
2 2 2[ ( 1)] ( ) 15(6.62607 10  J s)/2 2.042 10  J s.I I π− −= + = ⋅ = × = ×I = =   

 (b) 3 31 1
2 2 2 2, , , .z II M= = − −= = = = =  

 (c)  The same as (b). 
 

10.20 (a)  19 27/2 5.585695(1.602176 10  C) 2(1.672622 10  kg)N pg e mγ − −= = × × =  
8 1 12.67522 10  (C/kg)(N C  m  s)/T,− −×  where the expression for the tesla given in Sec. 6.8 

was used. Use of 1 N = 1 kg m/s2 gives 8 1=2.67522 10  s /T 267.522 MHz/T.γ −× =  
 (b)  From (10.60), (267.522 MHz/T)(1.00 T)/2 42.5775 Hz.ν π= =  

 
10.21 (a)  IE M Bγ= − =  with 1 1

2 2and IM = − . So E  increases linearly with B, and we have 

E

B

M I   = – 1/2

M I   = 1/2

 
 (b)  1, 0, 1IM = − . There are three energy levels with E = 0 for the middle level: 

 

M I   = –1

M I   = 1

M I   = 0

B

E

 
 



10-7 
Copyright © 2014 Pearson Education, Inc. 

 

10.22     ↑↑↑ ↑↑↓ ↑↓↑ ↓↑↑ ↑↓↓ ↓↑↓ ↓↓↑ ↓↓↓  

 The second, third and fourth arrangements produce the same magnetic field. The fifth, 
sixth and seventh arrangements, produce the same magnetic field. Thus we have four 
different possible contributions to the magnetic field: from the first arrangement; from the 
second, third, or fourth arrangement; from the fifth, sixth, and seventh arrangement; from 
the eighth arrangement. The CH2 transition is split into four lines with relative intensities 
1:3:3:1. 

 
10.23 (a)  The methyl peak is a triplet with 1:2:1 relative intensities; the CH2 peak is split into 

four lines (of intensities 1:3:3:1) by the methyl protons and each of these lines is split into 
two lines (of equal intensity) by the CHO proton, so the net result is an octet with relative 
intensities 1:1:3:3:3:3:1:1; the CHO peak is split into three lines of relative intensities 
1:2:1. The total relative intensities of the CH3, CH2, and CHO proton peaks are 3:2:1. 

 (b)  The methyl protons give a triplet (intensities 1:2:1) and the CH2 protons give a quartet 
(intensities 1:3:3:1). The total relative intensities of the CH3 and CH2 proton peaks are 6:4 
(that is, 3:2). 

 (c)  One peak that is not split. 
 (d)  One peak that is not split. 
 (e)  The proton on the 2 position gives an unsplit peak; the protons at the 4 and 6 positions 

give a peak that is a doublet (1:1 intensity ratio); the peak of the proton at the 5 position is 
split into two peaks by the proton at the 6 position, and each of these two peaks is split 
into two peaks by the proton at the 4 position—because the spin–spin coupling constant 
between the 5 and 6 protons is the same as the spin–spin coupling constant between the 5 
and 4 protons, two of the lines resulting from the splitting coincide with each other, and 
the net result for the 5-position proton is a triplet with 1:2:1 relative intensities. The total 
relative intensities of the 2-position proton, the 4- and 6-position protons, and the 5-
position proton peaks are 1:2:1. (Actually, because the NMR frequency differences 
between nonequivalent protons in this molecule are very small, the first-order analysis is 
not valid for this molecule and the spectrum is complicated.) 

 
10.24 Similar to (10.66), we have Ŝ kα β− =  (Eq. 1), where k is a constant. Normalization gives 

ˆ ˆ1 [ ( )]* ( ) ( / ) * /
s sm s s mm m S k S kβ β α α− −= ∑ = ∑  so 2 ˆ ˆ| | ( ) *

smk S Sα α− −= ∑ =  
ˆ ˆ ˆ( ) * ( )

sm x yS S iSα α−∑ − = ˆ ˆ ˆ ˆ( ) * ( ) *
s sm x m yS S i S Sα α α α− −∑ − ∑ . Use of the Hermitian 

property (10.68) for ˆ
xS  and ˆ

yS  gives ˆ ˆ ˆ ˆ* ( ) * ( ) *
s sm x m yk k S S i S Sα α α α− −= ∑ − ∑ . Taking 

the complex conjugate of the last equation and using (10.63) and (10.64), we have 
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ* * * * ( ) *

s s s sm x m y m x y mk k S S i S S S iS S S Sα α α α α α α α− − − + −= ∑ + ∑ = ∑ + = ∑ =
2 2 2 2 2 2 23 1 1

4 4 2
ˆ ˆ ˆ* ( ) * ( ) *

s s sm z z m mS S Sα α α α α α∑ − + = ∑ − + = ∑ == = = = = = . So 
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| | | |k = = , and we can take k = = , and Eq. 1 becomes Ŝ α β− = = , which is (10.70). From 

(10.70) and the equation that follows it, we have Ŝ α β− = =  and ˆ 0S α+ = . Combining 

these two equations we have ˆ ˆ( )S S α β+ −+ = =  and ˆ ˆ( )S S α β+ −− = −= . But (10.63) gives 
ˆ ˆ ˆ2 xS S S+ −+ =  and ˆ ˆ ˆ2 yS S iS+ −− = , so 1

2
ˆ

xS α β= =  and 1
2

ˆ
yS iα β= = . 

10.25 Use of (10.73) and (10.72) gives 2 21 1
2 4

ˆ ˆ ˆ ˆ ( )x x x xS S S Sα α β α= = == = . As noted in Prob. 

10.26a, the possible results of a measurement of xS  are 1
2 =  and 1

2− = , so it makes sense 

that a measurement of 2
xS  must give 21

4 = . 

 
10.26 (a)  Since the labels on directions in space are arbitrary, the answer must be the same as 

for zS , namely, 1
2 =  and 1

2− = . 

 (b)  From 1
2

ˆ
xS α β= =  and 1

2
ˆ

xS β α= = , we have 1 1 1
2 2 2

ˆ ( ) ( )xS α β β α α β+ = + = += = = , 

so α β+  is an eigenfunction of ˆ
xS  with eigenvalue 1

2 = . To normalize it, we multiply by 
1/22−  to get 1/22 ( )α β− + , since α  and β  are orthonormal. Also 

1 1 1 1
2 2 2 2

ˆ ( ) ( ) ( )xS α β β α β α α β− = − = − = − −= = = = , and 1/22 ( )α β− −  is a normalized 

eigenfunction of ˆ
xS  with eigenvalue 1

2− = .  

 (c)  Immediately after the measurement, the spin state function is αΨ = . From part (b), 
the ˆ

xS  eigenfunctions are 1/2
1 2 ( )f α β−≡ +  with eigenvalue 1

2 =  and 1/2
2 2 ( )f α β−≡ −  

with eigenvalue 1
2− = . Note that 1/2

1 2 2f f α+ = . Hence if we expand the state function in 

terms of the ˆ
xS  eigenfunctions, we have 1/2 1/2

1 22 2f fα − −Ψ = = + . The probabilities are 
given by the absolute squares of the coefficients, so there is 50% probability to get 1

2 =  

and 50% probability to get 1
2− =  when xS  is measured.  

 (d)  From 1
2

ˆ
yS iα β= =  and 1

2
ˆ

yS iβ α= − = , we have 
21 1 1

2 2 2
ˆ ( ) ( )yS i i i iα β β α α β+ = − = += = = , so iα β+  is an eigenfunction of ˆ

yS  with 

eigenvalue 1
2 = . To normalize it, we multiply by 1/22−  to get 1/22 ( )iα β− + , since α  and 

β  are orthonormal. Also 21 1 1 1
2 2 2 2

ˆ ( ) ( ) ( )yS i i i i iα β β α β α α β− = + = − = − −= = = = , and 
1/22 ( )iα β− −  is a normalized eigenfunction of ˆ

yS  with eigenvalue 1
2− = . 

 

10.27 (a)  , 1
ˆ

jm j mM Y AY+ +=  Normalization gives , 1 , 1
ˆ ˆ1 | (1/ * ) |j m j m jm jmY Y A A M Y M Y+ + + += 〈 〉 = 〈 〉  

so 2 ˆ ˆ| | |jm jmA M Y M Y+ += 〈 〉  ˆ ˆ ˆ| ( )jm x y jmM Y M iM Y+= 〈 + 〉 =  
ˆ ˆ ˆ ˆ| | | |jm x jm jm y jmM Y M Y i M Y M Y+ +〈 〉 + 〈 〉 . Use of the Hermitian property for ˆ

xM  and ˆ
yM  

gives ˆ ˆ ˆ ˆ* | | * | | *jm x jm jm y jmA A Y M M Y i Y M M Y+ += 〈 〉 + 〈 〉 . Taking the complex conjugate 

of the last equation and using (5.113) and (5.143) and (5.144), we have 
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ˆ ˆ ˆ ˆ ˆ ˆ ˆ* | | | | | |jm x jm jm y jm jm x y jmAA Y M M Y i Y M M Y Y M iM M Y+ + += 〈 〉 − 〈 〉 = 〈 − 〉 =
2 2 2 2 2 2ˆ ˆ ˆ ˆ ˆ| | ( ) [ ( 1) ] |jm jm jm z z jm jm jmY M M Y Y M M M Y j j m m Y Y− +〈 〉 = 〈 − − 〉 = + − − 〈 〉 == = = =

2 2 2 2[ ( 1) ]j j m m+ − −= = = . So 1/2| | [ ( 1) ( 1)]A j j m m= + − + = , in agreement with (10.74). 

Also, , 1
ˆ

jm j mM Y BY− −= . Normalization gives 

, 1 , 1
ˆ ˆ1 | (1/ * ) |j m j m jm jmY Y B B M Y M Y− − − −= 〈 〉 = 〈 〉  so 2 ˆ ˆ| | |jm jmB M Y M Y− −= 〈 〉  

ˆ ˆ ˆ| ( )jm x y jmM Y M iM Y−= 〈 − 〉 =  ˆ ˆ ˆ ˆ| | | |jm x jm jm y jmM Y M Y i M Y M Y− −〈 〉 − 〈 〉 . Use of the 

Hermitian property for ˆ
xM  and ˆ

yM  gives 
ˆ ˆ ˆ ˆ* | | * | | *jm x jm jm y jmB B Y M M Y i Y M M Y− −= 〈 〉 − 〈 〉 . Taking the complex conjugate of the 

last equation and using (5.112) and (5.143) and (5.144), we have 
ˆ ˆ ˆ ˆ ˆ ˆ ˆ* | | | | | |jm x jm jm y jm jm x y jmBB Y M M Y i Y M M Y Y M iM M Y− − −= 〈 〉 + 〈 〉 = 〈 + 〉 =

2 2 2 2 2 2ˆ ˆ ˆ ˆ ˆ| | ( ) [ ( 1) ] |jm jm jm z z jm jm jmY M M Y Y M M M Y j j m m Y Y+ −〈 〉 = 〈 − + 〉 = + − + 〈 〉 == = = =
2 2 2 2[ ( 1) ]j j m m+ − += = = . So 1/2| | [ ( 1) ( 1)]B j j m m= + − − = , in agreement with (10.75). 

 (b)  With ˆM̂ S+ += , jmY β= , 1
2j s= = , and 1

2sm m= = − , Eq. (10.74) becomes 
1/23 1

4 4
ˆ [ ( )]S β α α+ = − − == = . With ˆM̂ S− −= , jmY α= , 1

2j s= = , and 1
2sm m= = ,  

Eq. (10.75) becomes 1/23 1
4 4

ˆ [ ( )]S α β β− = − − == = . 

 (c)  With 2j l= = , Eq. (10.74) becomes 1 1/2 0
2 2

ˆ 6L Y Y−
+ = =  (Eq. 1). From (5.65) and 

(5.66), ˆ ˆ ˆ [(sin cos )( / ) cot (cos sin )( / )]x yL L iL i i iφ φ θ θ φ φ φ+ ≡ + = − ∂ ∂ + + ∂ ∂ ==  

[ ( / ) cot ( / )] [( / ) cot ( / )]i i ii ie e e iφ φ φθ θ φ θ θ φ− ∂ ∂ + ∂ ∂ = ∂ ∂ + ∂ ∂= = . From (5.99) and  
Table 5.1, 1 1/2 1/21

2 2(2 ) (15) sin cos iY e φπ θ θ− − −= . So 
1 1/2

2
ˆ [( / ) cot ( / )](15/8 ) sin cosi iL Y e i eφ φθ θ φ π θ θ− −
+ = ∂ ∂ + ∂ ∂ ==

1/2 2 2(15/8 ) [(cos sin ) (cos /sin )sin cos ]i i ie e i i eφ φ φπ θ θ θ θ θ θ− −− − ⋅ ==
1/2 2 2 2(15/8 ) (cos sin cos )π θ θ θ− + == 1/2 1/2 2(15/4) (2 ) (3cos 1)π θ− − ==

1/2 1/2 1/2 2 1/2 0
26 [(15/4 6) (2 ) (3cos 1)] 6 Yπ θ−⋅ − == = , since (5.99) and Table 5.1 give 

0 1/2 1/2 2 1/2 1/2 2
2 (2 ) (10/16) (3cos 1) (2 ) (15/24) (3cos 1)Y π θ π θ− −= − = − . 

 
10.28 (a)  The α , β, and 1 2c cα β+  column vectors are 

1

2

1 0
0 1

c
c
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 (b)  1
11 2

ˆ( ) | | | 0x xSα α α β= 〈 〉 = 〈 〉 =S = ,   1 1
12 2 2

ˆ( ) | | |x xSα β α α= 〈 〉 = 〈 〉 =S = = , 
1

21 12 2( ) [( ) ]*x x= =S S = ,    1
22 2

ˆ( ) | | | 0x xSβ β β α= 〈 〉 = 〈 〉 =S = , where (10.72), (10.73), 

and orthonormality were used. So  
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1
2 1

21
2

0 0 1
0 1 0x

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

S
=

=
=

 

 1
11 2

ˆ( ) | | | 0y yS iα α α β= 〈 〉 = 〈 〉 =S = ,   1 1
12 2 2

ˆ( ) | | |y yS i iα β α α= 〈 〉 = − 〈 〉 = −S = = , 
1

21 12 2( ) [( ) ]*y y i= =S S = ,    1
22 2

ˆ( ) | | | 0y yS iβ β β α= 〈 〉 = − 〈 〉 =S = , so 

1
2 1

21
2

0 0
0 0y

i i
i i

⎛ ⎞− −⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

S
=

=
=

 

 1 1
11 2 2

ˆ( ) | | |z zSα α α α= 〈 〉 = 〈 〉 =S = = ,   1
12 2

ˆ( ) | | | 0z zSα β α β= 〈 〉 = − 〈 〉 =S = , 

21 12( ) [( ) ]* 0z z= =S S ,     1 1
22 2 2

ˆ( ) | | |z zSβ β β β= 〈 〉 = − 〈 〉 = −S = = , so 

1
2 1

21
2

0 1 0
0 0 1z

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

S
=

=
=

 

 2 2 2 23 31
11 2 2 4

ˆ( ) | | |Sα α α α= 〈 〉 = 〈 〉 =S = = ,   2 2 231
12 2 2

ˆ( ) | | | 0Sα β α β= 〈 〉 = 〈 〉 =S = ,  
2 2

21 12( ) [( ) ]* 0= =S S ,   2 2 2 23 31
22 2 2 4

ˆ( ) | | |Sβ β β β= 〈 〉 = 〈 〉 =S = = . So  

23
2 24 1

423
4

0 3 0
0 30

⎛ ⎞ ⎛ ⎞
⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

S
=

=
=

 

 (c)   

 

2 21 1
4 4

1
2 2 2 21 1 1

4 4 4 1
2

0 1 0 0 0 1
1 0 0 0 1 0

00 0 2 0
00 0 0 2

x y y x

z

i i
i i

i i i
i i

i i i

− −⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
− = − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞−⎛ ⎞ ⎛ ⎞ ⎛ ⎞

− = = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

S S S S

S

= =

=
= = = = =

=

 

 (d)  Equation (8.82) is  
1

2 22 1 1
2 21

2
0 ( ) and

λ
λ λ

λ
−

= = − = ±
−
=

= =
=

 

 The eigenvectors for 1
2λ = ± =  are found from  

 1 1 1
1 2 1 22 2 20c c c cλ− + = = += ∓ = =  

 1 1 1
1 2 1 22 2 20c c c cλ− = == = ∓ =  

 which gives 1 2c c= ± . Since the two basis functions are orthonormal, normalization gives 
1/2

1 2| | | | 2c c −= =  and the eigenfunctions are 1/22 ( )α β− ± , where the upper sign is for the 
positive eigenvalue. These results agree with Prob. 10.26b. 

 
10.29 (a)  F.   (b)  T.   (c)  F.  (The complete wave function must be antisymmetric.)   (d)  F.  

(This is true only if the fermions are identical.)   (e)  T.  An atom of 79
35 Br  has 35 electrons 
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and 79 nucleons, for a total of 114 fermions, which is an even number, so this atom is a 
boson.   (f)  T.   (g)  T, since the nuclear and electron magnetic moments have mp  and me, 
respectively, in the denominator.   (h)  T [since γ  in the equation after (10.59) is positive 
for a proton]. 
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Chapter 11 

Many-Electron Atoms 

 
 

11.1 (a)  It was noted near the end of Sec. 6.5 that 2n  states belong to an H-atom energy level 
with quantum number n. This is the number of orbitals belonging to a given n. Since each 
orbital holds two electrons, a shell with quantum number n holds up to 22n  electrons.  

 (b)  For a given l, there are 2 1l +  values of m. Since each orbital holds two electrons, the 
capacity of a given subshell is 2(2 1) 4 2l l+ = + . 

 (c)  2 electrons. 
 (d)  1 electron. 
 

11.2 
2 2 2

2 2 2
1 2 3

0 1 2 3 0 12 23 13

1 1 1 1 1 1ˆ ( )
2 4 4e

Ze eH
m r r r r r rπε πε

⎛ ⎞ ⎛ ⎞
= − ∇ +∇ +∇ − + + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

=  

 
11.3 As noted after (11.19), the radial equation for 1( )R r  has the form (6.17), namely, 

2 1 2 2
1 1 1 1 1 1 1 1 1 1( /2 )( 2 ) [ ( 1) /2 ] ( )e em R r R l l m r R V r R Rε−′′ ′− + + + + == = ,  

where 1V  is given by (11.8). 

 

11.4 The STOs (11.14) have 1nr −  in place of 1
0

n ll j
jjr b r− −

=∑  in the hydrogenlike radial function 

(6.100). Only if 1 0n l− − =  will the sum have a single term, as does the STO. When 
1 0n l− − = , the 1

0
n ll j

jjr b r− −
=∑  factor becomes 1

0 0
l nr b b r −= , which is the STO form. 

Hence only when 1l n= −  (1s, 2p, 3d…), do STO and hydrogenlike AOs have the same 
form. 

 
11.5 By analogy to the hydrogenlike formula (6.94), we can estimate an orbital energy as 

2 2 2
eff 0 0( / )( /8 )E Z n e aπε≈ − . The 1s AO is the innermost orbital and 1s electrons screen 

each other only slightly. So the effective nuclear charge effZ  for a 1s electron is slightly 
less than the atomic number of 18. If we use the helium-atom variation result 5

16Z −   

(Eq. 9.65), then eff 17.7Z ≈  and 2
1 (17.7 /1)(13.6 eV) = 4260 eVsE ≈ − − . Figure 11.2 

(with allowance for the logarithmic scales) gives 1/2
1 H 9( / ) 14.sE E =  and 

2
1 9(14. ) (13.6 eV) 3020 eV.sE = − = −  
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11.6 The crossing occurs at the point that is 0.36 of the way from Z = 20 to 30. Since  
0.3610 2.3= , the crossing occurs between Z = 22 and 23.  

 

11.7 (a)  1.31
corr (0.01702)2 (27.2 eV) 1.15 eV,E ≈ − = −  as compared with the true value 

1.14 eV.−  

 (b)  1.31
corr (0.01702)7 (27.2 eV) 5.92 eV.E ≈ − = −  
(14.534 29.601 47.448 77.472 97.888 552.057 667.029) eV 1486.03 eV.E = − + + + + + + = −

corrE  is 0.40% of E. 

 
11.8 (a)  From (11.39), the possible J values go from 3

2 4+  to 3
2| 4 |−  by integral steps and so 

are 9 7 511
2 2 2 2, , , . 

 (b)  Addition of 1 2j =  and 2 3j = , gives J values of 5, 4, 3, 2, 1. Addition of 1
3 2j =  to 

each of these five J values gives total J values of 9 9 7 7 5 5 3 311 1
2 2 2 2 2 2 2 2 2 2, , , , , , , , , . 

 
11.9 True.  Suppose that 2 1.j j≤  Then the J values are 

1 2 1 2 1 2 1 2 2 1 2 2 1 2 2, 1, 2, , ( 1), , ( 1),j j j j j j j j j j j j j j j+ + − + − + − − + − + − +…  

1 2 2 1 2 2 2 1 2( 2), ( )j j j j j j j j j+ − + + − + = −… . There are 2j  values that precede the 
value in the box and 2j  values that follow the value in the box, so the total number of 
values is 22 1,j +  where 2j  is not larger than 1.j  

 

11.10 2 2 2 2
1 1 2 1 1 1 2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ , ] [ , ] [ , ] 0 0 0x x x x xM M M M M M M M M= + = + = + = , where we used 
(11.22), (5.4), (5.109) for M1, and the sentence after Eq. (11.24). 

 
11.11 1 2 1 2 1 2 1 1 2 2

ˆ ˆ ˆ| ( ) ( ) | |z J z zM j j JM M M C j m j m j m〉 = + 〉 〉 =∑ …  

1 2 1 1 1 2 2
ˆ( ) | |zC j m M j m j m〉 〉∑ … + 1 2 2 1 1 2 2

ˆ( ) | |zC j m M j m j m〉 〉∑ …  (Eq. 1), where 
operator linearity was used and the sums go over 1m  and 2m . We have 

1 2 1 2
ˆ | |z J J JM j j JM M j j JM〉 = 〉= , 1 1 1 1 1 1

ˆ | |zM j m m j m〉 = 〉= , and 

2 2 2 2 2 2
ˆ | |zM j m m j m〉 = 〉=  [see the tables between Eqs. (11.33) and (11.34)]. Also, as far 

as 1
ˆ

zM  is concerned , 2 2| j m 〉  is a constant and as far as 2
ˆ

zM  is concerned , 1 1| j m 〉  is a 
constant. Hence Eq. 1 becomes 

1 2|J JM j j JM 〉 == 1 2 1 1 1 2 2( ) | |C j m m j m j m〉 〉∑ … = + 1 2 2 1 1 2 2( ) | |C j m m j m j m〉 〉 =∑ … =

1 2 1 2 1 1 2 2( )( ) | |C j m m m j m j m+ 〉 〉∑ … =  (Eq. 2). Use of (11.33) in Eq. 2 gives 

1 2 1 1 2 2 1 2 1 2 1 1 2 2( ) | | ( )( ) | |JM C j m j m j m C j m m m j m j m〉 〉 = + 〉 〉∑ ∑… …  so 

1 2 1 2 1 1 2 2( )( ) | | 0JC j m m m M j m j m+ − 〉 〉 =∑ …  (Eq. 3). Since the product functions 
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1 1 2 2| |j m j m〉 〉  are a linearly independent set, no one of them can be expressed as a linear 
combination of the others and the coefficients of 1 1 2 2| |j m j m〉 〉  in the sum in Eq. 3 must 
vanish: 1 2 1 2( )( ) 0JC j m m m M+ − =… . Hence 1 2( ) 0C j m =…  whenever 

1 2 0Jm m M+ − ≠ . The Clebsch–Gordan coefficient is nonzero only when 1 2 Jm m M+ = .  

 
11.12 Use of (11.26) gives 

2 2 2
1 1 2 1 2 1 2 1 2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ 2( ), ]z x x y y z z zM M M M M M M M M M M= + + + + =
2 2
1 1 2 1 1 2 1 1 2 1 1 2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ , ] [2 , ] [2 , ] [2 , ]z z x x z y y z z z zM M M M M M M M M M M M M+ + + + =

2 1 1 2 1 1 2 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0 2 [ , ] 2 [ , ] 2 [ , ]x x z y y z z z zM M M M M M M M M+ + + + =

2 1 2 1 2 1 2 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2 0 2 ( )x y y x y x x yi M M i M M i M M M M− + + = −= = = , where (5.4), (5.109) for M1 

and for M2, and (5.107) were used. 
 
11.13 (a)  False.   ( b)  True. 
 
11.14 For the ss case, 1 0l =  and 2 0l = , so 0.L =  Also 1

1 2s =  and 1
2 2s = , so (11.39) gives 

1, 0S =  and 2 1 3, 1S + = . These spin multiplicities also apply to all other cases of two 
nonequivalent electrons. The terms are 3S  and 1S . 
For the sp case, 1 0l =  and 2 1l = , so 1L = . The terms are 3P  and 1P . 

For the sd case, 1 0l =  and 2 2l = , so 2L = . The terms are 3D  and 1D . 

For the pp case, 1 1l =  and 2 1l = , so 2, 1, 0L = . The terms are 3D , 1D , 3P , 1P , 3S , 1S . 

 
11.15 (a)  The electrons in closed subshells contribute nothing to the orbital or spin angular 

momentum and are ignored. For 3 5p g , we have 1 1l =  and 2 4l = , so the possible L 
values are 5, 4, 3 (H, G, and F terms). Also 1

1 2s =  and 1
2 2s = , so (11.39) gives 1, 0S =  

and 2 1 3, 1S + = . The terms are 1 3 1 3 1 3, , , , ,F F G G H H . 

 (b)  For the 2 3 3p p d  configuration, we have 1 1l = , 2 1l = , and 3 2l = . Addition of 2l  and 

3l  gives 3, 2, 1, and addition of 1l  to these values then gives L values of 4, 3, 2, 3, 2, 1, 2, 
1, 0. Addition of 1

1 2s =  and 1
2 2s =  gives 1, 0S = , and addition of 1

3 2s =  gives the total S 

quantum number possibilities as 3 1 1
2 2 2, , , with 2 1S + = 4, 2, 2. The terms are 

2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4, , , , , , , , , , , , , , , , , , , , ,S S S P P P P P P D D D D D D D D D F F F
2 2 4 2 2 4, , , , ,F F F G G G . 

 (c)  From Table 11.2a, the terms for the 42 p  configuration are 3P  (L = 1, S =1),  
1D  (L = 2, S = 0), and 1S  (L = 0, S = 0). Addition of l = 2 and 1

2s =  of the 4d electron to 
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the L and the S of each of the 42 p  terms gives the terms 
2 4 2 4 2 4 2 2 2 2 2 2, , , , , , , , , , ,P P D D F F S P D F G D . 

 

11.16 The He ground state is a 1S  term with L = 0 and S = 0.  

 (a)  The 1s2s configuration will give rise to a 1S  term and will contribute. 

 (b)  The 1s2p configuration produces only P terms and does not contribute. 

 (c)  22s  gives a 1S  term and contributes. 

 (d)  2s2p gives only P terms and does not contribute. 
 (e)  22 p  gives rise to a 1S  term and contributes. 

 (f)  23d  gives rise to a 1S  term and contributes. 

 
11.17 1 2 1 2

ˆ ˆ ˆ ˆ ˆ(1) (2) ( ) (1) (2) (1) (2) (1) (2)z z z z zS S S S Sβ β β β β β β β= + = + =  

1 2
ˆ ˆ(2) (1) (1) (2)z zS Sβ β β β+ = 1 1

2 2(2) (1) (1) (2) (1) (2)β β β β β β− − = −= = = . 

 1 2
ˆ ˆ ˆ[ (1) (2) (1) (2)] ( )[ (1) (2) (1) (2)]z z zS S Sα β β α α β β α± = + ± =

1 2
ˆ ˆ[ (1) (2) (1) (2)] [ (1) (2) (1) (2)]z zS Sα β β α α β β α± + ± =  

1 1 2 2
ˆ ˆ ˆ ˆ(1) (2) (1) (2) (1) (2) (1) (2)z z z zS S S Sα β β α α β β α± + ± =
1 1 1 1
2 2 2 2(1) (2) (1) (2) (1) (2) (1) (2)α β β α α β β α− ± == ∓ = = = 0.  

 2ˆ (1) (2)S α α =  

 2 2
1 2 1 2

ˆ ˆ ˆ ˆ(1) (2) (1) (2) 2 (1) (2)x xS S S Sα α α α α α+ + + 1 2
ˆ ˆ2 (1) (2)y yS Sα α + 1 2

ˆ ˆ2 (1) (2)z zS Sα α =
2 23 31 1 1 1 1 1

2 2 2 2 2 2 2 2(1) (2) (1) (2) 2 (1) (2) 2 (1) (2)i iα α α α β β β β+ + ⋅ + ⋅ += = = = = =
1 1
2 22 (1) (2)α α⋅ = = 22 (1) (2)α α= = . 

 2ˆ (1) (2)S β β =  

 2 2
1 2 1 2

ˆ ˆ ˆ ˆ(1) (2) (1) (2) 2 (1) (2)x xS S S Sβ β β β β β+ + + 1 2
ˆ ˆ2 (1) (2)y yS Sβ β + 1 2

ˆ ˆ2 (1) (2)z zS Sβ β =
2 23 31 1 1 1 1 1

2 2 2 2 2 2 2 2(1) (2) (1) (2) 2 (1) (2) 2( ) (1)( ) (2)i iβ β β β α α α α+ + ⋅ + − − += = = = = =
1 1
2 22( ) (1)( ) (2)β β− −= = 22 (1) (2)β β= = . 

 2 2 2 2 2
1 1 2 2

ˆ ˆ ˆ ˆ ˆ[ (1) (2) (1) (2)] (1) (2) (1) (2) (1) (2) (1) (2)S S S S Sα β β α α β β α α β β α+ = + + + +

1 2 1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 (1) (2) 2 (1) (2) 2 (1) (2) 2 (1) (2)x x x x y y y yS S S S S S S Sα β β α α β β α+ + + +

1 2 1 2
ˆ ˆ ˆ ˆ2 (1) (2) 2 (1) (2)z z z zS S S Sα β β α+ =

2 2 2 23 3 3 3
4 4 4 4(1) (2) (1) (2) (1) (2) (1) (2)α β β α α β β α+ + + += = = =

1 1 1 1
2 2 2 22 (1) (2) 2 (1) (2)β α α β⋅ + ⋅= = = = 1 1 1 1

2 2 2 22 (1)( ) (2) 2( ) (1) (2)i i i iβ α α β+ ⋅ − + − += = = =
1 1 1 1
2 2 2 22 (1)( ) (2) 2( ) (1) (2)α β β α⋅ − + − == = = = 22 [ (1) (2) (1) (2)]α β β α+= .  
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 2 2 2 2 2
1 1 2 2

ˆ ˆ ˆ ˆ ˆ[ (1) (2) (1) (2)] (1) (2) (1) (2) (1) (2) (1) (2)S S S S Sα β β α α β β α α β β α− = − + − +

1 2 1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 (1) (2) 2 (1) (2) 2 (1) (2) 2 (1) (2)x x x x y y y yS S S S S S S Sα β β α α β β α− + − +

1 2 1 2
ˆ ˆ ˆ ˆ2 (1) (2) 2 (1) (2)z z z zS S S Sα β β α− =

2 2 2 23 3 3 3
4 4 4 4(1) (2) (1) (2) (1) (2) (1) (2)α β β α α β β α− + − += = = =

1 1 1 1
2 2 2 22 (1) (2) 2 (1) (2)β α α β⋅ − ⋅= = = = 1 1 1 1

2 2 2 22 (1)( ) (2) 2( ) (1) (2)i i i iβ α α β+ ⋅ − − − += = = =
1 1 1 1
2 2 2 22 (1)( ) (2) 2( ) (1) (2)α β β α⋅ − − − == = = = 0 . 

 

11.18 (a)  Similar to Figs. 5.6 and 10.1, 1/2cos /| | [1(2)] 0.70711zSθ = = =S = =  and  
0.78540θ =  rad = 45° [see Eqs. (11.51), (11.56), and (11.57)]. 

 (b)  2 2 2 2
1 2 1 2 1 2 1 2 1 1 2| | ( ) ( ) | | | | 2 2 | | 2 | || | cosθ= = + + = + + = +S S·S S S · S S S S S ·S S S S  

and 2 2
1 1cos (| | 2 | | )/2 | |θ = −2S S S  . Since 2 2 23 31

1 2 2 4| | = =S = = , we have 
2 2 2 2 23 3 2

2 2 3cos (| | )/ | | / 1θ = − = −S S= = = .  

For (11.57), (11.58), and (11.59), 2 22 1
3 3cos (1)(2) / 1θ = − == =  and θ = 1.23096 rad = 

70.53°. For (11.60), Fig. 11.3 (or the preceding formula for cosθ ) gives θ = 180°. 
 (c)  From Fig. 5.2, the components are xA  and yA . Let 1pS  and 2 pS  be the projections of 

1S  and 2S  in the xy plane. The components of 1pS  and 2 pS  equal the x and y components 
of 1S  and 2S , so 1 2 1 2 1 2 1 2| | | | cosp p p p x x y yS S S Sω= = +S ·S S S  whereω  is the angle 
between 1pS  and 2 pS . Then 1 2 1 2 1 2 1 2 1 2 1 2x x y y x x y y z z z zS S S S S S S S S S S S+ = + + − =   

2 23 1 1 1
1 2 1 2 1 2 1 2 1 1 2 4 3 2 2| | | | cos | | cos 0z z z z z zS S S S S Sθ θ− = − = − = ⋅ − ⋅ =S ·S S S S = = = , so 

cos 0ω =  and ω  = 90°. 
 

11.19 2
12 1 2 3 1 2 3 1 2 3 12 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ[ , ] ( , , , ) ( ) ( ) ( , , , )S P f q q q P f q q q= + + + + + + −S S S · S S S… " " …   

12 1 2 3 1 2 3 1 2 3
ˆ ˆ ˆ ˆ ˆ ˆˆ [( ) ( ) ( , , , )]P f q q q+ + + + + + =S S S · S S S" " …

1 2 3 1 2 3 2 1 3
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( , , , )f q q q+ + + + + + −S S S · S S S" " …

2 1 3 2 1 3 2 1 3
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( , , , ) 0f q q q+ + + + + + =S S S · S S S" " … , since 1 2 2 1

ˆ ˆ ˆ ˆ+ = +S S S S   

(Prob. 3.6). A similar proof shows that 2ˆ ˆ[ , ] 0ijS P = . Replacement of S with L in the proof 

gives 2
12

ˆ ˆ[ , ] 0L P = .  

 
11.20 As noted in Sec. 11.5, the atomic wave function is odd if i il∑  is odd. For the H, He, Li, 

and Be ground states, all the electrons are s electrons and 0i il∑ = . The ground-state 

configurations 2 21 2 2s s p  of B, 2 2 31 2 2s s p  of N, and 2 2 51 2 2s s p  of F have i il∑  equal to 
1, 3, and 5, respectively, and these atoms have odd-parity ground states. 
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11.21 (a)  As noted in the Atomic Terms subsection of Sec. 11.5, the number of states belonging 
to a term is (2 1)(2 1)L S+ + .  
For 4F , (2 1)(2 1) (2 3 1)4 28L S+ + = ⋅ + = .  

 (b)  (2 1)(2 1) 1 1 1L S+ + = ⋅ = . 
 (c)  (2 1)(2 1) (2 1)3 9L S+ + = + = . 
 (d)  (2 1)(2 1) (4 1)2 10L S+ + = + = . 

 
11.22 (a)  From Table 11.2, the 22 p  configuration gives rise to these terms: 3P  with 

(2 1)(2 1) 3(3) 9L S+ + = =  states, 1D  with (2 1)(2 1) 5(1) 5L S+ + = =  states, and 1S  with 
(2 1)(2 1) 1(1) 1L S+ + = =  state. The total number of states is 15. 

 (b)  The 2 3p p  configuration gives these terms: 3D  with (2 1)(2 1) 5(3) 15L S+ + = =  
states, 1D  with (2 1)(2 1) 5(1) 5L S+ + = =  states, 3P  with (2 1)(2 1) 3(3) 9L S+ + = =  
states, 1P  with (2 1)(2 1) 3(1) 3L S+ + = =  states, 3S  with (2 1)(2 1) 1(3) 3L S+ + = =  
states, and 1S  with (2 1)(2 1) 1(1) 1L S+ + = =  state. The total number of states is 36 states. 

 
11.23 (a)  A single electron has 1

2s = , so 1
2S =  and 2 1 2S + = . 

 (b)  Addition of 1
1 2s =  to 1

2 2s =  gives 0, 1S =  and 2 1 1, 3S + = . 

 (c)  Addition of 1
3 2s =  to 0, 1S =  (the possibilities for two electrons) gives 1

2S =  and 
3
2S =  as the possible different S values for three electrons, with the possible spin 

multiplicities being 2 1 2S + =  and 4. 
 (d)  Addition of 1

4 2s =  to 31
2 2,S =  (the possibilities for three electrons) gives 0,1, 2S =  

as the possible different S values for four electrons. Addition of 1
5 2s =  to 0,1, 2S =  gives 

3 51
2 2 2, ,S =  as the possible different S values for five electrons. Addition of 1

6 2s =  to 
3 51

2 2 2, ,S =  gives 0,1, 2, 3S =  as the possible different S values for six electrons. 

Addition of 1
7 2s =  to 0,1, 2, 3S =  gives 3 5 71

2 2 2 2, , ,S =  as the possible different S values 

for seven electrons, and the possible spin multiplicities are 2, 4, 6, 8. 
 (e)  12f  has the same terms as 2f  and the spin multiplicities are 1 and 3. 

 (f)  The same as f, namely 2. 
 
11.24 (a)  For 1S , 0L =  and 0S = . Hence (11.62) gives 0J = . The only level is 1

0S , with 
degeneracy 2 1 1J + = . 

 (b)  For 2S , 0L =  and 1
2S = , so 1

2J =  and the only level is 2
1/2S  with degeneracy 

2 1 2J + = . 
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 (c)  For 3F , 3L =  and 1S = , so 4, 3, 2J = . The levels are 3 3 3
4 3 2, ,F F F  with 

degeneracies 9, 7, and 5, respectively. 

 (d)  For 4D , 2L =  and 3
2S = , so 7 5 3 1

2 2 2 2, , ,J = . The levels are 
4 4 4 4

7/2 5/2 3/2 1/2, , ,D D D D  with degeneracies 8, 6, 4, 2, respectively. 

 
11.25 For a 3

3D  level, 2L = , 1S = , and 3J = .  

 (a)  1/2 1/2[ ( 1)] 6L L + == = . 

 (b)  1/2 1/2[ ( 1)] 2S S + == = . 

 (c)  1/2 1/2[ ( 1)] 12J J + == = . 

 
11.26 For the 1s  configuration of H and for the 21 2s s  configuration of Li, the ground level is 

2
1/2S . For the closed-subshell 21s  configuration of He, the 2 21 2s s  configuration of Be 

and the 2 2 61 2 2s s p  configuration of Ne, the ground level is 1
0S . For the 2 21 2 2s s p  

configuration of B, 1L = , 1
2S = , and 3 1

2 2,J = ; by the rule near the end of Sec. 11.6, the 

lowest level is 2
1/2P . For the 2 2 21 2 2s s p  configuration of C, the terms are given by Table 

11.2 as 3P , 1D , and 1S . By Hund’s rule 3P  lies lowest. For 3P  the J values are 2, 1, 0 
and the lowest level is 3

0P . For the 2 2 31 2 2s s p  configuration of N, the terms are given by 

Table 11.2 as 2P , 2D , and 4S . By Hund’s rule 4S  lies lowest. For 4S  the only level is 
4

3/2S . For the 2 2 41 2 2s s p  configuration of O, the terms are given by Table 11.2 as 3P , 
1D , and 1S . By Hund’s rule 3P  lies lowest. For 3P  the J values are 2, 1, 0 and the lowest 
level is 3

2P . For the 2 2 51 2 2s s p  configuration of F, the terms are given by Table 11.2 as 
2P . For 2P , the levels are 2

3/2P  and 2
1/2P . By the rule near the end of Sec. 11.6, 2

3/2P  is 

lowest. 
 
11.27 For the 21Sc  configuration [Ar] 23 4d s , the rule near the end of Sec. 11.6 gives the ground 

level as 2
3/2D .  

For the 22Ti  configuration [Ar] 2 23 4d s , Table 11.2 and Hund’s rule give the lowest term 

as 3F  with 3L =  and 1S = ; the J values are 4, 3, 2 and the ground level is 3
2F .  

For the V configuration [Ar] 3 23 4d s , Table 11.2 and Hund’s rule give the lowest term as 
4F ; the J values are 9/2, 7/2, 5/2, 3/2  and the ground level is 4

3/2F .  

For the Cr configuration [Ar] 5 13 4d s , Table 11.2 gives the highest-multiplicity term of 5d  
as 6S  with 5/2S =  and 0L = . When the contribution of the 4s electron is included, the 
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highest-multiplicity term will have 3S =  and 0L = , a 7S  term with the single level 7
3S .  

For the Mn configuration [Ar] 5 23 4d s , Table 11.2 and Hund’s rule give the lowest term as 
6S  with the single level 6

5/2S . 

For the Fe configuration [Ar] 6 23 4d s , Table 11.2 and Hund’s rule give the lowest term as 
5D ; the J values are 4, 3, 2, 1, 0 and the ground level is 5

4D . 

For the Co configuration [Ar] 7 23 4d s , Table 11.2 and Hund’s rule give the lowest term as 
4F ; the J values are 9/2, 7/2, 5/2, 3/2  and the ground level is 4

9/2F . 

For the Ni configuration [Ar] 8 23 4d s , Table 11.2 and Hund’s rule give the lowest term as 
3F ; the J values are 4, 3, 2 and the ground level is 3

4F . 

For the Cu configuration [Ar] 10 13 4d s , the only term is 2S  with the single level 2
1/2S . 

For Zn with [Ar] 10 23 4d s , the ground level is 1
0S . 

The most degenerate level has the highest J, namely 4
9/2F  of Co. 

 
11.28 (a)  The m values go from l−  to l, and we have  

1 1: l l l lm
↑ ↑ ↑ ↑

− − + −
"
"

 

 The only value of LM  for this arrangement is zero, since positive and negative m values 
cancel. With only 0LM =  allowed for the ground term, this term must have 0L = . 

 (b)  If 0L = , we get only a single level that has J S= . Hence no rule is needed to decide 
which is the lowest level of the term. 

 

11.29 19 34 8/ (1 eV)[(1.602177 10  J)/(1 eV)]/[(6.62607 10  J s)(2.997925 10  m/s)]E hc − −= × × × =  
806554 1m− (1 m)/(100 cm) = 8065.54 cm–1. 

 

11.30 For the 22 2 3s p p  electron configuration, Hund’s rule predicts 3D  as the lowest term, but 
the 1P  term lies slightly below 3D . For 22 2 3s p d , Hund’s rule is violated. The atomic 
energy-level tables at physics.nist.gov/asd show at least 13 other configurations of C 
where Hund’s rule is violated. 

 
11.31 The 0, 1LΔ = ±  rule means that S levels can go to S and P levels, P levels go to S, P, and 

D levels, and D levels go to P, D, and F levels. The 0SΔ =  rule means levels of singlet 
terms go to singlet levels and triplet levels go to triplet levels. The ( ) 1i ilΔ ∑ = ±  rule 
prevents transitions between two levels that arise from the same electron configuration. 
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The 1lΔ = ±  rule is obeyed for 2 22 2s p  going to 32 2s p . The allowed-transition 
wavenumbers in 1cm−  are:  

 3 3
0 1 64089.8,P D→     3 3

0 1 75254.0,P P→     3 3
0 1 105798.7,P S→      

3 3
1 1 64073.4,P D→     3 3

1 2 64074.5,P D→     3 3
1 1 75237.6,P P→      3 3

1 2 75238.9,P P→     

     3 3
1 0 75239.7,P P→     3 3

1 1 105782.3,P S→      
3 3

2 3 64043.5,P D→     3 3
2 1 64046.4,P D→     3 3

2 2 64047.5,P D→    3 3
2 1 75210.6,P P→     

     3 3
2 2 75211.9,P P→     3 3

2 1 105755.3,P S→  
1 1

2 2 87685D D→ ,    1 1
2 1 109685D P→ ,  

and 1 1
0 1 98230S P→ , 

 where the first level in each pair arises from the 2 22 2s p  configuration. 

 

11.32 The 22 2 3s p s  levels are listed as:   

Level 3
0P  3

1P  3
2P  1

1P  

1( / )/cmE hc −  60333.43 60352.63 60393.14 61981.82 

 The discussion at the beginning of Prob. 11.31 gives the following allowed transition 
wavenumbers in 1cm−  (the first number listed for each transition) and wavelengths in nm 
(the second number listed), where the first level in each pair arises from the 22 2 3s p s  
configuration: 

 3 3
0 1 60317.0,  165.791;P P→  

3 3
1 2 60309.2,  165.812;P P→     3 3

1 1 60336.2,  165.738;P P→              

       3 3
1 0 60352.6,  165.693;P P→  

3 3
2 2 60349.7,  165.701;P P→     3 3

2 1 60376.7,  165.627;P P→  
1 1

1 2 51789.2,  193.090;P D→     1 1
1 0 40333.8, 247.931.P S→  

The calculated wavelengths agree with the ones listed in the NIST database except for the 
wavelength of the last line, which NIST gives as 247.856 nm. This is because NIST lists 
wavelengths that are between 200 nm and 2000 nm as wavelengths in air (rather than in 
vacuum), so the index of refraction of air affects the NIST value. 

 
11.33 For 2

3/2P , Eq. (11.66) gives 2 23 5 31 1 1
S.O. 2 2 2 2 2 2[ 1(2) ]E ξ ξ= 〈 〉 ⋅ − − ⋅ = 〈 〉= = .  

For 2
1/2P , 2 23 31 1 1

S.O. 2 2 2 2 2[ 1(2) ]E ξ ξ= 〈 〉 ⋅ − − ⋅ = −〈 〉= = . So 23
S.O. 2E ξΔ = 〈 〉= . From (11.64), 

2 2

2 2 2 2 2 2 3
0 0

1 1
42 2 8e e e

dV d Ze Ze
dr dr rm c r m c r m c r

ξ
πε πε

= = − =  and 
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2
2 3 2

22 2 0
0

( )
8 p

e

Ze R r r dr
m c

ξ
πε

∞ −〈 〉 = =∫  

2 5 6 2 2 4 2
/

2 2 5 2 2 5 2 2 2 30
0 0 08 24 192 192

Zr a

e e e

Ze Z Z e a Z ere dr
m c a m c a Z m c aπε πε πε

∞ − = =∫ , since the spherical 

harmonics are normalized. So 4 2 2 3 2 2 3
S.O. 0( /512 )eE Z h e m c aε πΔ = =  

34 2 19 2

12 2 1 2 3 31 2 8 2 10 3
(6.626 10  J s) (1.6022 10  C)

512(8.854 10  C  N  m ) (9.109 10  kg) (2.998 10  m/s) (0.5295 10  m)π

− −

− − − − −
× ×

× × × ×
= 7.242 × 10–24 J = 0.00004520 eV. 

 
11.34 No. The 1 2s p  configuration has two partly filled subshells. 

 
11.35  

                   
 
11.36 B BB JE gB M gBμ μΔ = Δ = . From (11.75), 1 [(0.75 2 0.75)/1.5] 2/3g = + − + = . From 

Table A.1, 24 24| | (9.274 10  J/T)(0.200 T)(2/3) 1.24 10  J 0.00000772 eV.BE − −Δ = × = × =  

 

11.37 1 1
ˆ ˆ| | | |n n

i i i iD f D D f D= =〈 ∑ 〉 = ∑ 〈 〉 . In D in (11.76), rows 1, 2, 3,… contain entries with 
electrons 1, 2, 3…. The Prob. 8.22 expression with ijk replaced by pqr and by stw gives 

1 1
ˆ ˆ| | (1/ !) ( 1) (1) (2) (3) | | ( 1) (1) (2) (3)n n

i i i p q r i s t wD f D n u u u f u u u= =〈 ∑ 〉 = ∑ 〈∑ ± ∑ ± 〉 =" "

1
ˆ(1/ !) ( 1) (1) (2) (3) | | ( 1) (1) (2) (3)n

i p q r i s t wn u u u f u u u=∑ ∑∑〈 ± ± 〉" "  (Eq. 1). Consider the 

integral 1̂(1) (2) (3) | | (1) (2) (3)p q r s t wI u u u f u u u≡ 〈 〉 =" "  

1̂(1) | | (1) (2) | (2) (3) | (3)p s q t r wu f u u u u u〈 〉〈 〉〈 〉" 1̂(1) | | (1)p s qt rwu f u δ δ= 〈 〉 " , since the 

spin-orbitals are orthonormal. Unless each of electrons 2, 3, …, n, is in the same spin-

1s22s22p2 

1S0 

1D2 

3P2 

3P

1S 

1D 

3P 3P1 

0

2 

2 1 0 –1 –2 

0 

10 
–1 

MJ 
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orbital on the left and on the right of 1̂f , the integral I will be zero. When each of 

electrons 2, 3, …, n, is in the same spin-orbital on the left and on the right of 1̂f , then 

electron 1 is also in the same spin-orbital on the left and on the right of 1̂f . Thus, each 
integral in Eq. 1 is zero unless the permutation stw" is the same as the permutation 
pqr" . The rightmost sum in Eq. 1 is over the various possible permutations stw". Thus 

we drop the rightmost summation and change s, t, w,…, to p, q, r,…, respectively. Also, 
since the permutations on the left and right of îf  are now the same, we will get either a 

factor of 2( 1)+  or 2( 1)− . Hence Eq. 1 becomes 

1 1
ˆ ˆ| | (1/ !) (1) (2) (3) | | (1) (2) (3)n n

i i i p q r i p q rD f D n u u u f u u u= =〈 ∑ 〉 = ∑ ∑〈 〉" "  (Eq. 2). 

Because îf  refers only to electron i and the spin-orbitals are normalized, we have 
ˆ ˆ(1) (2) (3) | | (1) (2) (3) ( ) | | ( )p q r i p q r w i wu u u f u u u u i f u i〈 〉 = 〈 〉" "  (Eq. 3), where wu  is the 

spin-orbital in (1) (2) (3)p q ru u u "  that involves electron i. Also, note that 

1
ˆ ˆ( ) | | ( ) (1) | | (1)w i w w wu i f u i u f u〈 〉 = 〈 〉  (Eq. 4), since whether we label the electron as 1 or 

as i does not affect the value of this definite integral. The second ∑  in Eq. 2 is a 
summation over the n! permutations of p, q, r,…. One-nth of these permutations have 
electron i in spin-orbital pu , one-nth have electron i in qu , etc. Since (1/ ) ! ( 1)!n n n= − , 

Eqs. 3 and 4 show that ˆ(1) (2) (3) | | (1) (2) (3)p q r i p q ru u u f u u u∑〈 〉 =" "  

1 1 1
ˆ ˆ ˆ( 1)![ (1) | | (1) (1) | | (1) (1) | | (1) ]p p q q r rn u f u u f u u f u− 〈 〉 + 〈 〉 + 〈 〉 +"  and Eq. 2 becomes 

1 1 1 1 1
ˆ ˆ ˆ ˆ| | (1/ ) [ (1) | | (1) (1) | | (1) (1) | | (1) ]n n

i i i p p q q r rD f D n u f u u f u u f u= =〈 ∑ 〉 = ∑ 〈 〉 + 〈 〉 + 〈 〉 + ="

1 1 1 1 1
ˆ ˆ ˆ ˆ(1) | | (1) (1) | | (1) (1) | | (1) (1) | | (1)n

p p q q r r j j ju f u u f u u f u u f u=〈 〉 + 〈 〉 + 〈 〉 + = ∑ 〈 〉" , 

since the quantity in brackets has the same value for each value of i. Use of 

1̂(1) | | (1)j ju f u〈 〉  = 1̂(1) | | (1)j jfθ θ〈 〉  [the displayed equation after (11.77)] gives 

1 1 1
ˆ ˆ| | (1) | | (1)n n

i i j j jD f D fθ θ= =〈 ∑ 〉 = ∑ 〈 〉 , which is (11.78). 

         Proceeding similarly with the ˆijg  integrals, we have 
1 1
1 1ˆ ˆ| | | |n n

i j i ij i j i ijD g D D g D− −
= > = >〈 ∑ ∑ 〉 = ∑ ∑ 〈 〉 . Use of Prob. 8.22 gives  

1
1 ˆ| |n

i j i ijD g D−
= >〈 ∑ ∑ 〉 =

1
1 ˆ(1/ !) ( 1) (1) (2) (3) | | ( 1) (1) (2) (3)n

i j i p q r ij s t wn u u u g u u u−
= >∑ ∑ 〈∑ ± ∑ ± 〉 =" "

1
1 ˆ(1/ !) ( 1) (1) (2) (3) | | ( 1) (1) (2) (3)n

i j i p q r ij s t wn u u u g u u u−
= >∑ ∑ ∑∑〈 ± ± 〉" "  (Eq. 5).  

Consider the integral 12ˆ(1) (2) (3) | | (1) (2) (3)p q r s t wG u u u g u u u≡ 〈 〉 =" "  

12ˆ(1) (2) | | (1) (2) (3) | (3)p q s t r wu u g u u u u〈 〉〈 〉 =" 12ˆ(1) (2) | | (1) (2)p q s t rwu u g u u δ〈 〉 " , since 

the spin-orbitals are orthonormal. Unless each of electrons 3, …, n, is in the same spin-
orbital on the left and on the right of 12ĝ , the integral G will be zero. The rightmost sum 
in Eq. 5 is over the various possible permutations stw", and the nonzero terms in this 
sum have each of electrons 3,…, n in the same spin-orbital on the right of 12ĝ  as on the 



11-12 
Copyright © 2014 Pearson Education, Inc. 

 

left. Hence, for 12ˆ ˆijg g= , the only nonzero terms in the rightmost sum in Eq. 5 are 

12ˆ(1) (2) | | (1) (2)p q p qu u g u u〈 〉  and 12ˆ(1) (2) | | (1) (2)p q q pu u g u u−〈 〉 ; the first of these 

integrals involves the same permutation on the left and right, so the 1± ’s disappear. In the  
second integral, the permutation on the right is gotten from the one on the left by one 
interchange, so in this integral, the spin-orbitals are multiplied by ( 1)( 1) 1+ − = − . Thus, the 
integral ˆ( 1) (1) (2) (3) | | ( 1) (1) (2) (3)p q r ij s t wu u u g u u u〈 ± ± 〉" "  in Eq. 5 is zero unless the 
permutation stw" is either the same as the permutation pqr"  or differs from pqr"  in 
having the two spin-orbitals for electrons i and j interchanged. The rightmost sum in Eq. 1 
is over the various permutations stw". Thus when we do the rightmost summation, Eq. 5 
gives 1

1 ˆ| |n
i j i ijD g D−
= >〈 ∑ ∑ 〉 =   

1
1 ˆ(1/ !) [ (1) (2) ( ) ( ) | | (1) (2) ( ) ( )n

i j i p q w y ij p q w yn u u u i u j g u u u i u j−
= >∑ ∑ ∑ 〈 〉 −" " " " " "  

ˆ(1) (2) ( ) ( ) | | (1) (2) ( ) ( )p q w y ij p q y wu u u i u j g u u u i u j〈 〉" " " " " " ] (Eq. 6) 

 The rightmost ∑  in Eq. 6 is a summation over the n! permutations of p, q, r,…. One-nth 
of these n! permutations [that is, ( 1)!n −  permutations] have electron i in spin-orbital wu ; 
of these ( 1)!n −  permutations with electron i in wu , a fraction [1/( 1)]n −  have electron j in 

yu . Thus ( 2)!n −  of the !n  permutations have electron i in wu  and electron j in yu . Also 
( 2)!n −  of the !n  permutations have electron i in yu  and electron j in wu . Equation 6 

therefore becomes 1
1 ˆ| |n

i j i ijD g D−
= >〈 ∑ ∑ 〉 =   

1
1 12 12ˆ ˆ{2/[ ( 1)]} [ (1) (2) | | (1) (2) (1) (2) | | (1) (2)n

i j i p q p q p r p rn n u u g u u u u g u u−
= >− ∑ ∑ 〈 〉 + 〈 〉 +"  

 12 12ˆ ˆ(1) (2) | | (1) (2) (1) (2) | | (1) (2) ]p q q p p r r pu u g u u u u g u u− 〈 〉 − 〈 〉 −"  (Eq. 7), 

 where the dots indicate that terms with all pairs of spin-orbitals are included, with each 
pair appearing once; that is, the term 12ˆ(1) (2) | | (1) (2)q p q pu u g u u〈 〉  does not appear in 
addition to 12ˆ(1) (2) | | (1) (2)p q p qu u g u u〈 〉 , since 12ˆ(1) (2) | | (1) (2)q p q pu u g u u〈 〉  has been 

allowed for by the factor 2 in Eq. 7. In writing down Eq. 7, we used the relations 
ˆ(1) (2) ( ) ( ) | | (1) (2) ( ) ( )p q w y ij p q w yu u u i u j g u u u i u j〈 〉 =" " " " " "

ˆ( ) ( ) | | ( ) ( )w y ij w yu i u j g u i u j〈 〉  and 

12ˆ ˆ( ) ( ) | | ( ) ( ) (1) (2) | | (1) (2)w y ij w y w y w yu i u j g u i u j u u g u u〈 〉 = 〈 〉 . The quantity in brackets in 

Eq. 7 has the same value for each term in the double summation over i and j, and there are 
1
2 ( 1)n n −  terms in the double sum. Hence Eq. 7 becomes 1

1 ˆ| |n
i j i ijD g D−
= >〈 ∑ ∑ 〉 =  

12 12ˆ ˆ(1) (2) | | (1) (2) (1) (2) | | (1) (2)p q p q p r p ru u g u u u u g u u〈 〉 + 〈 〉 +"

12 12ˆ ˆ(1) (2) | | (1) (2) (1) (2) | | (1) (2)p q q p p r r pu u g u u u u g u u− 〈 〉 − 〈 〉 −" (Eq. 8), where the dots 

indicate that terms with all pairs of spin-orbitals are included. Instead of the dots, we can 
use a double sum over the spin-orbitals to include each pair of spin-orbitals, and Eq. 8 is 

1
1 ˆ| |n

i j i ijD g D−
= >〈 ∑ ∑ 〉 =

1
1 12 12ˆ ˆ[ (1) (2) | | (1) (2) (1) (2) | | (1) (2) ]n

k m k k m k m k m m ku u g u u u u g u u−
= >∑ ∑ 〈 〉 − 〈 〉  (Eq. 9).  
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Each spin-orbital is the product of a spatial and a spin factor: k k ku θ σ= . Since the spin 
functions α  and β  are orthonormal, we have 

12 12ˆ ˆ(1) (2) | | (1) (2) (1) (2) | | (1) (2)k m k m k m k mu u g u u gθ θ θ θ〈 〉 = 〈 〉  and 

, ,12 12ˆ ˆ(1) (2) | | (1) (2) (1) (2) | | (1) (2)
s k s mk m m k m m k m m ku u g u u gδ θ θ θ θ〈 〉 = 〈 〉  and Eq. 9 becomes 

1
1 ˆ| |n

i j i ijD g D−
= >〈 ∑ ∑ 〉 =

, ,

1
1 12 12ˆ ˆ[ (1) (2) | | (1) (2) (1) (2) | | (1) (2) ]

s k s m

n
k m k k m k m m m k m m kg gθ θ θ θ δ θ θ θ θ−
= >∑ ∑ 〈 〉 − 〈 〉 ,  

which is (11.79). 
 
11.38 (a)  For a closed-subshell configuration, 1 2 1,θ θ φ= =  3 4 2θ θ φ= = ,…, 1 /2n n nθ θ φ− = = . 

Consider the Coulomb integrals in (11.80) that involve 2 3 4, , ,θ θ θ θ1 . The contribution of 
these integrals to (11.80) is 12 13 14 23 24 34J J J J J J+ + + + + , where the subscripts refer to 

the θ functions. Let ijJφ  denote a Coulomb integral involving iφ  and jφ . From the 

relations between the θ’s and the φ’s, we have 12 11,J Jφ=  13 12J Jφ= , 14 12J Jφ= , 23 12J Jφ= , 

24 12J Jφ= , 34 22J Jφ= . So 12 13 14 23 24 34 12 11 224J J J J J J J J Jφ φ φ+ + + + + = + + , whose form 
agrees with that of the Coulomb integrals in the expression to be proved. A similar result 
holds for the Coulomb integrals involving the four orbitals 1 1, , ,i i j jθ θ θ θ+ +  having 

1i iθ θ +=  and 1j jθ θ += , so the Coulomb-integral part of the expression in Prob. 11.38a is 
correct. The orbitals 2 3 4, , ,θ θ θ θ1  have spin functions , , ,α β α β , respectively, so the 
contribution of the exchange integrals in (11.80) that involve 2 3 4, , ,θ θ θ θ1  is 13 24K K− − . 
The integrals 12 14 23 34, , , and K K K K  do not appear because of the Kronecker delta in 

(11.80). We have 13 12K Kφ=  and 24 12K Kφ= , so 13 24 122K K Kφ− − = − , whose form agrees 
with that of the exchange integrals in the expression to be proved. A similar result holds 
for the exchange integrals involving the four orbitals 1 1, , ,i i j jθ θ θ θ+ +  having 1i iθ θ +=  
and 1j jθ θ += , so the exchange-integral part of the expression in Prob. 11.38a is correct. 

 (b)  First consider integrals where i j≠ . In the double sum in (11.83), the terms 
2  and 2ij ij ji jiJ K J K− −  occur, whereas the restriction j i>  means that in the Prob. 
11.38 double sum, we get 4 2ij ijJ K−  instead of 2 2ij ij ji jiJ K J K− + − . Because ij jiJ J=  
and ij jiK K= , these two expressions are equal. The contribution of integrals with i j=  to 

the double sum in (11.80) is /2 /2 /2
1 1 1(2 ) (2 )n n n

ii ii ii ii iii i iJ K J J J= = =∑ − = ∑ − = ∑ .  

 

11.39 If we take the special case that ˆ 1if = , then Table 11.3 gives 

1| | | (1) | (1)n
i i iD n D n D D u u n=〈 〉 = 〈 〉 = ∑ 〈 〉 =  (since the spin-orbitals are normalized) and 

| 1D D〈 〉 = . If D and D′  differ by one spin-orbital n nu u′≠ , then 
| (1) | (1) 0n nn D D u u′ ′〈 〉 = 〈 〉 = , since the spin-orbitals are orthogonal. If D and D′  differ by 

more than one spin-orbital, Table 11.3 gives | 0D D′〈 〉 = . 
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11.40 The zero level of energy is taken with the electrons and the nucleus infinitely far from one 

another. Therefore the ground-state energy is minus the energy change for the process  
Li → Li3+ + 3e–, which is minus the total energy change for the processes  
Li → Li++ e–, Li+ → Li2+ + e–, Li2+ → Li3+ + e–. In the second and third steps, the 1s 
electron is being removed from Li2+ and from Li3+, respectively, whereas the 1s ionization 
energy of Li refers to removal of a 1s electron from Li. Hence the procedure mentioned in 
the problem does not give the correct Li ground-state energy.  

 
11.41 (a)  Because the proton mass occurs in the denominator of mI, whereas the electron mass 

occurs in the denominators of mL and mS, the magnitude of mI is much smaller than that 
of mL and mS. 

 (b)  The inner-shell electrons are in closed subshells and do not contribute to the orbital or 
spin angular momenta. The valence electron is in an s orbital and has no orbital angular 
momentum. Hence L is zero and mL is zero. (The nuclear spin is nonzero since the 
nucleus has an odd number of protons.) 

 
11.42 (a)  T.  With an odd number of electrons, there must be an odd number of unpaired 

electrons. Since each electron has 1
2s = , the total-electron-spin quantum number S must 

be half-integral 3 51
2 2 2(  or  or  or )"  with an odd number of unpaired electrons. Hence 2S 

is odd and the spin multiplicity 2S + 1 is even. 
 (b)  T.  With an even number of electrons, there must be an even number of unpaired 

electrons. The quantum number S must be an integer (0 or 1 or 2 or " ). Hence 2S is even 
and the spin multiplicity 2S + 1 is odd. 

 (c)  F. For example, a 3S term has only one level. 
 (d)  F.  [See (11.10).] 
 (e)  F.  
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Chapter 12 

Molecular Symmetry 

 
 
12.1 (a)  F.   (b)  F.   (c)  T. 
 
12.2 (a)  A 2C  axis bisecting the bond angle; two planes of symmetry—one containing the 

plane of the nuclei and one perpendicular to the nuclear plane and containing the 2C  axis. 

 (b)  A 3C  axis and three vertical planes of symmetry; each plane contains the 3C  axis and 
an N–H bond. 

 (c)  A 3C  axis through the H–C bond and three planes of symmetry; each plane contains 
the 3C  axis and a C–F bond. 

 (d)  A plane of symmetry containing the nuclei. 
 (e)  A 3C  axis perpendicular to the molecular plane and passing through the center of the 

benzene ring; the 3C  axis is also an 3S  axis; three vertical planes of symmetry, each of 
which contains the 3C  axis and a C–Cl bond; a horizontal plane of symmetry containing 
all the nuclei; three 2C  axes, each containing a C–Cl bond. 

 (f)  A 2C  axis that bisects the HCH bond; two vertical planes of symmetry, one containing 
the H, C, H nuclei and one containing the F, C, F nuclei. 

 (g)  No symmetry elements. 
 
12.3 (a)  2

ˆˆ ˆ ˆ, , ,a bE C σ σ . 

 (b)  2
3 3

ˆ ˆˆ ˆ ˆ ˆ, , , , ,a b cE C C σ σ σ . 

 (c)  2
3 3

ˆ ˆˆ ˆ ˆ ˆ, , , , ,a b cE C C σ σ σ  

 (d)  ˆ ˆ,E σ . 

 (e)  2 5
3 3 3 3 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , , , , , , , .a b c d a b cE C C S S C C Cσ σ σ σ  

 (f)  2
ˆˆ ˆ ˆ, , ,a bE C σ σ . 

 (g)  Ê . 
 
12.4 This does not meet the definition of a symmetry operation since it does not preserve the 

distances between all pairs of points in the body. For example, the distance between one 
of the Cl atoms that is moved and one of the Cl atoms that is not moved is changed. 
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12.5 (a)  Ê ;    
 (b)  σ̂ ;    

 (c)  2Ĉ ;    

 (d)  2Ĉ ;    

 (e)  2Ĉ ;    

 (f)  2
ˆ ˆS i= ;    

 (g)  4Ĉ ;    

 (h)  î . 
 
12.6 (a)  The top drawing in Fig. 12.7 shows that 2 4

ˆ ˆ( ) ( )C x C z  leaves the locations of F3 and F5 

unchanged, interchanges F1 and F6, and interchanges F4 and F2. This is a 2Ĉ  rotation 
about the F3SF5 axis. 

 (b)  The bottom drawing in Fig. 12.7 shows that 4 2
ˆ ˆ( ) ( )C z C x  leaves the locations of F2 

and F4 unchanged, interchanges F1 and F6, and interchanges F3 and F5. This is a 2Ĉ  
rotation about the F2SF4 axis. 

 
12.7 (a) 

  

  
 The top and bottom rightmost figures are the same, and these two operators commute. 

S

F1 

F6 

F5 

F4 F3 

F2 

4
ˆ ( )C z  

x

y 

z

S 

F6 

F1 

F4 

F3 F2 

F5 

S 

F6 

F1

F5 

F4 F3 

F2 

4
ˆ ( )C z  S 

F1 

F6 

F5 

F4 F3 

F2 

x

y 

z

ˆhσ  

S 

F6 

F1 

F4 

F3 F2 

F5 

S

F1 

F6

F4 

F3 F2 

F5 

hσ  
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 (b) 

  

  
 These two operators do not commute. 
 
 (c)   

  

  
 These operators commute. 

 

 

 

S 

F6

F1 

F4 

F5 F2 

F3 

S 

F6

F1

F2 

F3 F4 

F5 

2
ˆ ( )C z  S 

F1

F6 

F5 

F4 F3 

F2 

2
ˆ ( )C x  

S 

F6

F1 

F4 

F5 F2 

F3 

S

F1

F6

F3 

F2 F5 

F4 

2
ˆ ( )C x  S 

F1

F6 

F5 

F4 F3 

F2 

2
ˆ ( )C z  

x

y 

S 

F1 

F6 

F5 

F2 F3 

F4 

S 

F1 

F6

F4 

F5 F2 

F3 

4
ˆ ( )C z  S 

F1

F6 

F5 

F4 F3 

F2 

ˆ ( )yzσ  

S 

F1 

F6 

F3 

F4 F5 

F2 

S

F1 

F6

F4 

F3 F2 

F5 

ˆ ( )yzσ  
S 

F1 

F6 

F5 

F4 F3 

F2 

4
ˆ ( )C z  

x

y 
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 (d)  

  

  
 These operators commute. 
 (e) 

  

  
 The operators commute. 
 
12.8 (a)  It lies along the 2C  axis bisecting the bond angle. 

 (b)  It lies on the 3C  axis. 

S 

F1

F6 

F3 

F2 F5 

F4 

S

F6

F1

F5 

F4 F3 

F2 

î  S 

F1

F6 

F5 

F4 F3 

F2 

ˆhσ  

S 

F1

F6 

F3 

F2 F5 

F4 

S

F6

F1

F3 

F2 F5 

F4 

ˆhσS 

F1

F6 

F5 

F4 F3 

F2 

î  y 

x

S 

F6

F1 

F4 

F5 F2 

F3 

S

F1

F6

F4 

F5 F2 

F3 

ˆhσ  
S 

F1

F6 

F5 

F4 F3 

F2 

ˆ ( )yzσ  

S 

F6

F1 

F4 

F5 F2 

F3 

S

F6

F1 

F5 

F4F3 

F2 

ˆ ( )yzσ  
S 

F1

F6 

F5 

F4 F3 

F2 

ˆhσ  
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 (c)  It lies on the 3C  axis coinciding with the C–H bond. 

 (d)  It lies in the molecular plane. 
 (e)  No dipole moment, since we have noncoincident 2C  and 3C  axes. 

 (f)  It lies on the 2C  axis bisecting the HCH bond angle. 

 (g)  No information. 
 
12.9 (a)  No. 
 (b)  Because of the absence of an nS  axis, the molecule is not superimposable on its 

mirror image. However, the mirror image differs from the original molecule by rotation 
about the O–O bond, and there is a low barrier to rotation about this single bond. Hence, 
the molecule is not optically active. 

 
12.10 (a)  Ê  has no effect on the coordinates, so its matrix representative is 

1 0 0
0 1 0
0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 (b)  ˆ ( )xyσ  converts z to –z while leaving the x and y coordinates unchanged, so its matrix 
representative is  

1 0 0
0 1 0
0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

 

 (c)  ˆ ( )yzσ  converts x to –x and leaves the y and z coordinates unchanged. Its matrix 
representative is 

1 0 0
0 1 0
0 0 1

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 (d)  2
ˆ ( )C x  converts y to –y and z to –z, while leaving x unchanged. Hence, we have  

1 0 0
0 1 0
0 0 1

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−⎝ ⎠

 

 (e)  The 4
ˆ ( )S z  operation combines the effects of 4

ˆ ( )C z  and ˆ ( )xyσ . As shown in Fig. 

12.9, a 4
ˆ ( )C z  rotation gives x y′ = −  and y x′ = . The operation ˆ ( )xyσ  converts z to –z. 

Therefore the 4
ˆ ( )S z  matrix representative is [see also the 4

ˆ ( )C z  representative near the 
end of Sec. 12.1.] 
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0 1 0
1 0 0
0 0 1

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

 

 (f)  The following figure shows the effect of 3
ˆ ( )C z : 

 
 From the figure, we have 
 cos , sinx r y rθ θ= =  and 

1 1
2 2cos(60 ) (cos 60 cos sin 60 sin ) cos 3 sinx r r r rθ θ θ θ θ′ = − ° − = − ° + ° = − −

1 1
2 2 3x x y′ = − −  

 1 1
2 2sin(60 ) (sin 60 cos cos 60 sin ) 3y r r x yθ θ θ′ = ° − = ° − ° = − , where trigonometric 

identities were used. Hence the matrix representative is 
1 1
2 2

1 1
2 2

3 0

3 0
0 0 1

⎛ ⎞− −
⎜ ⎟

−⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
12.11 (a) 

  

S

F1 

F6 

F2 

F3 F4 

F5 

x

y 

z

S

F6

F1

F5

F4 F3 

F2 

2
ˆ ( )C x  

x

y 

z

S

F1

F6 

F5 

F4 F3 

F2 

ˆ ( )xyσ  

x

y 

z

120°
60° – θ

r

θ

(x, y) 

x

y

( , )x y′ ′  

r
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 (b)   

 
1 0 0

( ) 0 1 0
0 0 1

x
⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

2C              
1 0 0

( ) 0 1 0
0 0 1

xy
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

σ              
1 0 0

( ) 0 1 0
0 0 1

xz
⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

σ  

 
1 0 0 1 0 0 1 0 0

( ) ( ) 0 1 0 0 1 0 0 1 0 ( )
0 0 1 0 0 1 0 0 1

x xy xz
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= − = − =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠ ⎝ ⎠

2C σ σ  

 

12.12 (a)  Since 
4

4ˆ( ) 1CO = , the result of Prob. 7.25 shows the eigenvalues to be 1, i, –1, i.  

 (b)  Since some eigenvalues are not real this operator cannot be Hermitian. Note also that 
the 4

ˆ ( )C z  matrix representative near the end of Sec. 12.1 is not Hermitian. 

 
12.13 (a)  Since 

2

2ˆ( ) 1CO = , the result of Prob. 7.25 shows the eigenvalues to be 1 and –1. 

 (b)  To prove this operator is Hermitian, we must show that 

2 ( )
ˆ[ ( , , )]* ( , , )C zf x y z O g x y z dx dy dz∞∞ ∞

−∞ −∞ −∞ =∫ ∫ ∫  

2 ( )
ˆ( , , )[ ( , , )]*C zg x y z O f x y z dx dy dz∞∞ ∞

−∞ −∞ −∞∫ ∫ ∫  (Eq. 1). The left side (ls) of Eq. 1 is 

ls = [ ( , , )]* ( , , )f x y z g x y z dx dy dz∞∞ ∞
−∞ −∞ −∞ − −∫ ∫ ∫ . Let ,s x t y≡ − ≡ − . Then 

ls = [ ( , , )]* ( , , )f s t z g s t z ds dt dz∞∞ −∞ −
−∞ ∞ ∞ − − =∫ ∫ ∫

[ ( , , )]* ( , , )f x y z g x y z dx dy dz∞∞ ∞
−∞ −∞ −∞ − −∫ ∫ ∫ , where the dummy variables s and t were 

changed to x and y. The right side of Eq. 1 is 
rs = ( , , )[ ( , , )]*g x y z f x y z dx dy dz∞∞ ∞

−∞ −∞ −∞ − −∫ ∫ ∫ . Since rs = ls, the operator is Hermitian. 
(Note also that the matrix in Prob. 12.10d is Hermitian.) 

 
12.14 (a)  A rotation around the z axis leaves 2 zp  unchanged. 

S

F1 

F6

F2

F3 F4 

F5 

x

y 

z

S

F1 

F6 

F5 

F4 F3 

F2 
ˆ ( )xzσ  

x

y 

z
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 (b)  A 90° counterclockwise rotation about the y axis moves the positive lobe of 2 zp  onto 
the positive half of the x axis and the negative lobe onto the negative x axis, and so 
converts 2 zp  to 2 xp . 

 
12.15 Figure 12.6 shows that 2

ˆˆ ˆ ( ) ( )i xy C zσ= . Also, ˆ ˆˆ ( ) ( )n nS xy C zσ= . Since two rotations 
about the z axis clearly commute with each other, we have 

2 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n n n n n niC z C z iC z C z xy C z C z C z xy EC z xy C z Sσ σ σ= = = = = . 

For 1n = , the relation 2
ˆ ˆ ˆˆ( ) [ ( ) ( )]n nS z i C z C z=  (Eq. 1) becomes 1 2

ˆ ˆ( ) ( )S z iC z= , so an 1S  

axis is a 2  axis. For 2n = , Eq. 1 becomes 2 2 2 1
ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( )S z iC z C z iE iC z= = = , so an 2S  

axis is a 1  axis. For 3n = , Eq. 1 becomes 5 1
3 3 2 6 6

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) [ ( )] [ ( )]S z iC z C z i C z i C z −= = = , 
so an 3S  axis is a 6  axis. For 4n = , Eq. 1 becomes 

3 1
4 4 2 4 4

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) [ ( )] [ ( )]S z iC z C z i C z i C z −= = = , so an 4S  axis is a 4  axis. For 5n = , 
7

5 5 2 10
ˆ ˆ ˆ ˆˆ ˆ( ) ( ) [ ( )]S iC z C z i C z= =  and 3 3 21

5 10 10
ˆ ˆ ˆˆ ˆ( )S i C iC= = , so an 5S  axis is a 10  axis.  

For 6n = , 2 1
6 6 2 3 3

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( )S iC z C z i C i C −= = =  and an 6S  axis is a 3  axis. For 7n = , 
9

7 7 2 14
ˆ ˆ ˆ ˆˆ ˆ( )S iC C i C= =  and 3 3 27 1

7 14 14
ˆ ˆ ˆˆ ˆ( ) ( ) ( )S i C i C −= =  and an 7S  axis is a 14  axis. 

 
12.16 (a)  Since the sum of two real numbers is a real number, closure is satisfied. The identity 

element is 0. The inverse is the negative of the real number. (0 is its own inverse.) 
Addition is associative. Hence this is a group. 

 (b)  The identity element is 1. The inverse of 2 is 1
2 , which is not an element in the 

proposed group, so this is not a group. 
 (c)  Multiplication is associative. The identity element is 1. The inverse is the reciprocal of 

the number, and every member has an inverse. The product of two real nonzero numbers 
is a real nonzero number, so closure is satisfied. This is a group. 

 
12.17 The sum of two square matrices of order 4 is a square matrix of order 4, so closure is 

satisfied. The identity element is the square order-4 null matrix (all elements equal to 
zero). Matrix addition is associative. The inverse of a matrix with elements ija  is the 
matrix with elements ija− . So these matrices do form a group.  

 
12.18 We have 2 / 2 / 2 ( )/i k n i j n i k j ne e eπ π π +=  (where k and j are integers) and 2 ( )/[ ] 1i k j n ne π + = , so 

closure is satisfied. The identity element is 1. The inverse is 2 /i k ne π−  (which is an nth root 
of unity). Multiplication is associative. So this is a group. 

 
12.19 (a)  Td;   (b)  C3υ;   (c)  C2υ;   (d)  C3υ;   (e)  Oh;   (f)  C4υ;   (g)  D4h;   (h)  C3υ. 
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12.20 (a)  D2h;   (b)  Cs;   (c)  C2υ;   (d)  C2υ;   (e)  C2h. 

 
12.21 (a)  D6h;   (b)  C2υ;   (c)  C2υ;   (d)  C2υ;   (e)  D2h;   (f)  D3h;   (g)  C2h;   (h)  D2h;   (i)  Cs. 

 
12.22 (a)  C∞υ;   (b)  C2υ;   (c)  D∞h;   (d)  C∞υ;   (e)  D∞h;   (f)  Cs (The OH hydrogen is staggered 

between two methyl hydrogens.);   (g)  C3υ;   (h)  C∞υ;   (i)  Td;   (j)  C3υ;   (k)  D3h;   (l)  Ih;   
(m)  Oh;   (n)  Kh. 

 
12.23 (a)  Oh;   (b)  C4υ;   (c)  D2d;   (d)  Oh;   (e)  C3υ;   (f)  D2h;   (g)  D4h;   (h)  C2υ;   (i)  D2d. 

 
12.24 (a)  From Prob. 12.3b, there are 6 symmetry operations and the order is 6. 
 (b)  From Prob. 12.3d, the order is 2. 
 (c)  The order is infinity, since there are an infinite number of rotations. 
 (d)  From Prob. 12.3e, the order is 12. 
 
12.25 (a)  2

ˆˆ ˆ ˆ, ( ), ( ), ( ).E C z xz yzσ σv v  

 (b)  The product of Ê  with a symmetry operation B̂  is equal to B̂ . The product of each 
of the four operations in (a) with itself is equal to ˆ.E  The 2

ˆ ( )C z  operation converts the x 
coordinate to –x and the y coordinate to –y and does not affect z. The ˆ ( )xzσv  operation 
converts y to –y and leaves x and z unchanged. The ˆ ( )yzσv  operation converts x to –x and 

leaves y and z unchanged. Thus 2
ˆ ˆ ( )( )( , , ) ( , , ) ( , , ),xzC zx y z x y z x y zσ⎯⎯⎯→ − − ⎯⎯⎯→ −v  so 

ˆ ( )xzσv 2
ˆ ( )C z  = ˆ ( )yzσv . Similarly, 2

ˆ ( )C z ˆ ( )xzσv  = ˆ ( )yzσv . Also 
2

ˆ ˆ ( )( )( , , ) ( , , ) ( , , ),yzC zx y z x y z x y zσ⎯⎯⎯→ − − ⎯⎯⎯→ −v  so ˆ ( )yzσv 2
ˆ ( )C z  = ˆ ( )xzσv . Similarly, 

2
ˆ ( )C z ˆ ( )yzσv  = ˆ ( )xzσv . Also, ˆ ˆ( ) ( )( , , ) ( , , ) ( , , ),xz yzx y z x y z x y zσ σ⎯⎯⎯→ − ⎯⎯⎯→ − −v v  so 
ˆ ( )yzσv ˆ ( )xzσv  = 2

ˆ ( )C z . Similarly, ˆ ( )xzσv ˆ ( )yzσv  = 2
ˆ ( )C z . 

 (c)  The results of part (b) give the following multiplication table  
 

2

2

2 2

2

2

ˆˆ ˆ ˆ( ) ( ) ( )
ˆˆ ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
ˆˆˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( )

E C z xz yz

E E C z xz yz

C z C z E yz xz

xz xz yz E C z

yz yz xz C z E

σ σ

σ σ

σ σ

σ σ σ

σ σ σ

v v

v v

v v

v v v

v v v
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12.26 (a)  Since 2
3 3

ˆ ˆˆ , , and E C C  all commute with one another, this group is Abelian. 

 (b)  Let the z axis go through the N atom and be perpendicular to the plane of the three 
hydrogens. Drawing the projections of the atoms into the xy plane, we find that 3Ĉ  and 
ˆ ( )xzσ  do not commute, so the group is non-Abelian. 

 
12.27 (a)  D5h;   (b)  D5d. 

 
12.28 There are three 2C  axes, one through each NH2CH2CH2NH2 group: 

  
 
 The point group D2 has three 2C  axes, but in D2 these axes are mutually perpendicular, 

which is not true here. The three 2C  axes in this complex ion actually lie in the same 
plane; this plane contains the y axis and is tilted away from the viewer above the 
equatorial square and toward the viewer below the equatorial square. These three coplanar 

2C  axes indicate a 3C  axis perpendicular to the plane of the 2C  axes. (This 3C  axis is one 
of the diagonals of the cube in which one can inscribe the octahedral ion; recall from the 
description of the group Oh the presence of 3C  axes in a cube.) The following figure 
shows two of the triangular faces of the octahedron. The 3C  axis is perpendicular to these 

two parallel planes, and a 3Ĉ  rotation sends an atom at one corner of a triangle to another 
corner of the same triangle. 

              
 This complex ion, whose point group is 3D , can be viewed as a three-bladed propeller: 

Co

N

N

N

NN

N

Co 

N

N

N

NN

N

3Ĉ  

Co 

N

N

N

NN

N

y 2
ˆ ( )C y  

Co

N

N

N

NN

N

y
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12.29 We have 2
ˆ ˆ( ) ( )( , , ) ( , , ) ( , , )C x xyx y z x y z x y zσ⎯⎯⎯→ − − ⎯⎯⎯→ − . 

 
12.30 (a)  C4υ;   (b)  C∞υ;   (c)  D4h;   (d)  C4υ;   (e)  D∞h;   (f)  C∞υ;   (g)  C2υ;   (h)  D6h;   (i)  D∞h;  

(j)  D2d;   (k)  D∞h if the opposite signs of the wave function on the two lobes are ignored 
or C∞υ if these signs are not ignored;   (l)  Cs. 

 
12.31 (a)  A regular tetrahedron.     
 (b)  The regular pentagonal dodecahedron is dual to the icosahedron, which has 20 faces 

(Fig. 12.14). Hence the pentagonal dodecahedron has 20 vertices. (For drawings, see 
mathworld.wolfram.com/Dodecahedron.html.) 

 
12.32 (a)  1, 3, 5,… (as noted in the description of the group n6 ). 

 (b)  2, 6, 10, …, since 2 2 2
ˆ ˆ ˆˆ( )n

n hS C Sσ= =  for n =  1, 3, 5,….  

 (c)  2 2, 6, 10,n = … , so n =  1, 3, 5,…. 

 
12.33 To have a dipole moment, the molecular point group must not have noncoincident 

symmetry axes, must not have a center of symmetry, must not have a symmetry plane 
perpendicular to a symmetry axis (since the dipole moment vector cannot simultaneously 
lie both on the axis and in the plane), and cannot contain an Sn axis with 2n ≥ , since the 
ˆ
nS  operation reverses the direction of a vector. The following groups satisfy these 

conditions: C1, Cs, Cnυ, Cn. 

 
12.34 For optical activity, the molecule must have no Sn axis, including the cases of a plane of 

symmetry and a center of symmetry. The following point groups satisfy this condition:  
C1, Dn, Cn, T, O, I. 

 
12.35 The first player will win. As a hint, consider what chapter this problem is in. (The problem 

did not specify whether or not pennies are allowed to overlap the edge of the board, and 
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the winning strategy is the same whether or not pennies are allowed to overlap the edge of 
the board.)  
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Chapter 13 

Electronic Structure of Diatomic Molecules 

 
 
13.1 (a)  F.   (b)  T.   (c)  F. (The total energy is E in the nuclear Schrödinger equation.) 
 
13.2 At 0 K, the enthalpy change of a gas-phase reaction equals the internal-energy change. 

 
19 234.4781 eV 1.60218 10  J 6.02214 10  molecules 432.07 kJ/mol

molecule 1 eV 1 mol

−× ×
=  

 
13.3 Consider the following processes, where all species are in their ground electronic (and 

vibrational) states: 

 1 2+ +
2 2H H  + e H + H  + e− −⎯⎯→ ⎯⎯→  

     3 

 2H 
 The energy change for step 1 is I(H2), the ionization energy of H2. The energy changes for 

steps 2 and 3 are D0(H2
+) and D0(H2), respectively. We have 1 2 3 4E E E EΔ + Δ = Δ + Δ , so 

+
2 0 2 0 2(H ) (H ) (H ) (H)I D D I+ = + , and 2(H )I =4.478 eV + 13.598 eV – 2.651 eV = 

15.425 eV. 
 
13.4 (a)  From Sec. 4.3, the frequency of the strongest infrared band equals the vibrational 

frequency of the diatomic molecule if the vibration is approximated as that of a harmonic 
oscillator. The zero-point energy is 34 13 11 1

2 2 (6.626 10  J s)(8.65 10  s )hν − −= × × =  
20 192.866 10  J(1 eV 1.6022 10  J) = 0.18 eV− −× × . So eD  = 4.43 eV + 0.18 eV = 4.61 eV. 

 (b)  The electronic energy function ( )U R  is the same for 2H35Cl and 1H35Cl [since a 
change in the mass of a nucleus does not change anything in the electronic Schrödinger 
equation (13.4)–(13.6)], so the force constant ( )e ek U R′′≡  is the same for these species 
and eD  in Fig. 13.1 is the same for the two species. Equation (13.27) gives 

1/22 35 1 35

1 35 2 35
( H Cl) ( H Cl)
( H Cl) ( H Cl)

e

e

ν μ
ν μ

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

1/2
1.008(34.97) 36.98

35.98 2.014(34.97)
⎡ ⎤

=⎢ ⎥
⎣ ⎦

 0.717 

 Then 2 35 13 1 13 1( H Cl) 0.717(8.65 10  s ) 6.20 10  seν
− −= × = ×  and 1

2 0.128 eVhν = . So 

04.61 eV 0.13 eVeD D= = +  and 0 4.48 eVD = . 

 

4 
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13.5 (a)  Setting 0=v  in (4.60), we get the zero-point energy as 1 1
2 4e e eh h xν ν− , so 

1 1
0 2 4e e e eD D h h xν ν= + − . 

 (b)  1 1
2 4e e eh h xν ν− =  

34 10 1 1(6.6261 10  J s)(2.9979 10  cm/s)[0.5(1405.65 cm ) 0.25(23.20 cm )]− − −× × − =
20 19(1.3846 10 J)(1 eV/1.6022 10 J) 0.08642 eV− −× × = .  

So 2.4287 eV 0.0864 eV 2.5151 eVeD = + = . 

 
13.6 The complete nonrelativistic Ĥ  is Eq. (13.2). The purely electronic Hamiltonian is 

2 2 2 2 2 2 2
2 2

el 1 2
0 1 0 1 0 2 0 2 0 12

ˆ
2 2 4 4 4 4 4e e

e e e e eH
m m r r r r rα β α βπε πε πε πε πε

= − ∇ − ∇ − − − − +
U U  

 
13.7 Let 2( ) (1 )f z z −≡ + . Then 3 4 52(1 ) , 6(1 ) , 24(1 ) ,f z f z f z− − −′ ′′ ′′′= − + = + = − + …  and 

(0) 1, (0) 2, (0) 6, (0) 24,f f f f′ ′′ ′′′= = − = = − … . The Taylor series (4.85) with 0a =  
gives 2 2 3(1 ) 1 2 3 4z z z z−+ = − + − +" and replacing z by / ex R , we get the series in 
(13.24). 

 

13.8 (a)  Since ( )ea R R−  in ( )ea R Re− −  is dimensionless, a has dimensions of L–1. Let 
b c dA aμ= =  and e f gB aμ= = .  From Eqs. (4.71) and (4.70), 

2 2 2 2[ ] ML T [ ] [ ] [ ] M L M L T M L Tb c d b c d d d b d d c dA aμ− − − + − −= = = == . We have  
1, 2 2, 2b d d c d+ = − = − = − . Hence 2, 2, 1d c b= = = −  and 1 2 2A aμ−= = . The 

same procedure can be used to find e, f, and g, but it is simplest to note that since a has 
dimensions of 1L−  and B has dimensions of L, we must have 1B a−= .  

 (b)  The result of Prob. 4.29 gives 1/2( /2 )e ea k D=  and Eq. 13.27 gives 1/2 1/22e ek πν μ= , 

so 1/22 ( /2 )e ea Dπν μ= . Then 
1 2 2 2 2 2 2 22 / /2e e e eA a D h Dμ π ν ν−= = = == = 1 2 2 2 1(4403.2 cm ) /2 (38297 cm )c h hc− − =  

1 1 34 10 21
9 9(253.12 cm ) (253.12 cm )(6.6261 10 J s)(2.9979 10 cm/s) 5.0283 10 Jhc− − − −= × × = ×

1 1/2(2 / ) / .e eB a D μ πν−= = 2   
23 25

1 1 1 1 1/( ) /2 0.5(1.007825 g)/(6.02214 10 ) 8.36766 10  gm m m m mμ −= + = = × = × . 
1 1/2 1 1/2 1/2

4[2(38297 cm ) / ] /2 (4403.2 cm ) 0.010003 ( / ) cmB hc c h cμ π μ− −= = =
34 28 10 1/2 1/2

40.010003 [(6.6261 10  J s)/(8.36766 10  kg)(2.99792 10  cm/s)] cm− −× × × =
115.1412 10  m−× . 

1 1
, 9/ (38297 cm ) /(253.12  cm ) 151.29e r eD D A hc hc− −= = = . 

 



13-3 
Copyright © 2014 Pearson Education, Inc. 

 

13.9 (a)  We set up the spreadsheet similar to Fig. 4.9 but with the ,e rD  value 151,294 (from the 
Sec. 13.2 example) put in cell D2. rx  goes from –1.44 to 2.8 in steps of 0.02. Since 

2
, vib,2 (1 ) 2rx

r e r rG D e E−= − − , the formula in B7 is =2*$D$2*(1-EXP(-A7))^2-2*$B$3. 

You may well find that the Solver has trouble converging. Instead of taking the 
unnormalized vibrational wave function value in C219 as the target cell, it is better to 
calculate the normalized ( )r rS x  wave function values [where ( )r rS x  is defined in the 
Sec. 13.2 example] in column E (using the procedure given near the end of Sec. 4.4; see 
also part b of this problem) and use E219 as the target cell. Add the constraint 0rE ≥ . 
Increase the number of Solver iterations to 5000. Also, graph the normalized wave 
function. You may still find the Solver does not converge (especially for the lowest 
levels), and using E209 instead of E219 as the target cell may increase the chances of 
convergence. You can also temporarily decrease the precision to, say, 0.01 to get an initial 
estimate of rE , which can then be found more accurately by increasing the precision. 
Even so, for some levels you may have to adjust the energy value by hand (after finding 
an initial estimate by running the Solver a few times in succession), being guided by the 
number of nodes. One finds the six lowest vib,rE  values as 8.57252518603940, 

24.9675657754079, 40.3625822603903, 54.7575697506298, 68.1525305970211, and 
80.5474722505875. (A ridiculously large number of significant figures were found to 
ensure that the wave function stays very close to zero at the right end, so that the answers 
to (b) will be accurate.) Use of the A value in Prob. 13.8b gives vib vib,/ ( / ) rE hc A hc E= =  

1
9 vib,(253.12  cm ) rE−  and we find the six lowest Morse-function vibrational levels as 

2169.95, 6320.01, 10216.94, 13860.73, 17251.38, and 20388.90 1cm .−  
 (b)  We calculate the normalized rS  values in column E. For example, cell E7 contains 

the formula =C7/$H$2^0.5, where cell H2 has the formula =SUMSQ(C8:C219)*$D$3, 
where D3 contains the interval value. In column F, we calculate the 2

r r rx S s  values. For 
example, cell F7 has the formula =A7*E7^2*$D$3. Then rx〈 〉  is found from the formula 
=SUM(F7:F209). The rx〈 〉  values found for the six lowest vibrational levels are 0.0440, 
0.1365, 0.2360, 0.3435, 0.4605, and 0.5884. Use of 

/ ( )/ ( 0.741 Å)/(0.5141 Å)r ex x B R R B R= = − = −  gives 0.741 Å (0.5141 Å) rR x〈 〉 = + 〈 〉  
and we find the following R〈 〉  values for the six lowest levels: 0.764, 0.811, 0.862, 0.918, 
0.978, 1.043 Å. 

 (c)  The rx  limits in the Sec. 13.2 example are appropriate for energies below 95.7.rE =  
The energy spacing between the highest two levels in part (a) is 12. The spacing between 
adjacent levels will continue to decrease as we go to higher levels, and we want to 
calculate four more levels. We shall therefore add 4(12) = 48 to the highest energy value 
of 80 in part (a) to get 128. For 128,rE =  we find the classically allowed region as in the 

Sec. 13.2 example:  2 2
,128 (1 ) 151(1 )r rx x

e rD e e− −= − = − , which gives 2.53rx =  as the 
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right limit of the classically allowed region. Adding 1.2 to this, we get 3.7 as the right 
limit for rx . We shall keep 0.02 as the interval. For these higher levels, the Solver more 
readily converges and the target cell should be E264. Continuing the process in (a), we 
find vib,rE  for the next four levels to be 91.9424054, 102.337342, 111.732295, 

120.127274. Use of 1
vib 9 vib,/ (253.12  cm ) rE hc E−=  gives the vib /E hc  values as 23273.3, 

25904.5, 28282.7, and 30407.7 cm–1. 
 
13.10 From Prob. 13.8b, 2 2 /2e eA h Dν= = 1 2 2 2 1(214.5 cm ) /2 (12550 cm )c h hc− − =  

1(1.83308 cm )hc− .  1 1
, / (12550 cm ) /(1.83308 cm ) 6846.4e r eD D A hc hc− −= = = . 

23 22
1 1 1 1 1/( ) /2 0.5(126.904 g)/(6.02214 10 ) 1.05365 10  gm m m m mμ −= + = = × = × . 

1/2(2 / ) /e eB D μ πν= 2 =
1 1/2 1 1/2 1/2[2(12550 cm ) / ] /2 (214.5 cm ) 0.11755( / ) cmhc c h cμ π μ− − = =   

34 25 10 1/2 1/20.11755[(6.6261 10 Js)/(1.05365 10 kg)(2.99792 10 cm/s)] cm− −× × × =
115.384 10 m−×  = 0.5384 Å.  , 2.666/0.5384 4.952e rR = = . 

The sixth-lowest vibrational level will have an energy that is less than 
5.5 ehν = 1 15.5 (214.5 cm ) (1180 cm )h c hc− −= , which division by A gives as a reduced 
energy of 1180/1.833 = 644. To find the limits of the classically allowed region for this 
energy, we have 2 2

,644 (1 ) 6846(1 )r rx x
e rD e e− −= − = −  and 1 0.307rxe−− = ± . We get 

0.27rx = −  and 0.37rx = . We shall extend this region by 0.43 at each end and take the 
range from –0.70 to 0.80 with 0.01.rs =  (Note that the minimum possible rx  is 
(0 2.67) / 0.539− = 4.95− , so –0.70 is OK.) Because the classically allowed region is 
much narrower here than in Prob. 13.9, it is appropriate to use a shorter extension here 
into the classically forbidden region. For the lowest levels, the Solver has trouble 
converging; see Prob. 13.9a for how to deal with this. We find the following values: 

vib,rE =  58.383056671139, 174.398929144567, 289.414096609111, 403.428129942721, 

516.440634357965, 628.451248394192.  
Then 1

vib vib, vib,/ ( / ) (1.83308 cm )r rE hc A hc E E−= =  and we find the lowest vib /E hc  

values as 107.02, 319.69, 530.52, 739.52, 946.68, 1152.00 cm–1. 
 
13.11 (a)  2 21 1

vib 2 2/ ( )( / ) ( ) ( / ) /4( / )e e eE hc c c D hcν ν= + − +v v . Substitution of eD  and eν  values 

from the Sec. 13.2 example gives for 0=v :  
2 1 11 1

vib 2 4/ [ (4403.2) (4403.2) /4(38297)] cm 2169.96 cmE hc − −= − = . For the next five 

levels, the formula gives 6320.03, 10216.97, 13860.78, 17251.47, 20389.02 cm–1. 
 (b)  To find the predicted maxv , we set vib/ /eD hc E hc=  to get 

1 2 2 11 1
vib max max2 238297 cm / [( )(4403.2) ( ) (4403.2) /4(38297)] cmE hc− −= = + − +v v . 
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Setting 1
max 2z ≡ +v , we have 2126.564 4403.2 38297 0z z− + =  and 17.43, 17.36z = , 

which corresponds to max 16.93, 16.86=v , so the Morse function predicts max 16=v . 

 
13.12 We have from Eq. (13.16) 2

,int| | ( )e N eR R R R dψ τ〈 − 〉 = − =∫   
22 2 2

0 0 0| ( ) | ( ) | ( , ) | sinM
e J N NP r R R R dR Y d dππ θ φ θ θ φ∞ − ∫ ∫∫ 2 2

0 | ( ) | ( )eP r R R R dR∞= − =∫
2

0 | ( ) | ( )eF r R R dR∞ −∫ , since the spherical harmonics are normalized and F RP=  [Eq. 

(13.18)]. Use of ex R R≡ −  and ( ) ( )S x F R=  gives 2| ( ) |
ee RR R S x x dx∞

−〈 − 〉 = ∫ . 

 
13.13 (a)  Coulomb’s law 2

1 2 0 12/4F Q Q rπε=  gives 
2 2 2 2 2 2 1 3 2

0[4 ] [ ] /[ ]L Q /MLT L Q M L TQ Fπε − − −= = = . 

 (b)  Let 0(4 )a b c d
eA m e πε= = . Then 

2 2
0[ ] [ ] ML T [ ] [ ] [ ] [4 ]a b c d

eA E m e πε−= = = == 2 1 2 1 3 2(ML T ) M Q (Q M L T )a b c d− − − , so 
1, 2 3 2, 2 0, 2 2a b d a d c d a d+ − = − = + = − + = − . Adding twice the last equation to 

the second equation, we get 2d = − . Then 2a = − , 4c = , and 1b = , so 
2 4 2 2

0 0 0(4 ) /4eA m e e aπε πε− −= == .  

Let 0(4 )s f g r
eB m e πε= = . Then 0[ ] L [ ] [ ] [ ] [4 ]s f g r

eB m e πε= = ==  
2 1 2 1 3 2(ML T ) M Q (Q M L T )s f g r− − −  so 0,s f r+ − =  2 3 1s r− = , 2 0g r+ = , 2 0s r− + = . 

Then 1r = , 2s = , 2g = − , 1f = −  and 2 1 2
0 0(4 )eB m e aπε− −= == . 

 (c)  From 3/2
r Bψ ψ=  and /rr r B= , we have 
3/2 3/2 3/2

0/ ( / )( / ) ( / ) ( / )r r rr B r r r B r B B r aψ ψ ψ ψ∂ ∂ = ∂ ∂ ∂ ∂ = ∂ ∂ = ∂ ∂ . Also, as shown in 

Sec. 13.3, 2 2 3/2 2 2 2
0/ ( / )r rr B r aψ ψ∂ ∂ = ∂ ∂ . Substitution into the H-atom infinite-nuclear 

mass Schrödinger equation 
2 2 2

2
2 2

0

2 1 ˆ
2 42e e

eL E
m r r rr m r

ψ ψ ψ ψ ψ
πε

⎛ ⎞∂ ∂
− + + − =⎜ ⎟⎜ ⎟∂∂⎝ ⎠

=  gives 

22 3/2 3/2 2 2
3/2 2 2 3/2

2 2 2 2
0 00

2 ˆ( )
2 42

r r
r r

e r r rr e r

B B eB L B
m Br a r Bra r m B r

ψ ψ ψ ψ
πε

− −
− − −⎛ ⎞∂ ∂

− + + − =⎜ ⎟⎜ ⎟∂∂⎝ ⎠

= = =

3/2 2 3/2
0( /4 )r r r rAE B e a E Bψ πε ψ− −

0=  

 Multiplying by 3/2
0a B  and using 0B a=  and 

2 2 2 2 2
0 0 0( / ) ( / )( / 4 ) /4e e em a m m e eπε πε= == = = , we see that all terms have the factor 

2
0/4e πε , which cancels. So we get 

2
2 2

2 2
1 2 1 1ˆ( )
2 2

r r
r r r r

r r rr r
L E

r r rr r
ψ ψ ψ ψ ψ−⎛ ⎞∂ ∂

− + + − =⎜ ⎟⎜ ⎟∂∂⎝ ⎠
= . 

Use of (5.68) gives 
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2 2 2

2 2 2 2 2
1 2 1 1 1cot
2 2 sin

r r
r r r r

r r rr r
E

r r rr r
ψ ψ θ ψ ψ ψ

θθ θ φ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
− + − + + − =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂∂ ∂ ∂⎝ ⎠⎝ ⎠

 

which is the desired result. 
 

13.14 (a)  Let 0(4 )a b c d
em e πε=  be the desired atomic unit of time. We thus have (see  

Prob. 13.13a) 2 1 2 1 3 2
0T [ ] [ ] [ ] [4 ] (ML T ) M Q (Q M L T )a b c d a b c d

em e πε − − −= == . So 
0, 2 3 0, 2 0, 2 1a b d a d c d a d+ − = − = + = − + = . Adding twice the last equation to the 

second equation, we get 2d = . Then 3, 4, 1a c b= = − = −  and the atomic unit of time is 
3 1 4 2

0(4 )em e πε− −= . Noting that hE  in (13.29) is 
2 2 2 2 4 2 2

h 0 0 0 0 0/4 ( /4 )( /4 ) /(4 )e eE e a e m e m eπε πε πε πε= = == = , we get h/E=  as the atomic 
unit of time. 

        The dimensions of electric dipole moment are charge times length. Since e is the 
atomic unit of charge and 0a  is the atomic unit of length, 2

0 04 / eea m eπε= =  is the atomic 

unit of electric dipole moment. Alternatively, let 0(4 )s f g r
em e πε=  be the atomic unit of 

electric dipole moment. Then 0QL [ ] [ ] [ ] [4 ]s f g r
em e πε= ==  

2 1 2 1 3 2(ML T ) M Q (Q M L T )s f g r− − −  so  
0,s f r+ − =  2 3 1s r− = , 2 1g r+ = , 2 0s r− + = . We get 1, 2, 1, 1r s g f= = = − = − , 

and the atomic unit of electric dipole moment is 2 1 1
0 0(4 )em e eaπε− − == .  

 (b)  Electric field strength is a force divided by a charge and its dimensions are the same 
as energy divided by (length times charge). Since the atomic units of energy, length and 
charge are hE , 0a , and e, the atomic unit of electric field strength equals h 0/E ea . 

Alternatively, electric field strength has dimensions of 2 1MLT Q− − . Let 0(4 )w x y z
em e πε=  

be the unit of electric field strength. We have 
2 1 2 1 2 1 3 2

0MLT Q [ ] [ ] [ ] [4 ] (ML T ) M Q (Q M L T )w x y z w x y z
em e πε− − − − −= ==  so 

1, 2 3 1, 2 2, 2 1w x z w z w z y z+ − = − = − + = − + = − . We get 
3, 5, 4, 2z y w x= − = = − =  so 4 2 5 3

0(4 )em e πε− −=  (which equals h 0/ )E ea  is the atomic 
unit of electric field strength. 

19 19 10
h 0/ (27.2114 eV)(1.6022 10 J/eV)/(1.6022 10  C)(0.52918 10 m)E ea − − −= × × × =

115.142 10 V/m× . 

 
13.15 (a)  The proton mass is 1836.15 times the electron mass em  and em  is the atomic unit of 

mass. Therefore the proton mass is 1836.15 atomic units of mass. 
 (b)  –1, since the proton charge e is the atomic unit of charge. 
 (c)  2h π= =  and =  has the numerical value 1 in atomic mass units, so h has the 

numerical value 2π  in atomic mass units. 
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 (d)  He+ is a hydrogenlike atom with ground-state energy for infinite nuclear mass given 
by (6.94) as 2

0 04[ /(2)4 ]e aπε− . Since e, 0a , and 04πε  have numerical values of 1 in 
atomic units, this energy is –2 hartrees. 

 (e)  From Prob. 13.13a, the atomic unit of time is 

h/E == 34 19(6.62607 10 J s)/[2 (27.2114 eV)(1.602177 10 J/eV)]π− −× × = 172.41888 10 s−×  

so one second is 17 1 16(2.41888 10 ) 4.134 10− −× = ×  atomic units of time. 

 (f)  Speed has units of distance over time, and the atomic unit of speed is 
0 h h 0/( / ) /a E E a= == =  

19 10 34(27.2114 eV)(1.602177 10 J/eV)(0.529177 10 m)2 /(6.62607 10 J s)π− − −× × × =
62.1877 10 m/s× . Then 8 6

5(2.99792 10 m/s)/(2.1877 10 m/s) 137.03× × = . 

 (g)  With infinite nuclear mass, the H-atom ground-state energy is 1
2−  hartree. From 

(6.94), this energy is proportional to the reduced mass, which (6.105) gives as 0.99946 em , 
so with use of the reduced mass, the H-atom ground-state energy is 1

2 (0.99946)− =   

–0.49973 hartrees. 
 (h)  From Prob. 13.14a, the atomic unit of electric dipole moment is 

0ea = 19 11 30(1.6021766 10 C)(5.2917721 10 m) 8.478353 10 C m− − −× × = × 2.54175 D= , 
so one debye is 1/2.54175 0.39343=  atomic units. 

 

13.16 ( )3 31 *1 ( / ) ( / )a bk r r kR
ab a bS s s d k e d k e dξτ π τ π τ− + −= = = =∫ ∫ ∫   

2 13 3 2 2
0 1 1( /8 ) ( )kRk R e d d dπ ξπ ξ η ξ η φ∞ −

− − =∫ ∫ ∫

3 3 2 22 1
2 2 3 30 1

1

2 2
8

kR kRk R e e d d
kR kRk R k R

π ξ ξ

ξ

ξ ξ η η φ
π

∞

− −
−

=

⎡ ⎤⎛ ⎞
− − − + =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫
3 3 22 1

2 2 3 30 1

1 2 2
8

kR kRk R d e e d
kR kRk R k R

π ηφ η
π

− −
−

⎡ ⎤⎛ ⎞+ + − =⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫ ∫
13 3 3

2 2 3 3
1

1 2 2
4 3

kRk R e
kR kRk R k R

ηη
−

−

⎡ ⎤⎛ ⎞+ + − =⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

3 3
2 2

2 2 3 3
1 2 2 22 ( /3 1)

4 3

kR
kRk R e e k R kR

kR kRk R k R

−
−⎡ ⎤⎛ ⎞+ + − = + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

  (Eq. 1) 

where Eq. (A.7) was used. 
 

13.17 (a)  ˆ1 * 1aa a aH s H s dτ= ∫ . In atomic units, 21
2

ˆ / ( 1)/ 1/a a bH k r k r r= − ∇ − + − − =  
ˆ ( 1)/ 1/a a bH k r r+ − − , where ˆ

aH  is the Hamiltonian for a hydrogenlike atom with nuclear 
charge k. Since the orbital 1 as  in (13.44) is for a nuclear charge of k, we have 
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21
2

ˆ 1 1a a aH s k s= −  [Eq. (6.94) in atomic units]. So 
2 2ˆ1 1 ( 1) (1 / ) (1 / )aa a a a a a a bH s H s d k s r d s r dτ τ τ= + − −∫ ∫∫  (Eq. 1). 

 ˆ1 1a a as H s dτ =∫ 2 2 21 1
2 21 ak s d kτ− ∫ = − . 

 2 22 3 2
0 0 0(1 / ) ( / ) sin ( / )akr

a a a a a a as r d k d d e r r drππτ π φ θ θ ∞ −= =∫ ∫ ∫∫  
23 2

04 [ ( /2 1/4 )] |akr
ak e r k k k− ∞− − = . 

 22 3(1 / ) ( / ) ( / )akr
a b bs r d k e r dτ π τ−= =∫ ∫

2 13 3 ( ) 2 2
0 1 1(2/ )( / )( /8) [ /( )]( )kRR k R d e d dπ ξ ηπ φ ξ η ξ η ξ η∞ − +

− − − =∫ ∫ ∫
13 2

1 1( /2) ( )kR kRk R e e d dη ξ ξ η ξ η∞− −
− + =∫ ∫
13 2 2 2

1 1( /2) [ ( / 1/ / )] |kR kRk R e e kR k R kR dη ξ ξ η η− − ∞
− − − − =∫
13 2 2 2

1( /2) (1/ 1/ / )kR kRk R e e kR k R kR dη η η− −
− + + =∫

3 2 2 2 3 3 2 2 3 3 1
1( /2) [ ( 1/ 1/ / 1/ )] |kR kRk R e e k R k R k R k Rη η− −
−− − − − =

3 2 2 2 3 3 3 3( /2) [ ( 2/ 2/ ) (2/ )]kR kR kRk R e e k R k R e k R− − − − + = 2 ( 1/ ) 1/kRe k R R−− + +  
Then 2 2ˆ1 1 ( 1) (1 / ) (1 / )aa a a a a a a bH s H s d k s r d s r dτ τ τ= + − −∫ ∫∫   

2 2 2 21 1
2 2( 1) ( 1/ ) 1/ ( 1/ ) 1/kR kR

aaH k k k e k R R k k e k R R− −= − + − + + − = − + + −  

 (b)  *ab ba baH H H= = = ˆ ˆ**1 1 1 [ ( 1)/ 1/ ]1b a b a a b as H s d s H k r r s dτ τ= + − −∫∫  
ˆ1 1 ( 1) (1 1 / ) (1 1 / )ab b a a b a a b a bH s H s d k s s r d s s r dτ τ τ= + − −∫ ∫ ∫ . 

 2 21 1
2 2

ˆ1 1 1 1b a a b a abs H s d k s s d k Sτ τ= − = −∫ ∫  

 1 1 /b a as s r dτ =∫ ( )3( / ) ( / )a bk r r
ak e r dπ τ− + =∫

2 13 3 2 2
0 1 1(2/ )( / )( /8) [ /( )]( )kRR k R d e d dπ ξπ φ ξ η ξ η ξ η∞ −

− + − =∫ ∫ ∫
13 2

1 1( /2) ( )kRk R e d dξ ξ η ξ η∞ −
− − =∫ ∫ 13 2 2 2

1 1( /2) [ ( / 1/ / )] |kRk R e kR k R kR dξ ξ η η− ∞
− − − + =∫

13 2 2 2
1( /2) (1/ 1/ / )kRk R e kR k R kR dη η−
− + − =∫

3 2 2 2 2( /2) 2(1/ 1 / ) ( )kR kRk R e kR k R k R k e− −+ = +  

 By symmetry (just interchange the labels a and b in the definite integral) 
2(1 1 / ) (1 1 / ) ( ) kR

b a b b a as s r d s s r d k R k eτ τ −= = +∫ ∫ . 

 So ˆ1 1 ( 1) (1 1 / ) (1 1 / )ab b a a b a a b a bH s H s d k s s r d s s r dτ τ τ= + − −∫ ∫ ∫ = 
2 2 2 2 21 1

2 2( 1)( ) ( ) ( 2)( )kR kR kR
ab abk S k k R k e k R k e k S k k R k e− − −− + − + − + = − + − + . 

  
13.18 (a)  Let t kR≡ . Then Eq. (13.63) becomes 

2 1 1 2 2
21

1 2 2
(1 ) ( )(1 )

1 (1 /3)

t t

t
k k R R t e k k t eW k

e t t

− − − −

−
− − + + + − +

= − +
+ + +

.  

The 1R−  terms in the numerator are not proportional to either k or k2, so we multiply 
numerator and denominator by kR t≡  to get 
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2 2 2 2
21

1 2 2 3
(1 ) ( )( )

( /3)

t t

t
k t kt k k t e k k t t eW k

t e t t t

− −

−
− − + + + − +

= − +
+ + +

=   

2 2 2 2
2 21

2 2 3 2 3
( ) 1 (1 ) ( ) ( ) ( )

( /3) ( /3)

t t t

t t
t t t e t t e t t ek k k F t kG t

t e t t t t e t t t

− − −

− −

⎛ ⎞+ + − − + + − +
− + + ≡ +⎜ ⎟⎜ ⎟+ + + + + +⎝ ⎠

 

 (b)  
2 2

1/ 2 ( / )( / ) ( / )( / ) 2 0W k kF k dF dt t k G k dG dt t k kF k F R G kG R′ ′∂ ∂ = + ∂ ∂ + + ∂ ∂ = + + + =   
The desired result does not contain R, so we use t kR≡  to rewrite the last equation as 

1/ 2 0W k kF ktF G tG′ ′∂ ∂ = + + + =  and we get ( )/(2 )k G tG F tF′ ′= − + + . 

 
13.19 A C++ program is 
  
 #include <iostream> 
 #include <cmath> 
 using namespace std; 
 int main()  { 
  double r, k, s, a, b, den, t, ex, num, u, umin, kmin; 
  label1: 
  cout  <<  " Enter R (enter -1 to quit)  "; 
  cin  >>  r; 
  if (r < 0) 
   return 0; 
  cout  <<  " Enter initial k  "; 
  cin  >>  a; 
  cout  <<  " Enter increment in k  "; 
  cin  >> s; 
  cout  <<  "Enter final k  "; 
  cin  >>  b; 
  umin = 1000: 
  for  (k=a;  k  <=  b;  k=k+s)  { 
   t=k*r; 
   ex=exp(-k*r); 
   num = k*k-k-1/r+(1/r)*(1+t)*ex*ex+k*(k-2)*(1+t)*ex; 
   den=1+ex*(1+t+t*t/3); 
   u=1/r-k*k/2+num/den; 
   if (u < umin)  { 
    umin = u; 
    kmin = k; 
   } 
  } 
  cout  <<  " R =  "  << r <<  " kmin =  "   << kmin  <<  " U =  "  <<  umin  <<  endl; 
  goto label1; 
 } 
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 (If more accuracy is needed, use the k accurate to 0.001 and an increment of 10–6 to get k 
accurate to 0.000001.) The results are 

R/bohr 0.5 1 2 3 4 6 
k 1.779 1.538 1.239 1.095 1.028 0.995 
U/hartree 0.2682 –0.4410 –0.5865 –0.5644 –0.5373 –0.5091 

-0.7
-0.6

-0.5
-0.4
-0.3
-0.2

-0.1
0

0.1
0.2

0.3
0.4

0 1 2 3 4 5 6

 
13.20 A C++ program is 
 
 #include <iostream> 
 #include <cmath> 
 using namespace std; 
 int main()  { 
  double ri, dr, rf, ki, dk, kf, umin, r, k, t, ex, num, den, u, rmin, kmin; 
  label1: 
  cout  <<  " Enter initial R (enter -1 to quit) "; 
  cin  >>  ri; 
  if (ri < 0) 
   return 0; 
  cout  <<  " Enter R increment "; 
  cin  >> dr; 
  cout  <<  " Enter final R "; 
  cin  >>  rf; 
  cout  <<  " Enter initial k "; 
  cin  >> ki; 
  cout  <<  " Enter k increment "; 
  cin  >>  dk; 
  cout  <<  " Enter final k "; 
  cin  >> kf; 
  umin = 1000; 
  for (r = ri; r<= rf; r=r+dr)  { 
   for (k=ki; k<=kf; k=k+dr) { 

U 

R
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    t=k*r; 
    ex=exp(-k*r); 
    num = k*k-k-1/r+(1/r)*(1+t)*ex*ex+k*(k-2)*(1+t)*ex; 
    den=1+ex*(1+t+t*t/3); 
    u=1/r-k*k/2+num/den; 
    if (u < umin)  { 
     umin = u; 
     kmin = k; 
     rmin = r; 
    } 
   } 
  } 
  cout << "rmin = " << rmin << " kmin =  " << kmin << " umin = " << umin << endl; 
  goto label1; 
 } 
 We first have R go from 0.1 to 6 in steps of 0.01 and k go from 0.01 to 3 in steps of 0.01. 

This gives min 2.00R =  and min 1.24k = . Then we have R go from 1.99 to 2.01 in steps of 
0.0001 and k go from 1.23 to 1.25 in steps of 0.0001. The result is min 2.0033R = , 

min 1.2380k = , and min 0.58651U = − .  

 
13.21 (a)  If the usual convention of having the z axis be the internuclear axis is followed, the 

cross-section plane is taken as the xz (or the yz) plane (and not the xy plane). In Mathcad 
the initial value 1.05 for k works for most of the R values and a Mathcad sheet is shown 
on the next page. 

 (b)  The required statements are shown below the figures on the Mathcad sheet. In some 
versions of Mathcad the initial guesses for k and R must be rather close to the optimum 
values in order to obtain good values for the optimum values. The Minimize function 
works much better than trying to make both derivatives zero. If one removes the dU/dk = 
0 and dU/dR = 0 statements after Given and changes Find(k,R) to Minimize(U,R,k), one 
gets the accurate values k = 1.2380, R = 2.0033, which agree with the results given by the 
Excel Solver. 

 
13.22 If we replace R:=3.8 – FRAME/10 by R:= 10 and add k = below the root statement, we 

get the optimum k for R = 10. One then changes the R value. (If a converged result is not 
obtained at a particular R, one changes the initial k guess from 1.05 to some other value.) 
Optimum k values found for the bonding and antibonding MO are 

R/bohrs 0.1 1 2 2.5 4 6 10 
kbonding 1.9799 1.5379 1.2387 1.1537 1.0283 0.9951 0.9991 
kantibonding 0.4199 0.6581 0.9004 0.9621 1.0158 1.0105 1.0009 
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                                   H2+ MOs,  b = 1 for bonding, b = -1 for antibonding 

 

R
U R k,( )d

d
1.47 10 3−×=

k
U R k,( )d

d
2.5113827 10 8−×=

R 2.01933=k 1.2348=

k

R
⎛
⎜
⎝

⎞
⎟
⎠

Find k R,( ):=

R
U R k,( )d

d
0

k
U R k,( )d

d
0R 4<R 0>k 0>

Given

R
U R k,( )d

d
9.268− 10 3−×=

k
U R k,( )d

d
0.044−=

R 2.:=k 1.2:=b 1:=

MM

Mi j, phi yi zj,( ):=

phi y z,( ) k1.5 π
0.5−

⋅
exp k− y2 z 0.5 R⋅+( )2+⎡⎣ ⎤⎦

0.5
⋅⎡⎣ ⎤⎦ b exp k− y2 z 0.5 R⋅−( )2+⎡⎣ ⎤⎦

0.5
⋅⎡⎣ ⎤⎦⋅+

2 b 2⋅ exp k− R⋅( )⋅ 1 k R⋅+ k2 R2⋅ 3 1−⋅+( )⋅+⎡⎣ ⎤⎦
0.5

⋅:=

zj 2.5−
j
6

+:=yi 2.5−
i
6

+:=j 0 1, N..:=i 0 1, N..:=N 30:=

k root
k

U R k,( )d
d

k,⎛
⎜
⎝

⎞
⎟
⎠

:=

k 1.05:=R 3.8
FRAME

10
−:=

U R k,( )
1
R

0.5 k2⋅−
k2 k− R 1−− R 1− 1 k R⋅+( )⋅ exp 2− k⋅ R⋅( )⋅+ b k⋅ k 2−( )⋅ 1 k R⋅+( )⋅ exp k− R⋅( )⋅+

1 b exp k− R⋅( )⋅ 1 k R⋅+ k2 R2

3
⋅+

⎛
⎜
⎝

⎞
⎟
⎠

⋅+

+:=

b 1:=

H2+ MOs b=1 for bonding, b=-1 for antibonding
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13.23 The Solver is used to minimize 1/R plus (13.63) for each of the desired R values and for 
each choice of sign in (13.63); the constraint 0.01k ≥  is included. The results are  

  
R 0.1 1 2 2.5 4 6 10 
k1 1.9799 1.5379 1.2387 1.1537 1.0283 0.9951 0.9991 
U1 8.02179 –0.44100 –0.58651 –0.57876 –0.53733 –0.50908 –0.50030 
k2 0.4199 0.6581 0.9004 0.9620 1.0158 1.0105 1.0009 
U2 9.58692 0.45129 –0.16581 –0.29131 –0.44500 –0.49007 –0.49970 

 
13.24 The figure below shows that , , , ,b a a b b a a br r r r θ θ θ θ φ φ′ ′ ′ ′ ′= = = = = , where the 

coordinate systems are as in Fig. 13.10. 

 
 
13.25 (a)  Formation of +

2Li  from the Li2 ground-state electron configuration 2( 2 )gKK sσ  
removes an electron from the bonding 2g sσ  MO, thereby reducing the bond order, so we 

expect 2Li  to have the greater eD . (Actually, eD  of Li2 is 1.06 eV, less than the 1.30 eV 

eD  of +
2Li . The 2.67 Å eR  of Li2 is, as expected, less than the 3.11 Å eR  of +

2Li .) 

 (b)  Formation of +
2C  from the C2 ground-state electron configuration 

2 2 4( 2 ) ( * 2 ) ( 2 )g u uKK s s pσ σ π  removes an electron from the bonding 2u pπ  MO, thereby 

reducing the bond order, so we expect 2C  to have the greater eD . 

 (c)  Formation of +
2O  from the O2 ground-state electron configuration 

2 2 2 4 2( 2 ) ( * 2 ) ( 2 ) ( 2 ) ( *2 )g u g u gKK s s p p pσ σ σ π π  removes an electron from the antibonding 

*2g pπ  MO, thereby increasing the bond order, so we expect +
2O  to have the greater eD . 

a b

rb 

ra

z θa aθ ′  

O

br′  

ar′  

bθ  
bθ ′  

(x, y, z) (x, y, –z) 
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 (d)  Formation of +
2F  from the F2 ground-state electron configuration 

2 2 2 4 4( 2 ) ( * 2 ) ( 2 ) ( 2 ) ( *2 )g u g u gKK s s p p pσ σ σ π π  removes an electron from the antibonding 

*2g pπ  MO, thereby increasing the bond order, so we expect +
2F  to have the greater eD . 

 
13.26 (a)  The ground-state electron configuration will resemble that of O2 and will be 

2 2 2 4 2( 3 ) ( *3 ) ( 3 ) ( 3 ) ( *3 )g u g u gKKLL s s p p pσ σ σ π π . There are two unpaired electrons in the 
unfilled *3g pπ shell. With four more bonding electrons than antibonding electrons, the 

bond order is 2.  
 (b)  Removal of the highest-energy electron from the answer in part (a) gives the electron 

configuration as 2 2 2 4( 3 ) ( *3 ) ( 3 ) ( 3 ) ( *3 )g u g u gKKLL s s p p pσ σ σ π π . With five more bonding 

electrons than antibonding electrons, the bond order is 2.5. There is one unpaired electron. 
 (c)  Adding an electron to the incompletely filled shell in part (a) gives the electron 

configuration as 2 2 2 4 3( 3 ) ( *3 ) ( 3 ) ( 3 ) ( *3 )g u g u gKKLL s s p p pσ σ σ π π . With three more 

bonding electrons than antibonding electrons, the bond order is 1.5. There is one unpaired 
electron.  

 (d)  The N2 configuration is 2 2 4 2( 2 ) ( *2 ) ( 2 ) ( 2 )g u u gKK s s p pσ σ π σ  and removal of an 

electron gives 2 2 4( 2 ) ( *2 ) ( 2 ) ( 2 )g u u gKK s s p pσ σ π σ . The bond order is 2.5. There is one 

unpaired electron 1
2( )S = .  

 (e)  Addition of an electron to the N2 configuration gives the ground-state electron 
configuration as 2 2 4 2( 2 ) ( *2 ) ( 2 ) ( 2 ) ( * 2 )g u u g gKK s s p p pσ σ π σ π . As in part (b), there is 

one unpaired electron and the bond order is 2.5. 
 (f)  Removal of an electron from the F2 configuration gives the ground-state electron 

configuration as 2 2 2 4 3( 2 ) ( *2 ) ( 2 ) ( 2 ) ( * 2 ) .g u g u gKK s s p p pσ σ σ π π  As in part (c), there is 

one unpaired electron and the bond order is 1.5. 
 (g)  Addition of an electron to the F2 configuration gives the ground-state electron 

configuration as 2 2 2 4 4( 2 ) ( *2 ) ( 2 ) ( 2 ) ( * 2 ) ( * 2 )g u g u g uKK s s p p p pσ σ σ π π σ . There is one 

unpaired electron and the bond order is 1
2 .  

 (h)  Removal of an electron from the Ne2 configuration gives the ground-state electron 
configuration as 2 2 2 4 4( 2 ) ( *2 ) ( 2 ) ( 2 ) ( * 2 ) ( * 2 )g u g u g uKK s s p p p pσ σ σ π π σ . As in part (g), 

there is one unpaired electron and the bond order is 1
2 . 

 (i)  Removal of an electron from the Na2 configuration 2( 3 )gKKLL sσ  gives 

( 3 )gKKLL sσ . There is one unpaired electron and the bond order is 1
2 . 
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 (j)  Addition of an electron to the Na2 configuration gives 2( 3 ) ( *3 )g uKKLL s sσ σ . There is 

one unpaired electron and the bond order is 1
2 . 

 (k)  Addition of an electron to the H2 configuration gives 2( 1 ) ( *1 )g us sσ σ . One unpaired 

electron; bond order 1
2 . 

 (l)  Configuration 2 2 3( 2 ) ( * 2 ) ( 2 )g u uKK s s pσ σ π ; one unpaired electron; bond order 1.5. 

 (m)  Configuration 2 2 4( 2 ) ( * 2 ) ( 2 )g u uKK s s pσ σ π ; no unpaired electrons; bond order 2. 

 (n)  Configuration 2 2 4( 2 ) ( * 2 ) ( 2 ) ( 2 )g u u gKK s s p pσ σ π σ ; one unpaired electron; bond 

order 2.5. 
 

13.27 (a)   For 2 2 2 4 2( 3 ) ( *3 ) ( 3 ) ( 3 ) ( *3 )g u g u gKKLL s s p p pσ σ σ π π  there are two unpaired electrons 
in the unfilled *3g pπ shell. By Hund’s rule, the lowest of the three terms listed in Table 

13.3 for a 2π  configuration is 3
g
−Σ . 

 (b)  For 2 2 2 4( 3 ) ( *3 ) ( 3 ) ( 3 ) ( *3 )g u g u gKKLL s s p p pσ σ σ π π there is one unpaired electron, 

which is a π electron, and the term is 2
gΠ . 

 (c)  For 2 2 2 4 3( 3 ) ( *3 ) ( 3 ) ( 3 ) ( *3 )g u g u gKKLL s s p p pσ σ σ π π  the 3π  configuration has the 

same term as a π  configuration, namely 2
gΠ . 

 (d)  We have 2 2 4( 2 ) ( *2 ) ( 2 ) ( 2 )g u u gKK s s p pσ σ π σ . As noted in Sec. 13.8, a single σ  

electron corresponds to a +Σ  term, so the ground term is 2
g
+Σ . 

 (e)  We have 2 2 4 2( 2 ) ( *2 ) ( 2 ) ( 2 ) ( * 2 )g u u g gKK s s p p pσ σ π σ π . As in part (b), the ground 

term is 2
gΠ . 

 (f)  We have 2 2 2 4 3( 2 ) ( *2 ) ( 2 ) ( 2 ) ( * 2 ) .g u g u gKK s s p p pσ σ σ π π  As in part (c), the ground 

term is 2
gΠ . 

 (g)  We have 2 2 2 4 4( 2 ) ( *2 ) ( 2 ) ( 2 ) ( * 2 ) ( * 2 )g u g u g uKK s s p p p pσ σ σ π π σ . The ground term is 
2

u
+Σ , since the only unfilled shell has one electron in a u orbital. 

 (h)  For 2 2 2 4 4( 2 ) ( *2 ) ( 2 ) ( 2 ) ( * 2 ) ( * 2 )g u g u g uKK s s p p p pσ σ σ π π σ , the ground term is 2
u
+Σ , 

as in (g). 

 (i)  For ( 3 )gKKLL sσ , the ground term is 2
g
+Σ . 

 (j)  For 2( 3 ) ( *3 )g uKKLL s sσ σ , the ground term is 2
u
+Σ . 

 (k)  For 2( 1 ) ( *1 )g us sσ σ , the ground term is 2
u
+Σ . 

 (l)  For 2 2 3( 2 ) ( * 2 ) ( 2 )g u uKK s s pσ σ π , the ground term is 2
uΠ . 
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 (m)  For 2 2 4( 2 ) ( * 2 ) ( 2 )g u uKK s s pσ σ π  the ground term is 1
g
+Σ . 

 (n)  For 2 2 4( 2 ) ( * 2 ) ( 2 ) ( 2 )g u u gKK s s p pσ σ π σ  the ground term is 2
g
+Σ . 

13.28 (a)  A Σ term has Λ = 0 and there is no orbital degeneracy. For a singlet term, S = 0 and 
there is no spin degeneracy. Hence a 1 −Σ  term has one wave function. 

 (b)  With S = 1, there are three spin functions and a 3 +Σ  term has three wave functions. 
 (c)  With S = 1, there are three spin functions; with 0Λ ≠ , there is a two-fold degeneracy 

due to the two values (+Λ and –Λ) of LM . Hence there are 3(2) = 6 wave functions for a 
3Π  term. 

 (d)  1(2) = 2. 
 (e)  6(2) = 12. 
 
13.29 The levels of a term are labeled by the value of Λ + Σ, which takes on the values  

Λ + S, Λ + S – 1, …, Λ – S. 
 (a)  A 1 −Σ  term has Λ = 0 and S = 0 and has only one level. As noted in Sec. 13.8 , for a Σ 

term, the spin–orbit interaction is negligible and one does not put a subscript on the level, 
which is written as 1 −Σ . 

 (b)  For a Σ term, the spin–orbit interaction is negligible and the level is 3 +Σ . 

 (c)  S = 1, Λ = 1, and the levels are 3 3 3
2 1 0, ,Π Π Π . 

 (d)  S = 0, Λ = 3, and the level is 1
3Φ . 

 (e)  S = 5/2, Λ = 2, and the levels are 6 6 6 6 6 6
9/2 7/2 5/2 3/2 1/2 1/2, , , , , −Δ Δ Δ Δ Δ Δ . 

 
13.30 As the figure on the next page shows, reflection in a plane containing the internuclear (z) 

axis does not change ar  or br  and changes the angle of rotation φ about the z axis to 
2π φ− , which is equivalent to changing it to φ− . [The point (x, y, z) in the figure lies in 
front of the plane of the paper.] Each π molecular orbital (one-electron wave function) in 
(13.89) is an eigenfunction of ˆ

zL  and so has the form 1/2( , )(2 ) imf e φξ η π − . Since ar  and 

br  are unchanged by the reflection, the confocal elliptic coordinates ξ  and η  in (13.33) 
are unchanged by the reflection and f is unchanged by the reflection. The phi factor is 
changed by the reflection to 1/2(2 ) ime φπ − − . Therefore the ˆ ( )xzσ  reflection changes the 
MO 1π+  to 1π−  and vice versa. The first function in (13.89) is changed by ˆ ( )xzσ  to 

1 1 1 1 1 1 1 1(1) (2) (2) (1) (1) (2) (2) (1)π π π π π π π π− + − + + − + −′ ′ ′ ′+ + + , which is the same as the 
original function. The second function in (13.89) is changed by ˆ ( )xzσ  to 

1 1 1 1 1 1 1 1(1) (2) (2) (1) (1) (2) (2) (1)π π π π π π π π− + − + + − + −′ ′ ′ ′+ − − , which is –1 times the original 
function. Similarly for the third and fourth functions. 
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13.31 As shown in Prob. 13.30, ˆ ( )xzσv  converts φ to –φ  and leaves ξ and η unchanged. So 

( ) ( ) ( )
ˆ ˆ ˆˆ[ , ] ( / ) ( / )im im im

z xz xz xzL O e i O e i O eφ φ φ
σ σ σφ φ= − ∂ ∂ + ∂ ∂ == =

v v v
 

( )
ˆ( / ) 0im im im im

xzi e i O ime m e m e
υ

φ φ φ φ
σφ − − −− ∂ ∂ + = − − ≠= = = = . 

 
13.32 The g means the wave function is an even function; that is, ψ is unchanged on inversion of 

the spatial coordinates of all the electrons. From (13.78), inversion interchanges ar  and br  
and increases φ by π. Interchange of ar  and br  changes η in (13.33) to –η. Replacement of 

1η  and 2η  by their negatives in this trial function multiplies it by ( 1) j k+− . Therefore 
j k+  must be an even number to ensure that the trial function is even. The plus sign 

means that the wave function is unchanged by a ˆ ( )xzσv  reflection. This reflection does 
not affect ar  or br  (Prob. 13.30) and gives no restrictions on m, n, j, p. 

 

13.33 (a)  12 1 2 1 2
*  1 (1)1 (2)1 (2)1 (1) a b a bS f f d s s s s d d= =∫ ∫ ∫v v v  

        2
12 1 (1) |1 (1) 1 (2) |1 (2)a b a b abS s s s s S= 〈 〉〈 〉 =  

 (b) 11
ˆ ˆ ˆ1 (1)1 (2)| (1) (2) |1 (1)1 (2)a b a b a bH s s H H H s s′= 〈 + + 〉  For the ˆ (1)aH  integral, we have 

ˆ ˆ1 (1)1 (2)| (1)|1 (1)1 (2) 1 (1)| (1)|1 (1) 1 (2) |1 (2)a b a a b a a a b bs s H s s s H s s s〈 〉 = 〈 〉〈 〉 . The Heitler–
London calculation does not have an effective nuclear charge in the 1s function. Hence 

a b 

rb 

ra

z 
O

br′  

ar′  

(x, y, z) 

(x, –y, z) 

φ φ′  
x 

y 
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1 (1)as  is an eigenfunction of ˆ (1)aH  with eigenvalue 1
2−  hartree, the hydrogen-atom 

ground-state energy. The 1s  function is normalized, and we conclude that the ˆ (1)aH  

integral equals 1
2−  in atomic units. Similarly, the ˆ (2)bH  integral equals 1

2 .−  Defining 
ˆ1 (1)1 (2)| |1 (1)1 (2)a b a bQ s s H s s′≡ 〈 〉 , we have 11 1H Q= − . 

 (c)  12 21
ˆ ˆ ˆ1 (2)1 (1)| (1) (2) |1 (1)1 (2) .a b a b a bH H s s H H H s s′= = 〈 + + 〉  The ˆ (1)aH  integral is 

21 1
2 2

ˆ1 (2) |1 (2) 1 (1)| (1)|1 (1) 1 (2) |1 (2) 1 (1)| 1 (1)a b b a a a b b a abs s s H s s s s s S〈 〉〈 〉 = 〈 〉〈 − ⋅ 〉 = − . 

Similarly, the ˆ (2)bH  integral equals 21
2 .abS−  Defining A as 

ˆ1 (2)1 (1)| |1 (1)1 (2) ,a b a bA s s H s s′≡ 〈 〉  we have 2
12 abH A S= − . Substitution in (13.98) gives 

2
11 12

1 2 2
12

1 1
1 1 1

ab

ab ab

Q A SH H Q AW
S S S

− + −+ +
= = = − +

+ + +
 

2
11 12

2 2 2
12

1 1
1 1 1

ab

ab ab

Q A SH H Q AW
S S S

− − +− −
= = = − +

− − −
 

  
13.34 Addition of column 1 to column 3 and column 2 to column 4 (Theorem V of Sec. 8.5) 

changes (13.112) to |(1 1 ) (1 1 ) 2(1 ) 2(1 )| 4|(1 1 )(1 1 )1 1 |a b a b a a a b a b a as s s s s s s s s s s s+ + = + + , 
where Theorem IV was used.  Subtracting column 3 from column 1 and column 4 from 
column 2 (Theorem V), we get 4 |1 1 1 1 |b b a as s s s . Interchange of columns 1 and 3 and of 

columns 2 and 4 multiplies the determinant by 2( 1)−  (Theorem VI), so we have shown 
that the determinant equals 4|1 1 1 1 |a a b bs s s s . 

 
13.35  For each of the AO pairs (2 , 2 )xa xbp p , (2 , 2 )ya ybp p , (2 , 2 )za zbp p , one AO will get 

spin function α and the other will have spin β. Since there are two choices for the spin 
assignment for each of the three pairs, there are 23 = 8 possible determinants. In addition 
to 1D  and 2D  in (13.120) and (13.121), the other determinants are 

 3 | 2 2 2 2 2 2 |xa xb ya yb za zbD p p p p p p= "  with coefficient –1; 

4 | 2 2 2 2 2 2 |xa xb ya yb za zbD p p p p p p= "  with coefficient –1; 

5 | 2 2 2 2 2 2 |xa xb ya yb za zbD p p p p p p= "  with coefficient +1; 

6 | 2 2 2 2 2 2 |xa xb ya yb za zbD p p p p p p= "  with coefficient +1; 

7 | 2 2 2 2 2 2 |xa xb ya yb za zbD p p p p p p= "  with coefficient +1; 

8 | 2 2 2 2 2 2 |xa xb ya yb za zbD p p p p p p= "  with coefficient –1 (three interchanges). 

 

13.36 (a)  The 3
ub +Σ  term is the lowest triplet term (Fig. 13.19). The Heitler–London VB 

functions for this term are (13.101). The spatial part of the MO function given in  
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Sec. 13.13 for this term is 
1/22 [1 (1)1 (2) 1 (2)1 (1)]g u g uσ σ σ σ− − ≈
1/22 { [1 (1) 1 (1)] [1 (2) 1 (2)] [1 (2) 1 (2)] [1 (1) 1 (1)]}a b a b a b a bN s s N s s N s s N s s− ′ ′+ − − + − =  

 1/2 1/2 2 1/22 2[1 (1)1 (2) 1 (1)1 (2)] 2 (1 ) [1 (1)1 (2) 1 (1)1 (2)]b a a b ab b a a bNN s s s s S s s s s− − −′ − = − − , 

since 1/2 1/22 (1 )abN S− −= +  and 1/2 1/22 (1 )abN S− −′ = −  [Eqs. (13.57) and (13.58)]. This 
spatial function is –1 times the VB spatial function in (13.101). 

 (b)  The 1
uB +Σ  MO spatial function in Sec. 13.13 is 

1/22 [1 (1)1 (2) 1 (2)1 (1)]g u g uσ σ σ σ− + ≈
1/22 { [1 (1) 1 (1)] [1 (2) 1 (2)] [1 (2) 1 (2)] [1 (1) 1 (1)]}a b a b a b a bN s s N s s N s s N s s− ′ ′+ − + + − =
1/22 2[1 (1)1 (2) 1 (1)1 (2)]a a b bNN s s s s− ′ − , which has only ionic terms. 

 

13.37 (a)  From (13.124), 2 1/21 | 2 (1 1 | 2 ) 1 | [2 1 | 2 1 ]s s s s s s s s s−
⊥〈 〉 = − 〈 〉 〈 − 〈 〉 〉 =  

2 1/2(1 1 | 2 ) [ 1 | 2 1 | 2 1 |1 ] 0s s s s s s s s−− 〈 〉 〈 〉 − 〈 〉〈 〉 = , since 1 |1 1s s〈 〉 = . Also 
2 12 | 2 (1 1 | 2 ) [2 1 | 2 1 ] | [2 1 | 2 1 ]s s s s s s s s s s s s−

⊥ ⊥〈 〉 = − 〈 〉 〈 − 〈 〉 − 〈 〉 〉 =
2 1 2(1 1 | 2 ) [ 2 | 2 2 1 | 2 1 | 2 1 | 2 1 |1 ]s s s s s s s s s s s s−− 〈 〉 〈 〉 − 〈 〉〈 〉 + 〈 〉 〈 〉 =
2 1 2(1 1 | 2 ) [1 1 | 2 ] 1s s s s−− 〈 〉 − 〈 〉 = , since the 1s and 2s functions are real. 

 (b)  2 1/2(1 ) (2 ) (1 ) (2 ) (1 ) [(1 ) (2 1 )]a s b s c s d s c s d S s S sφ −
⊥= + + = + + = + − − ⋅" " . 

Equating the coefficients of the 1s orbitals and equating the coefficients of the 2s orbitals, 
we get 2 1/2(1 )a c S S d−= − −  and 2 1/2(1 )b S d−= − . So 2 1/2(1 )d S b= −  and c a Sb= + .  

 (c)  From (11.14) and (7.27), 1 2( )3/2 1/2 5/2 1/2 3
1 2 01 | 2 (2 ) 2 (2 ) (24) rs s e r drζ ζζ ζ ∞ − +− −〈 〉 = =∫  

3/2 5/2 3/2 5/21/2 4 1/2 4
1 2 1 21 2 1 24 3 [6/( ) ] 24 /3 ( )ζ ζ ζ ζ ζ ζ ζ ζ−⋅ + = + . 

 
13.38 We will assume that the s and p valence AOs of each atom produce valence MOs whose 

pattern matches that in Fig. 13.17 and in the table near the beginning of Sec. 13.15.. Thus 
we assume the valence MOs of each molecule to be σσπσπσ .  

 (a)  The molecule has 10 valence electrons and filling in these valence MOs, we get a 
ground-state valence-electron configuration of 2 2 4 2σ σ π σ . There are no unpaired 
electrons and the filled shells give a 1 +Σ  ground term. 

 (b)  The 8 valence electrons give the valence configuration 2 2 4σ σ π  with no unpaired 
electrons and a 1 +Σ  ground term if the MO order given in the table near the beginning of 
Sec. 13.15 is used. In fact, the ground term is actually 3Π . From Table 13.3, this suggests 
a 3π σ  configuration, perhaps 2 2 3σ σ π σ .  

 (c)  The 8 valence electrons give the valence configuration 2 2 4σ σ π  with no unpaired 
electrons and a 1 +Σ  ground term. 
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 (d)  The 9 valence electrons give the valence configuration 2 2 4σ σ π σ  with one unpaired 
electron and a 2 +Σ  ground term. 

 (e)  The 11 valence electrons give the valence configuration 2 2 4 2σ σ π σ π  with one 
unpaired electron and a 2Π  term. 

 (f)  The 11 valence electrons give the valence configuration 2 2 4 2σ σ π σ π  with one 
unpaired electron and a 2Π  term.  

 (g)  The 9 valence electrons give the valence configuration 2 2 4σ σ π σ  with one unpaired 
electron and a 2 +Σ  ground term. 

 (h)  The 12 valence electrons give the valence configuration 2 2 4 2 2σ σ π σ π  with 2 
unpaired electrons and a 3 −Σ  ground term (Table 13.3).  

 (i)  The 13 valence electrons give the valence configuration 2 2 4 2 3σ σ π σ π  with one 
unpaired electron and a 2Π  term. 

 (j)  The 14 valence electrons give the valence configuration 2 2 4 2 4σ σ π σ π  with no 
unpaired electrons and a 1 +Σ  term. 

 
13.39 (a)  Let a bA Bφ φ+  be the antibonding heteronuclear MO. Then orthogonality gives 

1 2 1 1 2 20 | | ( ) | |a b a b a a a b b bc c A B c A c B c A c Bφ φ φ φ φ φ φ φ φ φ= 〈 + + 〉 = 〈 〉 + + 〈 〉 + 〈 〉 =  

1 1 2 2 1 2 2 1( ) ( ) ( )ab ab abc A c B c A S c B c S c A c S c B+ + + = + + + , so 

1 2 2 1( ) /( )ab abB c S c A c S c= − + +  and 1 2 2 1[( ) /( )]a b a ab ab bA B A c S c A c S cφ φ φ φ+ = − + + =  

2 1 2 1 1 2 2 1 1 2[ /( )][( ) ( ) ] [( ) ( ) ]ab ab a ab b ab a ab bA c S c c S c c S c N c S c c S cφ φ φ φ′′+ + − + = + − + , 
where 2 1/( )abN A c S c′′ ≡ +  and we assumed the orbitals are real, so | |a b b aφ φ φ φ〈 〉 = 〈 〉 . 
We can get the homonuclear result by setting 1 2c c=  in the heteronuclear result. This 
gives the antibonding homonuclear MO as 1 1( )( ) ( )ab a b a bN c S c Nφ φ φ φ′′ ′+ − = − , where 

1 1( )abN N c S c′ ′′≡ + .  

 (b)  2 1/21
1 2 2| (1 ) 1 1 |1 1ab a b a bS s s s sφ φ −〈 〉 = − 〈 + − 〉 =  

2 1/21
2 (1 ) [ 1 |1 1 |1 1 |1 1 |1 ]ab a a a b b a b bS s s s s s s s s−− 〈 〉 − 〈 〉 + 〈 〉 − 〈 〉 =  

2 1/21
2 (1 ) (1 1) 0ab ab abS S S−− − + − = .  

 
13.40 The simple VB method would be more useful since it gives the correct behavior when a 

bond is broken, whereas the simple MO wave function goes to the wrong limit on 
dissociation. 

 
13.41 The zero level of potential energy corresponds to all nuclei and electrons infinitely far 

from one another. To reach this state, we first start with the nuclei in 2F  at a distance eR  
apart and dissociate the molecule to two ground-state F atoms. This requires an energy 

1.66 eV.eD =  Then we remove all the electrons in each F atom to infinity, one at a time. 
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The energy needed to do this in one F atom is the sum of the first, second,…, ninth 
ionization energies of F and the publication mentioned a couple of paragraphs before Eq. 
(10.32) gives this sum as 2715.795 eV. Thus 

h( ) [1.66 2(2715.795)] eV 5433.25 eV 199.668 .eU R E= − + = − = −  

 

13.42 (a)  1/2[1 (1) 1 (1)][1 (2) 1 (2)]2 [ (1) (2) (1) (2)].a b a bN s s s s α β β α−+ + −  

 (b)  1/2[1 (1)1 (2) 1 (2)1 (1)]2 [ (1) (2) (1) (2)]a b a bN s s s s α β β α−+ −  

 
13.43 (a)  False. For hydrogenlike functions, 1 1| 2 | | 2 |,p p− =  but these states have different ˆ

zL  
eigenvalues and are different states. 

 (b)  True. This is a one-electron system and the Hartree–Fock method gives the exact 
wave function. 

 (c)  False. See Sec. 13.11. 
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Chapter 14 

Theorems of Molecular Quantum Mechanics 

 
 
14.1 2

VB VB 2 2 2 2 2 22 | ( , , , , , ) |x y z x y z dx dy dzρ φ∞ ∞ ∞
−∞ −∞ −∞= =∫ ∫ ∫   
2 1 21

2 2 222 (1 ) |1 1 (2) 1 (2)1 |ab a b a bS s s s s dx dy dz∞ ∞ ∞−
−∞ −∞ −∞⋅ + + =∫ ∫ ∫

2 1 2 2 2 2
2 2 2(1 ) {1 [1 (2)] [1 (2)] 1 2 1 1 1 (2)1 (2)}ab a b a b a b a bS s s s s s s s s dx dy dz∞ ∞ ∞−

−∞ −∞ −∞+ + + ⋅ =∫ ∫ ∫
2 1 2 2(1 ) [1 1 2 1 1 ]ab a b a b abS s s s s S−+ + + ⋅ , since 1 (2)bs  and 1 (2)as  are normalized and 

21 (2)1 (2)ab a bS s s dυ= ∫ . (The notations 1 as  and 1 bs  denote functions whose variables are 
x, y, z.)  

2
MO MO 2 2 2 2 2 22 | ( , , , , , ) |x y z x y z dx dy dzρ φ∞ ∞ ∞

−∞ −∞ −∞= =∫ ∫ ∫
2 2 21

242 (1 ) (1 1 ) [1 (2) 1 (2)]ab a b a bS s s s s dυ−⋅ + + + =∫
2 2 2 2 21

22 (1 ) (1 1 2 1 1 ) {[1 (2)] [1 (2)] 2 1 (2)1 (2)}ab a b a b a b a bS s s s s s s s s dυ−+ + + ⋅ + + ⋅ =∫
2 2 21

2 (1 ) (1 1 2 1 1 )(2 2 )ab a b a b abS s s s s S−+ + + ⋅ + = 1 2 2(1 ) (1 1 2 1 1 )ab a b a bS s s s s−+ + + ⋅ . 

 

14.2 At the midpoint (mp) between the nuclei, we have , ,a br r
a br r e e− −= =  and 1 1a bs s= . So at 

the midpoint, 2 2
VB,mp 2 1 (1 )/(1 )a ab abs S Sρ = ⋅ + +  and 2

MO,mp 4 1 /(1 )a abs Sρ = ⋅ + . Then 
2 2 2 2 2 2

MO,mp VB,mp 2 2
(1 )(4 1 ) 2 1 (1 ) 2 1 (1 2 )

(1 )(1 ) (1 )(1 )
ab a a ab a ab ab

ab ab ab ab

S s s S s S S
S S S S

ρ ρ
+ ⋅ − ⋅ + ⋅ − +

− = = =
+ + + +

2 2

2
2 1 (1 )

(1 )(1 )
a ab

ab ab

s S
S S

⋅ −
+ +

.   abS  is positive for R < ∞ , and MO,mp VB,mp 0ρ ρ− > .  

 
14.3 Let 1O  and 2O  be two different origins, with b being the vector joining them. The figure 

shows that 1, 2,i i= +r b r . So 1, 2, 2, 2,( )i i i i i i i i i i i i i iQ Q Q Q Q∑ = ∑ + = ∑ + ∑ = ∑r b r b r r , 
since 0i iQ∑ = . 

 
 
14.4 (a)  As noted preceding Eq. (14.19), the permanent electric dipole moment is zero for 

states of definite parity. Each stationary state of a many-electron atom has a definite parity 
that is determined by the sum of the l values of the spherical-harmonic factors in the wave 

1O  
2O  

1,ir  
2,ir  

b

i
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function (Sec. 11.5). States arising from an electron configuration have even parity if 
i il∑  is even, odd parity if i il∑  is odd. 

 (b)  For a one-electron atom, states with the same n values but different l values have the 
same energy, and a stationary state that contains contributions from spherical harmonics 
of different parity does not have a definite parity and need not have zero dipole moment. 

 (c)  Two of the correct H-atom-in-an-electric-field zeroth-order functions for Prob. 9.23 
are 1/2

02 (2 2 )s p− ± , which mix the even function 2s with the odd function 2 zp . These 
two zeroth-order functions do not have definite parity. As the diagram shows, these states 
have an unsymmetrical distribution of electric charge and have a dipole moment. 

     
 

14.5 Consider the process (a) ( )+NaCl Na Cl Na Clb−⎯⎯→ + ⎯⎯→ + . In step (a), an ionic NaCl 
molecule dissociates to ions. We can estimate aEΔ  as minus the potential energy of the 

ions with their centers separated by eR . From (6.58), 2
0/4a eE e Rπε= =  

19 2
19

12 2 1 2 10 19
(1.6022 10 C) 1 eV(9.78 10 J) 6.10 eV

4 (8.854 10 C N m )(2.36 10 m) 1.6022 10 Jπ

−
−

− − − − −
×

= × =
× × ×

 

Step b involves the reverse of the ionization of Na and the addition of an electron to Cl. 
So 5.14 eV 3.61 eV 1.53 eVbEΔ = − + = − . Thus we estimate e a bD E E≈ Δ + Δ =4.57 eV.  

      With the origin at the center of one ion, the dipole moment is calculated from (14.9) as 
10 8 18(4.803 10 statC)(2.36 10 cm) 11.3 10 statC cmeeRμ − − −≈ = × × = × =  11.3 D. 

 
14.6 The sum of Hermitian operators is Hermitian. The kinetic-energy operator and the 

potential-energy operator in coreĤ  were proved to be Hermitian in Sec. 7.2 and Prob. 7.7. 
Thus we only need to prove that the Coulomb and exchange operators are Hermitian. We 
must show that 1 1

ˆ ˆ[ (1)]* (1) (1) (1)[ (1) (1)]*j jf J g d g J f d=∫ ∫v v  (Eq. 1). From (14.28), the 

left side of Eq. 1 is 1 2
12 2 1[ (1)]* (1) | (2) |jf g r d dφ−∫ ∫ v v . The right side of Eq. 1 is 

1 2 1 2
12 2 1 12 2 1(1)[ (1) | (2) | ]* (1)[ (1)]* | (2) |j jg f r d d g f r d dφ φ− −=∫ ∫ ∫ ∫v v v v , which is the same 

as the left side and shows that ˆ
jJ  is Hermitian.  

      We now must show that 1 1
ˆ ˆ[ (1)]* (1) (1) (1)[ (1) (1)]*j jf K g d g K f d=∫ ∫v v  (Eq. 2). From 

(14.29), the left side of Eq. 2 is 1
12 2 1[ (1)]* (1) *(2) (2)j jf r g d dφ φ−∫ ∫ v v . The right side of Eq. 

+ 
+

– 

+ 

2s 2pz 
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2 is 1 1
12 2 1 12 2 1*(1)[ (1) (2) (2) ]* (1)[ (1)]* (2)[ (2)]*j j j jg r f d d g r f d dφ φ υ φ φ− −=∫ ∫ ∫ ∫v v v  (Eq. 3). 

Since the integration variables in a definite integral are dummy variables, we can relabel 
them any way we please. If we interchange the labels 1 and 2 on the right side of Eq. 3, 
we get 1

12 1 2(2)[ (2)]* (1)[ (1)]*j jg r f d dφ φ−∫ ∫ v v , which is the same as the left side of Eq. 2 

and shows that ˆ
jK  is Hermitian. 

 

14.7 The potential-energy operator in coreĤ  in (14.27) contains attractions between the electron 
and the several nuclei in the molecule, as compared with the attraction to the single atomic 
nucleus in (11.7). The Hartree–Fock operator in (14.26) contains exchange operators that 
are absent from the Hartree operator (11.7). The exchange operators arise from the 
antisymmetry of the Hartree–Fock wave function.  

 

14.8 Equation (14.28) gives 2 1
12 2 1

ˆ(1) | (1) | (1) [ (1)]* (1) | (2) |i j i i i jJ r d dφ φ φ φ φ −〈 〉 = =∫ ∫ v v  
1 1

12 2 1 12[ (1) (2)]* (1) (2) (1) (2) | | (1) (2)i j i j i j i j ijr d d r Jφ φ φ φ υ υ φ φ φ φ− −= 〈 〉 =∫ ∫  [Eq. 14.24)]. 

Equation (14.29) gives 1
12 2 1

ˆ(1) | (1) | (1) [ (1)]* (1) [ (2)]* (2)i j i i j j iK r d dφ φ φ φ φ φ −〈 〉 = =∫ ∫ v v  
1 1

12 1 2 12[ (1) (2)]* (1) (2) (1) (2) | | (1) (2)i j j i i j j i ijr d d r Kφ φ φ φ φ φ φ φ− −= 〈 〉 =∫ ∫ v v . 

 
14.9 Use of (14.29) gives 1

12 2 1
ˆ(1) | (1) (1) [ (1)]* (1) [ (2)]* (2)r j s r j j sK r d dχ χ χ φ φ χ−〈 〉 = ∫ ∫ v v . Use 

of the expansion (14.33) for (1)jφ  and (2)jφ  gives ˆ(1) | (1) (1)r j sKχ χ〈 〉 =  
1

1 1 12 2 1* [ (1)]* (1)[ (2)]* (2)b b
t u t j u j r u t sc c r d dχ χ χ χ−
= =∑ ∑ =∫ ∫ v v 1 1 * ( | )b b

t u t j u jc c ru ts= =∑ ∑ . 

 

14.10 (a)  From (14.42), /2
12 *n

rs rj sjjP c c== ∑  and /2 /2
1 1( )* 2( * )* 2 *n n

sr sj rj rj s j rsj jP c c c c P= == ∑ = ∑ = . 

 (b)  core 1 core 1 coreTr( * * ) ( * * ) [( * ) ( * ) ]b b
s ss s ss ss= =+ = ∑ + = ∑ + =P F P H P F P H P F P H   

core
1 1 1 core 1 1[ ( *) ( ) ( *) ( ) ] [ ( )]b b b b b

s r sr rs r sr rs s r rs rs rs rsP F P H= = = = =∑ ∑ + ∑ = ∑ ∑ + =P F P H  
core

1 1( )b b
r s rs rs rs rsP F P H= =∑ ∑ +  and (14.45) follows  from this result. 

 (c)  /2 /2† †
1 12( ) 2 2 * *n n

tu tj ju tj uj tuj jc c c c P= == ∑ = ∑ =CC , where (8.90) and (14.42) were used. 

Therefore †2 *=CC P . 

 

14.11 (a)  Substitution of (14.5) for ρ  into dx dy dzρ
∞ ∞ ∞

−∞ −∞ −∞∫ ∫ ∫  gives 

2
all 2 1 2| ( , , , , , ) |

sm n s n ndx dy dz n m ms d d d nρ ψ
∞ ∞ ∞

−∞ −∞ −∞
= ∑ =∫ ∫ ∫∫ ∫ ∫ r r r r r r… … "" , since 

ψ is normalized. The vector notation (Sec. 5.2) for spatial variables is used. 
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 (b)  ** *r s rs r s r s rs r s r s rs rs r s rs srn d P d P d P S P Sρ χ χ χ χ= = ∑ ∑ = ∑ ∑ = ∑ ∑ = ∑ ∑∫ ∫ ∫r r r , 
where *| | *rs r s s r srS Sχ χ χ χ= 〈 〉 = 〈 〉 = . 

 (c)  *Tr( *) ( *)r rr r s rs srP S n= ∑ = ∑ ∑ =PS PS , where the result of part (b) was used.  

 
14.12 Using the expression for coreĤ  given preceding these integrals, we have 

core core
11 1 1

ˆ| |H Hχ χ= 〈 〉 =
2 21 1

1 1 1 1 1 1 1 1 1 12 2| / ( 2)/ | | / | ( 2) |1 / | .r r r rχ ζ ζ χ χ ζ χ ζ χ χ〈 − ∇ − + − 〉 = 〈 − ∇ − 〉 + − 〈 〉  Since 
21

12 /rζ− ∇ −  is the Hamiltonian operator for a hydrogenlike atom with nuclear charge 1ζ  
and 1χ  is a hydrogenlike 1s orbital with nuclear charge 1ζ , we have 

2 21 1
1 1 1 12 2( / )rζ χ ζ χ− ∇ − = −  [Eq. (6.94) in atomic units] and the first integral in core

11H  is 
2 2 21 1 1

1 1 1 1 1 1 12 2 2| / | |rχ ζ χ ζ χ χ ζ〈 − ∇ − 〉 = − 〈 〉 = − . The function 1χ  is the same as 1f  in 
(9.60). After (9.60) it was shown that 1 1 1|1/ |f r f ζ〈 〉 = . Hence 1 1 1|1 / |rχ χ ζ〈 〉 = . So 

core 2 21 1
11 1 1 1 1 12 2( 2) 2H ζ ζ ζ ζ ζ= − + − = − . The integral core

22H  is the same as core
11H  except 

that 1χ  (with orbital exponent 1ζ ) is replaced by 2χ  (with orbital exponent 2ζ ). Also 
coreĤ  can be written as core 21

2 22
ˆ / ( 2)/H r rζ ζ= − ∇ − + − . So we can find core

22H  by 

changing 1ζ  to 2ζ  in core
11H . We have core 21

22 2 22 2H ζ ζ= − . 

 

14.13 For real basis functions, Eq. (14.39) is 1
12 1 2( | ) (1) (1) (2) (2)r s t urs tu r d dχ χ χ χ−= ∫ ∫ v v . 

Clearly, interchanging r and s does not change ( | )rs tu  and interchanging t and u does not 
change ( | )rs tu . So ( | ) ( | ) ( | ) ( | )rs tu sr tu rs ut sr ut= = = . Relabeling the dummy 
integration variables in a definite integral does not change its value. If we interchange the 
labels 1 and 2 in ( | )rs tu , we get 1

21 2 1( | ) (2) (2) (1) (1) ( | )r s t urs tu r d d tu rsχ χ χ χ−= =∫ ∫ v v , 
where (14.39) without the stars was used. Combining this result with interchanges of t and 
u and interchanges of r and s gives ( | ) ( | ) ( | ) ( | ) ( | )rs tu tu rs ut rs tu sr ut sr= = = = . 

 

14.14 From (14.39), 1
12 1 1 1 1 1 2(11 |11) (1) (1) (2) (2)r d dχ χ χ χ−= ∫ ∫ v v , where 1χ  is a 1s hydrogenlike 

function with orbital exponent 1ζ . In (9.53), (1)E  is given by 
(0) 1 (0) 1

12 12| | 1 (1)1 (2) | | 1 (1)1 (2)r s s r s sψ ψ− −〈 〉 = 〈 〉 , where the 1s function has orbital exponent 

Z  [Eq. (9.49)]. Thus (11 |11)  is the same integral as (1)E , except that Z in (1)E  is replaced 
by 1ζ . Hence Eq. (9.53) gives 1(11 |11) 5 /8ζ=  in atomic units. Likewise, (22 | 22)  is the 

same integral as (1)E , except that Z in (1)E  is replaced by 2ζ . Hence Eq. (9.53) gives 

2(22 | 22) 5 /8ζ=  in atomic units. 
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14.15 The approximation core
rs rsF H≈  gives core

11 11 1.849F H≈ = − , core
22 22 1.586F H= = − , 

12 21 12 21 1.883F F H H= = = = − . The secular equation (14.36) is 

21.849 1.883 0.837
0 0.299 0.283 0.613 0

1.883 0.837 1.586
i i

i i
i i

ε ε
ε ε

ε ε
− − − −

= = + − =
− − − −

  

and 1.98 and 1.035iε = − . With the lower root, (14.34) is  

11 21 11 210.13 0.226 0   and  0.226 0.394 0,c c c c− = − + =  which gives 11 21/ 1.7c c = . 

 
14.16 (a)  From (14.41) with b = 2, core 2 2 1

11 11 1 1 2[(11 | ) (1 | 1)]t u tuF H P tu u t= == + ∑ ∑ − =  
core 1 1 1
11 11 12 212 2 2[(11 |11) (11 |11)] [(11 |12) (12 |11)] [(11 | 21) (11 | 21)]H P P P+ − + − + − +  

1
22 2[(11 | 22) (12 | 21)]P − . From Prob. 14.10a for real functions, 12 21P P= . From (14.47), 

(12 |11) (11 |12)= , (11 | 21) (11 |12)= . Therefore 
core 1 1

11 11 11 12 222 2(11 |11) (11 |12) [(11 | 22) (12 | 21)]F H P P P= + + + − . 

 From (14.41) with b = 2, core 2 2 1
12 12 1 1 2[(12 | ) (1 | 2)]t u tuF H P tu u t= == + ∑ ∑ − =   

core 1 1 1
12 11 12 212 2 2[(12 |11) (11 |12)] [(12 |12) (12 |12)] [(12 | 21) (11 | 22)]H P P P+ − + − + − +

1
22 2[(12 | 22) (12 | 22)]P − . From (14.47), (12 |11) (11 |12)=  and (12 | 21) (12 |12)= , so 

core 31 1 1
12 12 11 12 222 2 2 2(12 |11) [ (12 |12) (11 | 22)] (12 | 22)F H P P P= + + − + . 

 From (14.41) with b = 2, core 2 2 1
22 22 1 1 2[(22 | ) (2 | 2)]t u tuF H P tu u t= == + ∑ ∑ − =  

core 1 1 1
22 11 12 212 2 2[(22 |11) (21 |12)] [(22 |12) (22 |12)] [(22 | 21) (21 | 22)]H P P P+ − + − + − +  

1
22 2[(22 | 22) (22 | 22)]P − . From (14.47), (22 | 21) (22 |12)= , (21 | 22) (22 |12)= , so 

core 1 1
22 22 11 12 222 2[(22 |11) (21 |12)] (22 |12) (22 | 22)F H P P P= + − + + .  

 (b)  core 1 1
11 11 11 12 222 2(11 |11) (11 |12) [(11 | 22) (12 | 21)]F H P P P= + + + −   

1 1
11 11 12 222 21.8488 (0.9062) 0.9033 [1.1826 (0.9536)]F P P P= − + + + −  

11 11 12 221.8488 0.4531 0.9033 0.7058F P P P− + + +  

 core 31 1 1
12 12 11 12 222 2 2 2(12 |11) [ (12 |12) (11 | 22)] (12 | 22)F H P P P= + + − +

31 1 1
12 11 12 222 2 2 21.8826 (0.9033) [ (0.9536) (1.1826)] (1.2980)F P P P= − + + − +

12 11 5 12 221.8826 (0.4516 ) 0.8391 (0.6490)F P P P= − + + +  

 core 1 1
22 22 11 12 222 2[(22 |11) (21 |12)] (22 |12) (22 | 22)F H P P P= + − + +

1 1
22 11 12 222 21.5860 [(1.1826) (0.9536)] (1.2980) (1.8188)F P P P= − + − + +

22 11 12 221.5860 0.7058 1.2980 0.9094F P P P= − + + +  
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14.17 2 2 2 2 2 2
1 11 1 21 2 11 1 11 21 1 2 21 21 | | ( ) 2d c c d c d c c d c dφ τ χ χ τ χ τ χ χ τ χ τ= = + = + + =∫ ∫ ∫∫ ∫   

2 2 2 2 2 2 2
11 11 21 12 21 21 12 11 21 11 21 21 122 (1 2 / / ) (1 2 ) 1c c c S c c S c c c c c S k k+ + = + + = + + =  and 

2 1/2
21 12(1 2 )c S k k −= + + , where the fact that we are dealing with real functions was used. 

 

14.18 For this cycle, 11 0.842c =  and 21 0.183c = . From (14.49) 2 2
11 112 2(0.842) 1.418P c= = = , 

12 11 212 2(0.842)0.183 0.308,P c c= = =  2 2
22 212 2(0.183) 0.067P c= = = . From (14.50)–

(14.52), 11 11 12 221.8488 0.4531 0.9033 0.7058F P P P= − + + + =  
1.8488 0.4531(1.418) 0.9033(0.308) 0.7058(0.067) 0.881− + + + = − .  

12 11 5 12 221.8826 (0.4516 ) 0.8391 (0.6490)F P P P= − + + + =

51.8826 1.418(0.4516 ) 0.8391(0.308) 0.067(0.6490) 0.940− + + + = − . 

22 11 12 221.5860 0.7058 1.2980 0.9094F P P P= − + + + =

51.5860 0.7058(1.418) 1.2980(0.308) 0.9094(0.067) 0.124− + + + = − .  
The secular equation det( ) 0rs rs iF S ε− =  is  

 2
3

5

0.881 0.940 0.8366
0 0.300 0.567 0.774

0.940 0.8366 0.124
i i

i i
i i

ε ε
ε ε

ε ε
− − − −

= = − −
− − − −

 

 The roots are 0.918, 2.809iε = − . For the smaller root, we get from (14.36), 

11 21

11 5 21

0.037 0.175 0
0.172 0.793 0

c c
c c
− =

− + =
 

 The second equation (which has more significant figures in the coefficients) gives 

11 21/ 4.61c c = . Equation (14.48) gives 2 1/2
21 7[1 (4.61) 2(4.61)0.8366] 0.182c −= + + = − , 

and 11 0.842c = .  

 
14.19 With 11 21/ 1k c c≡ = , Eq. (14.48) gives 1/2

21 11(2 2 0.8366) 0.5218c c−= + ⋅ = = . Then 
(14.49) gives 11 12 220.5445P P P= = = . Equations (14.50)–(14.52) give 

11 12 220.7255, 0.826, 0.0009F F F= − = − = . The first estimate of the secular equation is 

20.7255 0.826 0.8366
0 0.3001 0.6575 0.683 0

0.826 0.8366 0.0009
i i

i i
i i

ε ε
ε ε

ε ε
− − − −

= = − − =
− − −

 

with lowest root 1 0.769ε = − . Then 

5 11 21

11 21

0.043 0.183 0
0.183 0.770 0

c c
c c

− =

− + =
 

and the second equation gives 11 21/ 4.21c c k= =  and (14.48) gives 21 0.197c =  and 

11 21 0.829c kc= = . Equation (14.49) gives 11 12 221.374, 0.327, 0.078P P P= = = . Then 

11 0.876F = − , 12 0.937,F = −  22 0.121F = −  and 

20.876 0.937 0.8366
0 0.3001 0.571 0.772

0.937 0.8366 0.121
i i

i i
i i

ε ε
ε ε

ε ε
− − − −

= = − −
− − − −
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with lowest root 0.913iε = − . Then 

11 21

11 21

0.037 0.173 0
0.173 0.792 0

c c
c c
− =

− + =
 

and the second equation gives 11 21/ 4.58c c k= =  and (14.48) gives 21 0.184c =  and 

11 21 0.841c kc= = . Equation (14.49) gives 11 12 221.415, 0.309, 0.068P P P= = = . Then 

11 0.881F = − , 12 0.940,F = −  22 0.124F = − . These Fock matrix elements are essentially 
the same as the last set of Fock matrix elements in the example in Sec, 14,3, so the 
remaining calculation gives essentially the same results as in the text. 

 
14.20 (a)  A C++ program is  
 
 #include <iostream> 
 #include <cmath> 
 using namespace std; 
 int main()  { 
  int n; 
  double z1, z2, s, h11, h12, h22, r1111, r2222, r1122, r1212, temp; 
  double r1112, r1222, k; 
  double c2, c1, p11, p12, p22, f11, f12, f22, a, b, c, rt, e1, e2, e, d2, d1, ehf, d; 
  label0: 
  cout << " Enter z1 ";  cin >> z1; 
  cout << " Enter z2 (enter -3 to stop)  " ;  cin >> z2; 
  if (z2 < 0) 
   return 0; 
  s=8*pow(z1*z2, 1.5)/pow(z1+z2, 3); 
  h11=0.5*z1*z1-2*z1;   h22=0.5*z2*z2-2*z2; 
  h12=pow(z1*z2,1.5)*(4*z1*z2-8*z1-8*z2)/pow(z1+z2,3); 
  r1111=5*z1/8;   r2222=5*z2/8; 
  d=pow(z1+z2,4); 
  r1122=(pow(z1,4)*z2+4*pow(z1,3)*z2*z2+z1*pow(z2,4)+4*z1*z1*pow(z2,3))/d; 
  r1212=20*pow(z1,3)*pow(z2,3)/pow(z1+z2,5); 
  temp=(12*z1+8*z2)/pow(z1+z2,2)+(9*z1+z2)/(2*z1*z1); 
  r1112=temp*16*pow(z1,4.5)*pow(z2,1.5)/pow(3*z1+z2,4); 
  temp=(12*z2+8*z1)/pow(z1+z2,2)+(9*z2+z1)/(2*z2*z2); 
  r1222=temp*16*pow(z2,4.5)*pow(z1,1.5)/pow(3*z2+z1,4); 
  n=0; 
  cout  <<  "  c1/c2  ";    cin  >>  k; 
  c2=1/sqrt(1+k*k+2*k*s);   c1=k*c2; 
  cout  <<  "  c1 =  "  <<  c1  <<  "  c2 =  "  << c2  << endl; 
  label1: 
  p11=2*c1*c1;   p12=2*c1*c2;    p22=2*c2*c2; 
  f11=h11+0.5*p11*r1111+p12*r1112+p22*(r1122-0.5*r1212); 
  f12=h12+0.5*p11*r1112+p12*(r1212*1.5-0.5*r1122)+0.5*p22*r1222; 
  f22=h22+p11*(r1122-0.5*r1212)+p12*r1222+0.5*p22*r2222; 
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  a=1-s*s;     b=2*s*f12-f11-f22;    c=f11*f22-f12*f12; 
  rt=sqrt(b*b-4*a*c); 
  e1=(-b-rt)/(2*a);    e2=(-b+rt)/(2*a); 
  e=e1; 
  if (e2 < e1) 
   e=e2; 
  k=(e-f22)/(f12-s*e); 
  d2=1/sqrt(1+k*k+2*k*s);    d1=k *d2; 
  n=n+1; 
  if (n> 500) { 
   cout << "Did not converge"; 
   return 0; 
  } 
  cout  <<  "  c1 =  "  <<  c1  <<  "  c2 =  "  << c2  <<  "  n =  "  <<  n  <<  endl; 
  cout  <<  " E =  "  <<  e  << endl; 
  if (fabs(c2-d2) > 0.00001) 
   goto label3; 
  if (fabs(c1-d1) > 0.00001) 
   goto label3; 
  cout  <<  " Converged  "  <<  "  N =  "  <<  n; 
  ehf = e + 0.5*(p11*h11+2*p12*h12+p22*h22); 
  cout  <<  " EHF  = "  <<  ehf  << endl; 
  goto label0; 
  label3:  c1=d1;  c2=d2;  goto label1; 
 } 
  
 (b)  In all cases, the calculation converges to the correct result. Six iterations are needed 

for 11 21/ 1c c = − ; five iterations are needed for each of the other choices. 

 (c)  To ensure fully converged results, we change 0.00001 in the last two if statements to 
0.0000001. Also, we add the statement cout.precision(8); to the program as a new line 
after int main() {, so as to have 8 significant figures in the output.  For these orbital 
exponents, the program gives HF 2.8616726E = −  hartrees. 

 (d)  For the calculations in part (d), we use the convergence test as modified in part (c). 
For 1 1.46363ζ =  and 2 2.91093ζ = , we get HF 2.8616485E = − . For 1 1.44363ζ =  and 

2 2.91093ζ = , we get HF 2.8616477E = − . These energies are above that for the optimum 
orbital exponents. For 1 1.45363ζ =  and 2 2.92093ζ = , we get HF 2.8616718E = − . For 

1 1.45363ζ =  and 2 2.90093ζ = , we get HF 2.8616721E = − . (Energies are given in 
hartrees.) 

 

14.21 From (14.43), 2
11 1 12 1 2 22 22P P Pρ χ χ χ χ= + + . From (14.46) and (5.101), at 0r = , 

3/2 1/2
1 12 /(4 ) 0.9851χ ζ π= =  and 3/2 1/2

2 22 /(4 ) 2.8007χ ζ π= = . So at 0r = , 
2 21.418(0.985) 2(0.308)(0.985)(2.801) 0.067(2.801) 3.60ρ = + + =  electrons/bohr3.  
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At r =  1 bohr, 13/2 1/2 3/2 1.45 1/2
1 12 /(4 ) 2(1.45) /(4 ) 0.2311e eζχ ζ π π− −= = =  and 

23/2 1/2
2 22 /(4 ) 0.1526e ζχ ζ π−= = .  

So at 1r = , 2 21.418(0.231) 2(0.308)(0.231)(0.1526) 0.067(0.1526) 0.099ρ = + + =  
electrons/bohr3. 

 

14.22 The condition that ′C  be unitary is given by (8.93) as ( ) *s si sj ijc c δ′ ′∑ = . We have 

* ( )* ( )* ( )* ( )* ( )*i j s si s t tj t s t si tj s t s t si t j std c c d c c d c cφ φ τ χ χ τ χ χ τ δ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= ∑ ∑ = ∑ ∑ = ∑ ∑∫ ∫ ∫  = 
( )*s si sj ijc c δ′ ′∑ = , where the boxed equation was used. 

 
14.23 (a)  3 ( 3 )nsx sysz s x yz+ ≠ + , so the function is inhomogeneous. 

 (b)  0179 179s= , so this function is homogenous of degree zero.  

 (c)  2 3 2 2 3( ) / ( ) /sx sy sz s x yz−= , so this function is homogeneous of degree –2. 

 (d)  3 2 1/2 3/2 3 2 1/2[ ( ) ( )( ) ] ( )a sx b sx sy s ax bxy+ = + , so the function is homogeneous of 
degree 3/2. 

 
14.24 From (14.76), T E〈 〉 = −  for an atomic stationary state. We have 2 1,E E>  so 

2 1 1 2 1 20 , ,E E E E T T> − + − > − 〈 〉 > 〈 〉 . 

 
14.25 If Â  is a time-independent operator, then (7.113) becomes for a stationary state: 

1 ˆˆ0 0 [ , ]i H A−= + 〈 〉=  and ˆˆ[ , ] 0H A〈 〉 = , which is the hypervirial theorem (14.61). 

 

14.26 (a)  2 2 2
1 2| ( /2 )( )eT mφ φ〈 〉 = 〈 − ∇ +∇ 〉= . Use of Eq. (9.58) gives 

2 2 2 2
0 1 0 2 0 0| ( /4 /4 /4 )T e r e r e aφ ζ πε ζ πε ζ πε φ〈 〉 = 〈 + − 〉 =

2 1 2 1 2 2
0 1 0 2 0 0( /4 ) | | ( /4 ) | | ( /4 ) |e r e r e aζ πε φ φ ζ πε φ φ ζ πε φ φ− −〈 〉 + 〈 〉 − 〈 〉 . Equations after 

(9.60) give 1 1
1 2 0| | | | /r r aφ φ φ φ ζ− −〈 〉 = 〈 〉 = . Therefore 

2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0/4 /4 /4 /4T e a e a e a e aζ πε ζ πε ζ πε ζ πε〈 〉 = + − = . 

Also 2 2 2
0 1 0 2 0 12| /4 /4 /4 |V Ze r Ze r e rφ πε πε πε φ〈 〉 = 〈 − − + 〉 . Use of 

1 1
1 2 0| | | | /r r aφ φ φ φ ζ− −〈 〉 = 〈 〉 =  and the equation preceding (9.61) gives 

2 2
0 0 0 02 /4 5 /8(4 )V Z e a e aζ πε ζ πε〈 〉 = − + . 

 (b)  For 5/16Zζ = − , the results of part (a) become 2 2
0 0( 5/16) /4T Z e aπε〈 〉 = −  and 

2 2 2
0 0 0 0 0 02 ( 5/16) /4 5( 5/16) /8(4 ) 2( 5/16)( /4 )( 5/16)V Z Z e a Z e a Z e a Zπε πε πε〈 〉 = − − + − = − − − =

 2 2
0 02( 5/16) ( /4 ) 2Z e a Tπε− − = − 〈 〉 , which is (14.75). 
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14.27 For the harmonic oscillator, V is a homogeneous function of degree 2, so the virial 
theorem (14.70) gives 2 2T V〈 〉 = 〈 〉  and 195.0 10  J.V T −〈 〉 = 〈 〉 = ×  Then E T V= 〈 〉 + 〈 〉 =  

181.00 10  J.−×  
 
14.28 As shown in part (c) of the Example in Sec. 14.4, V is homogeneous of degree 1−  and 

(14.76) gives 59.10 eV.T E〈 〉 = − =  

 
14.29 V in Cartesian coordinates is homogeneous of degree 4 and (14.72) and (14.73) give 

2 /6 (10 eV)/3 3.33 eVV E〈 〉 = = =  and 4 /6 6.67 eVT E〈 〉 = = . 

  
14.30 From Prob. 4.52, addition of C to V adds C to each stationary-state energy eigenvalue E. 

Addition of C to V leaves ˆ| |T Tψ ψ〈 〉 = 〈 〉  unchanged (since ψ  and T̂  are unchanged) and 
adds C to .V〈 〉  Suppose that before we added C to V, the function V was homogeneous of 
degree n; then the virial theorem (14.70) gives 2 T n V〈 〉 = 〈 〉  (Eq. 1). After we added C to 
V, the left side of Eq. 1 is unchanged but the right side is increased by nC. Hence Eq. 1 no 
longer holds. One might then think the virial theorem is violated but this is not so, because 
after we add the constant C to V, V is no longer a homogeneous function and (14.70) no 
longer applies. (For example, addition of C to the harmonic-oscillator V gives 21

2 ,kx C+  

which is no longer homogeneous of degree 2.) 
 
14.31 (a)  Use of Eqs. (5.8), (5.1), and (14.61) gives ˆˆ( / ) [ , ] 0xp m i x H〈 〉 = 〈 〉 == . 

 (b)  Use of Eqs. (5.9) and (14.61) gives ˆˆ/ (1/ ) [ , ] 0xV x i p H〈∂ ∂ 〉 = − 〈 〉 == .  

 
14.32 At 0R = , U a c= − . At R = ∞ , U c= − . Between 0 and ∞, U decreases monotonically 

as R increases. (This is a repulsive state with no minimum in U.) We have 
/ bRdU dR abe−= − . The virial-theorem equation (14.94) gives 

el ( / ) ( 1)bR bR bRT U R dU dR c ae abRe c a bR e− − −〈 〉 = − − = − + = + − . At 0R = , 

elT c a〈 〉 = − ; at R = ∞ , elT c〈 〉 = . For small R, we have 1bRe bR− ≈ −  and 

el ( 1)(1 )T c a bR bR〈 〉 ≈ + − − ≈  ( 1 2 )c a bR+ − + , so elT〈 〉  initially increases as R increases 

from 0. For large R, we can neglect the –1 in ( 1)bR − . At large R, the function bRRe−  
decreases as R increases, since the exponential function overpowers the factor of R, so 

elT〈 〉  decreases with increasing R at large R. Hence there must be a maximum in elT〈 〉 . To 
locate this maximum, we take the derivative: 

2
el / 0 bR bR bRd T dR abe abe ab Re− − −〈 〉 = = + − , which gives 2/R b=  and 

2
el max /T c a e〈 〉 = + .  The virial theorem equation (14.95) gives 

2 ( / ) 2 2 2 (2 )bR bR bRV U R dU dR ae c abRe c a bR e− − −〈 〉 = + = − − = − + − .  At 0R = , 
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2 2V a c〈 〉 = − . At R = ∞ , 2V c〈 〉 = − . For small R, (2 ) (2 )(1 )bRa bR e a bR bR−− ≈ − − ≈  
(2 3 )a bR− , so V〈 〉  initially decreases as R increases from 0. For large R, we can neglect 

the 2 in (2 )bR− , so at large R, V〈 〉  increases as R increases. Hence there must be a 
minimum in V〈 〉 . To locate this minimum, we take the derivative: 

2/ 0 2 bR bR bRd V dR abe abe ab Re− − −〈 〉 = = − − + , which gives 3/R b=  and 
3

min 2 /V c a e〈 〉 = − − . Sketches of these functions follow. (The negative values of elT〈 〉  are 
unphysical.) 

0 1 2 3 4 5
bR

c  – a

2(a  – c )

a  – c

U

 
14.33 Differentiation of (14.95) gives 

2 2 2 2/ 2 / / ( / ) 3 / ( / )d V dR dU dR dU dR R d U dR dU dR R d U dR〈 〉 = + + = + .  
At eR R= , / 0dU dR =  and 2 2/ ( / )d V dR R d U dR〈 〉 = . The second derivative 2 2/d U dR  at 

eR R=  is the force constant ek  for the bound state, and ek  must be positive: To the left of 
the minimum in U in eR , the slope /dU dR  is negative and to the right of the minimum, 

/dU dR  is positive. Hence /dU dR  is increasing as R increases through eR . If a function 
is increasing at a point, its derivative must be positive (or zero) at that point, so 

2 2/ 0d U dR ≥  at eR . Hence / 0d V dR〈 〉 ≥  at eR . 
      Differentiation of (14.94) gives 

2 2 2 2
el / / / ( / ) 2 / ( / )d T dR dU dR dU dR R d U dR dU dR R d U dR〈 〉 = − − − = − − .  

At eR R= , / 0dU dR =  and 2 2
el / ( / )d T dR R d U dR〈 〉 = − . Since 2 2/ 0d U dR ≥  at eR , we 

have el / 0d T dR〈 〉 ≤  at eR . 

 
14.34 This equation is valid. The molecular Hamiltonian operator (13.1) is a homogeneous 

function of degree –1 of the Cartesian coordinates of all the particles (electrons and 

elT〈 〉  

V〈 〉  
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nuclei) and el
ˆ

N̂T T+  is the complete kinetic energy operator for the molecule, so the 
equation given in the problem follows from the virial theorem (14.70). 

 
14.35 We have 4.75 eV ( ) ( ) 27.20 eV ( )e e eD U U R U R= = ∞ − = − −  and ( ) 31.95 eVeU R = − , 

where we used (6.108) and the fact that H2 dissociates to two H atoms. At eR , / 0dU dR =  
and (14.95) gives 

e el| 2 ( ) 63.9 eV, | ( ) 31.95 eV
eR e R eV U R T U R〈 〉 = = − 〈 〉 = − = . We have 

2
el el 0/4NN eV V V V e Rπε〈 〉 = 〈 〉 + = 〈 〉 + . Then 

2 19 2
18

312 2 1 2 10 19
0

(1.602 10  C) 1 eV3.11 10  J
4 4 (8.854 10  C  N  m )(0.741 10  m) 1.602 10  Je

e
Rπε π

−
−

− − − − −
×

= = ×
× × ×

= 19.43 eV. So 2
el 0| | /4 83.3

e eR R eV V e Rπε〈 〉 = 〈 〉 − = −  eV. 

 
14.36 For the Fues function, 2 2 3/ (2 / 2 / )e e edU dR D R R R R= − . Equation (14.94) gives 

2 2 2 2
el ( / ) ( ) (2 / / ) (2 / 2 / )e e e e e eT U R dU dR U D R R R R D R R R R〈 〉 = − − = − ∞ + − − − =   

2 2( ) ( / )e eU D R R− ∞ + . Equation (14.95) gives 
2 2 2 22 ( / ) 2 ( ) 2 ( 2 / / ) (2 / 2 / )e e e e e eV U R dU dR U D R R R R D R R R R〈 〉 = + = ∞ + − + + − =  

2 ( ) 2 ( / )e eU D R R∞ − . The Fues function has elT〈 〉  always increasing as R decreases  
and has V〈 〉  always decreasing as R decreases. These behaviors are quite wrong (see  
Fig. 14.1). 

 

14.37 (a)  For the hydrogenlike atom, 2 2 2
0

ˆ ( /2 ) /4eH m Ze rπε= − ∇ −=  and 
2 2 2

0( / )( /8 )nE Z n e aπε= − . Let Zλ = . Then (14.123) gives 
2 2 2

0 0
ˆ/ (2 / )( /8 ) / /4nE Z Z n e a H Z e rπε πε∂ ∂ = − = 〈∂ ∂ 〉 = 〈− 〉  and 21/ /r Z n a〈 〉 = . 

 (b)  From Sec. 9.6, if the secular determinant is in diagonal form, then the initially 
assumed unperturbed wave functions are the correct zeroth-order wave functions. The 
perturbation is 2

0
ˆ ˆ( / ) ( /4 )H H Z dZ e r dZπε′ = ∂ ∂ = − . The hydrogenlike functions of a 

degenerate level have the same n, so the off-diagonal elements of the secular determinant 
are 2

0| ( /4 )| ,nl m e r nlm dZπε′ ′〈 − 〉  where nlm denotes a hydrogenlike function with 
quantum numbers n, l, and m, and the primes indicate that at least one of l′  and m′  must 
differ from l and m, respectively. The 2

0( /4 )e rπε−  in the integrand goes in the radial 

factor in the integral 2
0| ( /4 )|nl m e r nlmπε′ ′〈 − 〉 , and this integral must be zero because of 

the orthogonality of the spherical- harmonic factors in the wave functions when at least 
one of l′  and m′  differs from l and m [Eq. (7.27)]. So the secular determinant is in 
diagonal form. 
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14.38 We have 2 21
2

ˆ ˆ /2xH p m kx= + . Let 1mλ −= . Then 2ˆ ˆ/ /2xH pλ∂ ∂ = . Also 
1/21 1

2 2( ) ( ) (1/2 )( / )E h h k mν π= + = +v v  and 
1 1 1 2 2/ ( ) ( / )[ / ( )] ( / )/[ ( )/ ] ( / )/ ( / )E m E m m m E m m m E m m m E m− − − −∂ ∂ = ∂ ∂ ∂ ∂ = ∂ ∂ ∂ ∂ = − ∂ ∂ = − ∂ ∂

2 1/2 3/2 1/2 1/21 1 1 1
2 2 2 2( ) ( ) ( )m k m m k−= − + − = += =v v .  So (14.123) gives 

2 1/2 1/21 1 1
2 2 2/ ( )xH p m kλ〈∂ ∂ 〉 = 〈 〉 = + =v  and 

2 1/2 1/2 1/21 1 1
2 2 2( ) ( ) (1/2 )( / ) ( )xp m k m h k m m hπ ν〈 〉 = + = + = +=v v v . Equation (14.74) gives 

2 1 1
2 2/2 ( )xT p m hν〈 〉 = 〈 〉 = +v  and 2 1

2( )xp mhν〈 〉 = +v , which agrees with the Hellmann–

Feynman result found in this problem. 
14.39 From (9.7), ˆ ˆ/H Hλ ′∂ ∂ = . From (9.14), (1) (2) 1 ( )/ 2 k k

n n n nE E E k Eλ λ λ −∂ ∂ = + + + +" " . 

Then (14.123) gives (1) (2) 1 ( ) ˆ/ 2 | |k k
n n n n n nE E E k E Hλ λ λ ψ ψ− ′∂ ∂ = + + + + = 〈 〉" " . At 

0λ = , nψ  becomes (0)
nψ  and we get (1) (0) (0)ˆ| |n n nE Hψ ψ′= 〈 〉 .  

 
14.40 Equation (14.131) gives , /z a aF U z= −∂ ∂  and , / .z b bF U z= −∂ ∂ Use of the chain rule and an 

equation that corresponds to (14.85) gives 

 ( )
, ,

a b b a
z a z b

a b b

dU R z z z zR dU dU dU R UF F
dR z dR R dR R dR z z

− −∂ ∂ ∂
= − = − = = = = −

∂ ∂ ∂
 

 
14.41 On the dividing surface between binding and antibinding regions, we have 

2 2cos cos 0a a a b b bZ r Z rθ θ− −+ =  (Eq. 1). Let d be the desired distance between these two 
intersection points. At the left intersection point, Figs. 14.4 and 14.6 give ar d= , 

b er d R= + , aθ π= , and 0bθ = . Equation 1 becomes 2 2/ /( ) 0a b eZ d Z d R− + + = , so 
2 2( )b a eZ d Z d R= +  and 2 2/ (1 / ) 1 2( / ) ( / )b a e e eZ Z R d R d R d= + = + + . The quadratic 

formula gives 1/2 1/2/ { 2 [4 4(1 / )] }/2 1 ( / )e b a b aR d Z Z Z Z= − + − − = − +  and 
1/2/[( / ) 1]e b ad R Z Z= − . 

 (a)  1/2(0.92 Å)/(9 1) 0.46 Åd = − = . 

 (b)  1/2(1.27 Å)/(17 1) 0.41 Åd = − = . 

 (c)  1/2(1.41 Å)/(35 1) 0.29 Åd = − = . 

 (d)  1/2(1.61 Å)/(53 1) 0.26 Åd = − = . 
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Chapter 15 

Molecular Electronic Structure 

 

 
15.1 The multiplication table for a group lists the products of all pairs of operations. For 2C v , 

the multiplication table is found to be 

2C v  Ê  2
ˆ ( )C z  ˆ ( )xzσv  ˆ ( )yzσv  

Ê  Ê  2
ˆ ( )C z  ˆ ( )xzσv  ˆ ( )yzσv  

2
ˆ ( )C z  2

ˆ ( )C z  Ê  ˆ ( )yzσv  ˆ ( )xzσv  

ˆ ( )xzσv  ˆ ( )xzσv  ˆ ( )yzσv  Ê  2
ˆ ( )C z  

ˆ ( )yzσv  ˆ ( )yzσv  ˆ ( )xzσv  2
ˆ ( )C z  Ê  

 Each entry is the product of the element at the left end of its row and the element at the 
top of its column. The first row of entries and the first column of entries are easily filled in 
since Ê  times any symmetry operation equals that symmetry operation. The entries on the 
diagonal are all Ê  since the square of each of the 2vC  symmetry operations equals Ê . 

The 2
ˆ ( )C z  operation changes the x and y coordinates to their negatives. Each reflection 

changes the coordinate perpendicular to the symmetry plane to its negative. Thus: 
2

ˆ ( )( , , ) ( , , )C zx y z x y z⎯⎯⎯→ − − ; ˆ ( )( , , ) ( , , )xzx y z x y zυσ⎯⎯⎯→ − ; ˆ ( )( , , ) ( , , )yzx y z x y zυσ⎯⎯⎯→ −  

 We have  2
ˆ ˆ ( )( )( , , ) ( , , ) ( , , )xzC zx y z x y z x y zυσ⎯⎯⎯→ − − ⎯⎯⎯→ − .  Hence 

2
ˆˆ ˆ( ) ( ) ( )xz C z yzυ υσ σ= . The remaining five products are found similarly, giving the 

preceding multiplication table. (see also Prob. 12.25.) 
         The eight possible combinations of the ˆ

RO  eigenvalues +1 and –1 are 

Ê  2
ˆ ( )C z  ˆ ( )xzσv  ˆ ( )yzσv  

1 1 1 1 
1 1 1 –1 
1 1 –1 1 
1 –1 1 1 
1 1 –1 –1 
1 –1 1 –1 
1 –1 –1 1 
1 –1 –1 –1 
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 The first row (the totally symmetric species) is clearly a valid symmetry species.  
The second row is ruled out since 2

ˆˆ ˆ( ) ( ) ( )yz xz C zυ υσ σ = , but ( 1)1 1− ≠ .  

The third row is ruled out since 2
ˆˆ ˆ( ) ( ) ( )yz xz C zυ υσ σ = , but 1( 1) 1− ≠ .  

The fourth row is ruled out since 2
ˆˆ ˆ( ) ( ) ( )yz xz C zυ υσ σ = , but (1)1 1≠ − .  

The fifth row is a valid representation, since 2 2
ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )C z xz xz C z yzυ υ υσ σ σ= =  and 

1(–1) = (–1)1 = –1; 2 2
ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )C z yz yz C z xzυ υ υσ σ σ= =  and 1(–1) = (–1)1 = –1; 

2
ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )xz yz yz xz C zυ υ υ υσ σ σ σ= =  and (–1)(–1) = 1.  

The sixth row is a valid representation, since 2 2
ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )C z xz xz C z yzυ υ υσ σ σ= =  and  

–1(1) = 1(–1) = –1; 2 2
ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )C z yz yz C z xzυ υ υσ σ σ= =  and –1(–1) = –1(–1) = 1; 

2
ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )xz yz yz xz C zυ υ υ υσ σ σ σ= =  and 1(–1) = –1.  

Similarly, the seventh row is found to be a valid representation.  
The eighth row is ruled out since 2

ˆˆ ˆ( ) ( ) ( )yz xz C zυ υσ σ = , but ( 1)( 1) 1− − ≠ − . 

 
15.2 The symmetry operations for 2D  are 2 2 2

ˆ ˆ ˆˆ , ( ), ( ), ( )E C x C y C z . The square of each of these 

operations is Ê . The 2
ˆ ( )C x  rotation changes the y and z coordinates to their negatives and 

leaves the x coordinate unchanged. Similarly for 2
ˆ ( )C y  and 2

ˆ ( )C z . Thus we have 

 
2 2

2 2

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )

C x C y

C y C x

x y z x y z x y z

x y z x y z x y z

⎯⎯⎯→ − − ⎯⎯⎯→ − −

⎯⎯⎯→ − − ⎯⎯⎯→ − −
 

 Since 2
ˆ ( )C z  moves the point at ( , , )x y z  to ( , , )x y z− − , we have shown that 

2 2 2 2 2
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )C y C x C x C y C z= = .  

 If we perform two successive cyclic permutations, changing x to y, y to z, and z to x, the 
boxed equations become 

 2 2 2 2 2
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )C z C y C y C z C x= =  

 2 2 2 2 2
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )C x C z C z C x C y= =  

  The 2D  multiplication table is therefore  

2D  Ê  2
ˆ ( )C x  2

ˆ ( )C y  2
ˆ ( )C z  

Ê  Ê  2
ˆ ( )C x  2

ˆ ( )C y  2
ˆ ( )C z  

2
ˆ ( )C x  2

ˆ ( )C x  Ê  2
ˆ ( )C z  2

ˆ ( )C y  

2
ˆ ( )C y  2

ˆ ( )C y  2
ˆ ( )C z  Ê  2

ˆ ( )C x  

2
ˆ ( )C z  2

ˆ ( )C z  2
ˆ ( )C y  2

ˆ ( )C x  Ê  
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 The eight possible combinations of the ˆ
RO  eigenvalues +1 and –1 are  

Ê  2
ˆ ( )C x  2

ˆ ( )C y  2
ˆ ( )C z  

1 1 1 1 
1 1 1 –1 
1 1 –1 1 
1 –1 1 1 
1 1 –1 –1 
1 –1 1 –1 
1 –1 –1 1 
1 –1 –1 –1 

 The first row (the totally symmetric species) is clearly a valid symmetry species. The 
second row is ruled out since 2 2 2

ˆ ˆ ˆ( ) ( ) ( )C y C z C x=  but 1( 1) 1− ≠ . The third row is ruled 

out since 2 2 2
ˆ ˆ ˆ( ) ( ) ( )C x C y C z=  but 1( 1) 1− ≠ . The fourth row is ruled out since 

2 2 2
ˆ ˆ ˆ( ) ( ) ( )C x C y C z=  but ( 1)1 1− ≠ . The eighth row is ruled out since 2 2 2

ˆ ˆ ˆ( ) ( ) ( )C x C y C z=  
but ( 1)( 1) 1− − ≠ − . One finds that the numbers in the fifth, sixth, and seventh rows 
multiply the same way as the symmetry operations, and these rows and row 1 are the 
symmetry species. 

 
15.3 (a)  The E indicates the orbital degeneracy is 2. For this triplet term, 1S =  and SM  has 

three possible values. The total degeneracy is 2(3) = 6 and this is the number of 
independent wave functions. 

 (b)  The orbital degeneracy is 2.  0S = , so 0SM = . The degeneracy is 2(1) = 2. 

 
15.4 (a)  For each H, this set uses two s-type contracted Gaussians. Since the molecule has 8 H 

atoms, the set has 2(8) = 16 contracted functions centered on H atoms. For each non-H 
atom, the set has four s-type contracted functions and two sets of p-type functions. Each 
set of p functions contains the three functions , ,x y zp p p , so each non-H atom has 
4 2(3) 10+ =  contracted functions centered on it. There are 4 non-H atoms, for a total of 
4(10) = 40 contracted functions on these atoms. The total is 40 + 16 = 56. 

 (b)  The minimal-basis AOs are 1s on each H and 1s, 2s, 2 , 2 , 2x y zp p p  on each non-H.  

A double-zeta set therefore has two s-type contracted Gaussian functions on each H, and 
has four s-type and two sets of p-type functions on each non-H. This is a [4s2p/2s] set, as 
in part (a). The total number of contracted Gaussians is 10(2) + 5[4 + 2(3)] = 70. 
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15.5 (a)  The minimal-basis AOs are 1s on each H and 1s, 2s, 2 , 2 , 2x y zp p p  on each non-H. A 

STO-3G set has one contracted Gaussian for each minimal-basis AO and so has 1 CGTF 
on each H and has 5 CGTFs on each C and O. The total number of CGTFs is 
10(1) 5(5) 35+ = . 

 (b)  In the 3-21G set, each inner-shell AO (in this case, the 1s AO of each C and each O) 
is represented by one CGTF; each valence AO is represented by a linear combination of 2 
CGTFs. Thus each H atom has 2 CGTFs. Each C and O has 1 + 2(4) = 9 CGTFs. The total 
number of CGTFs is 10(2) + 5(9) = 65. 

 (c)  In the 6-31G* set, each H has two s-type CGTFs; each C and O has one s-type CGTF 
for the 1s AO, two s-type CGTFs for the 2s AO, six p-type CGTFs for the 2p AOs, and 
six d-type CGTFs, for a total of 15 CGTFs per atom. Thus the total for the molecule is  
10(2) 5(15) 95+ = . 

 (d)  The 6-31G** set is formed from 6-31G* by adding three p-type functions to each H, 
so the molecule now has 95 10(3) 125+ =  CGTFs. 

 (e)  The 6-31+G* set is formed from 6-31G* by adding four functions to each non-H, so 
the molecule now has 95 5(4) 115+ =  CGTFs. 

 (f)  For a first-row atom such as C or O, the cc-pVTZ set is 4s3p2d1f  and so has  
4 + 3(3) + 2(5) + 1(7) = 30 CGTFs for such an atom. For an H atom, the cc-pVTZ set is 
3s2p1d and so has 3 + 2(3) + 1(5) = 14 CGTFs. Thus for C4H9OH, there are  
5(30) + 10(14) = 290 basis functions. 

 (g)  For a first-row atom, the cc-pVQZ set is 5s4p3d2f 1g  and so has  
5 + 4(3) + 3(5) + 2(7) + 9 = 55 CGTFs for such an atom. For an H atom, the cc-pVQZ set 
is 4s3p2d1f and so has 4 + 3(3) + 2(5) + 7 = 30 CGTFs. Thus for C4H9OH, there are  
5(55) + 10(30) = 575 basis functions. 

 (h)  For a first-row atom, the cc-pVDZ set is 3s2p1d and aug-cc-pVDZ increases the 
number of sets of functions for each l value by 1 to give 4s3p2d, which means 4(1) + 3(3) 
+ 2(5) = 23 CGTFs. For an H atom, the cc-pVDZ set is 2s1p and aug-cc-pVDZ increases 
the number of sets of functions for each l value by 1 to give 3s2p, which means 3(1) + 
2(3) = 9 CGTFs for each H. For C4H9OH, there are 5(23) + 10(9) = 205 basis functions. 

 
15.6 (a)  The minimal-basis AOs are 1s on each H; 1s, 2s, 2 , 2 , 2x y zp p p  on each O; and  

1s, 2s, 2 , 2 , 2 , 3 , 3 , 3 , 3x y z x y zp p p s p p p  on each Si. The STO-3G set has 3 primitives for 

each minimal-basis AO and has one CGTF for each minimal-basis AO. The molecule has  
24(9) 60(5) 24(1) 540+ + =  CGTFs and 3(540) 1620=  primitives. 

 (b)  In the 3-21G set, each inner-shell AO (in this case, the 1s AO of each O and the 1s, 
2s, 2 , 2 , 2x y zp p p  AOs of Si) is represented by one CGTF (which consists of 3 

primitives); each valence AO is represented by a linear combination of 2 CGTFs (one 
having 2 primitives and one having 1 primitive). Thus each H atom has 2 CGTFs and has 



15-5 
Copyright © 2014 Pearson Education, Inc. 

 

3 primitives. Each O has 1 + 2(4) = 9 CGTFs and has 3 + 3(4) = 15 primitives. Each Si 
has 5 2(4) 13+ =  CGTFs and has 3(5) + 3(4) = 27 primitives. The total number of CGTFs 
is 24(13) 60(9) 24(2) 900+ + = . The total number of primitive Gaussians is 
24(27) 60(15) 24(3) 1620+ + = . 

 (c)  In the 6-31G* set, each H has two s-type CGTFs (one of which consists of 3 
primitives and one of which has 1 primitive). Each O atom has one s-type CGTF (which 
has 6 primitives) for the 1s AO, two s-type CGTFs (one with 3 primitives and one with 1 
primitive) for the 2s AO, six p-type CGTFs (three having 3 primitives and three having 1 
primitive) for the 2p AOs, and six d-type CGTFs (each having one primitive), for a total 
of 15 CGTFs and 28 primitives per oxygen. Each Si atom has one s-type CGTF (which 
has 6 primitives) for the 1s AO, one s-type CGTF (which has 6 primitives) for the 2s AO, 
three p-type CGTFs (each having 6 primitives) for the 2p AOs, two s-type CGTFs (one 
with 3 primitives and one with 1 primitive) for the 3s AO, six p-type CGTFs (three having 
3 primitives and three having 1 primitive) for the 3p AOs, and six d-type CGTFs, for a 
total of 19 CGTFs and 52 primitives per Si atom. The total for the molecule is 24(19) + 
60(15) + 24(2) = 1404 CGTFs and 24(52) + 60(28) + 24(4) = 3024 primitive Gaussians. 

 
15.7 The CCCBDB at cccbdb.nist.gov gives these results:  For HF/6-31G*, 

 –56.184356 hartrees, 1.92 D, 1.002 Å for the NH distance, 107.2° for the HNH angle.  
For HF/cc-pVDZ, –56.195732 hartrees, 1.73 D, 1.008 Å, 105.9°. 

 
15.8 The most convenient way to get most of the data at cccbdb.nist.gov is to click III 

Calculated Data, click D. 1. a., enter C4H10 as the formula, choose Anti, click on the 
HF/6-31G* energy (or the HF/cc-pVDZ energy), and you will get most of the HF/6-31G* 
(or cc-pVDZ) data for both conformers. Partial results follow.  
For HF/6-31G* for the anti conformer:  
–157.298409 hartrees, 0 D, 1.528 Å for the end CC distances, 1.5295 Å for the middle CC 
distance, 1.086 Å and 1.0865 Å for the end CH distances, 1.088 Å for the middle CH 
distances, 113.1° for the CCC angle, HCH angles ranging from 106.2° to 107.7°, CCH 
angles ranging from 109.2° to 111.3°, a CCCC dihedral of 180.0° (click on XII 
Geometries at the left; then click B. 1. and enter C4H10 and choose Anti; then click the 
HF/6-31G* box; then use the JMol model as follows: double click on an end carbon, 
single click on each of the next two carbons, and finally double click on the other end C). 

 For HF/6-31G* for the gauche conformer: 
–157.296895 hartrees, 0.077 D, 1.530 Å for the end CC distances, 1.533 Å for the middle 
CC distance, 1.085 Å to 1.087 Å for the end CH distances, 1.088 and 1.087 Å for the 
middle CH distances, 114.4° for the CCC angle, HCH angles ranging from 106.2° to 
107.7°, CCH angles ranging from 108.5° to 112.0°, a CCCC dihedral of 65.4°. 

 For HF/cc-pVDZ for the anti conformer:  
–157.310044 hartrees, 0 D, 1.526 Å for the end CC distances, 1.528 Å for the middle CC 
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distance, 1.092 Å and 1.094 Å for the end CH distances, 1.096 Å for the middle CH 
distances, 113.3° for the CCC angle, HCH angles ranging from 106.1° to 107.7°, CCH 
angles ranging from 109.1° to 111.2°, a CCCC dihedral of 180.0°. 

 For HF/cc-pVDZ for the gauche conformer: 
–157.308384 hartrees, 0.070 D, 1.528 Å for the end CC distances, 1.532 Å for the middle 
CC distance, 1.092 Å to 1.094 Å for the end CH distances, 1.094 and 1.096 Å for the 
middle CH distances, 114.7° for the CCC angle, HCH angles ranging from 106.1° to 
107.7°, CCH angles ranging from 108.4° to 112.0°, a CCCC dihedral of 65.4°. 

 
15.9 (a)  22 2 2

3 0 0 0 3( ) ( ) sinN NS G d S G r dr d dππτ θ θ φ∞− = − =∫ ∫∫ ∫  
2 2 2 2 2
0 0 0 3 0 3sin ( ) 4 ( )N Nd d S G r dr S G r drππ φ θ θ π∞ ∞− = −∫ ∫ ∫∫ , since S and 3NG  are 

functions of r only. 
 (b)  We include the constraints that each orbital exponent be greater than 10–8. If we start 

with the initial guesses 0.5, 1, and 2 for the orbital exponents and 1, 1, and 1 for the 
coefficients id  and we use Options to set the Solver Tolerance to 10–12 and the Solver 
Convergence to 10–8 (so as to increase the accuracy of the results), the Excel Solver gives 

1 2 30.109815, 0.405755, 2.227534α α α= = = , c1 = 0.444619, c2 = 0.535335,  
c3 = 0.154337. The graph is shown on the next page, where the dashed line is the STO 
orbital and the solid line is the STO-3G function. 

 (c)  For r between 0 and 0.35 bohr, the STO-3G function lies significantly below the STO. 
At other r values, the two functions are quite close to each other. 

 
 
 
 
 
 
 
 
 
 

15.10 From (15.11), and the following equation, 
23/4( ) (2 / ) ir

i iG r e αα π −= . Let u rζ≡ . Then 
2 2 23 3 2 3/4 3/2 3 3/4

1 1 1( , ) (2 / ) (2 / )i ir u
i i i i i i i i ic G r c e c eα ζ αζ α ζ π ζ α π− −
= = =∑ = ∑ = ∑ =

3/2 3
1 ( )i i ic G uζ =∑ ≈ 3/2 ( )S uζ = 3/2 1/2 3/2 1/2 ( , )u re e S rζζ π ζ π ζ− − − −= ≡ . 
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15.11 (a)  Using the information in the Sec. 15.4 example to interpret the results, we find the 1s  
CGTOs for H to be 
1 0.0334946 (18.731137) 0.23472695 (2.8253937) 0.81375733 (0.6401217)s s ss g g g′ = + +  
1 (0.1612778)ss g′′ =  
where the orbital exponents are in parentheses. The polarization functions on H are 

(1.10), (1.10), (1.10)
x y zp p pg g g . 

 (b)  We find 

2

1 0.0018347 (3047.5249) 0.0140373 (457.36951) 0.0688426 (103.94869)
0.2321844 (29.210155) 0.4679413 (9.286663) 0.362312 (3.163927)

s s s

s s

s g g g
g g g

= + + +

+ +
 

2 0.1193324 (7.8682724) 0.1608542 (1.8812885) 1.1434564 (0.5442493)s s ss g g g′ = − − +
2 (0.1687144)ss g′′ =  
2 0.0689991 (7.8682724) 0.316424 (1.8812885) 0.7443083 (0.5442493)

x x xx p p pp g g g′ = + + …
2 (0.1687144)

xx pp g′′ = …  

where the dots indicate 2 yp  and 2 zp  functions. The polarization functions are 
(0.800)

xydg ,…, where the dots indicate five other d-type functions. 

 
15.12 These two sets differ only in that 6-31G** has additional functions on H and He. Hence 

for any molecule without H or He atoms, these basis sets are the same and give the same 
energy. Some possible answers are CO2, C2Cl6, NO2, and PCl3. 

 
15.13 (a) The molecular point group is 2υC . The symmetry species are given by (15.3). For 

H2CO, the minimal-basis AOs are H11s, H21s, C1s, C2s, C2px, C2py, C2pz,  
O1s, O2s, O2px, O2py, O2pz. The z axis coincides with the C2 axis through the double 
bond, and we take the x axis as perpendicular to the molecular plane. 

 
 As in H2O, H11s and H21s are transformed into each other by 2

ˆ ( )C z  and are not 

eigenfunctions of 
2 ( )

ˆ
C zO . We form symmetry orbitals as 1 2H 1 H 1s s+  and 1 2H 1 H 1s s− . 

The function 1 2H 1 H 1s s+  is unchanged by each of the four symmetry operations and 
belongs to the totally symmetric species 1a . The function 1 2H 1 H 1s s−  is unchanged by 

Ê  and by ˆ ( )yzυσ  and is multiplied by –1 by 2
ˆ ( )C z  and by ˆ ( )xzυσ , so it belongs to 

O

C

H1 H2

y 

z 
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species 2b . The C1s, C2s, C2pz, O1s, O2s, and O2pz orbitals are unchanged by each of the 
symmetry operations and so belong to 1a . Each 2 xp  AO on C and on O is unchanged by 

Ê  and by ˆ ( )xzυσ  and is multiplied by –1 by 2
ˆ ( )C z  and by ˆ ( )yzυσ , and their symmetry 

species is 1b . Each 2 yp  AO on C and on O is unchanged by Ê  and by ˆ ( )yzυσ  and is 

multiplied by –1 by 2
ˆ ( )C z  and by ˆ ( )xzυσ , and their symmetry species is 2b . 

 (b)  π  MOs change sign on reflection in the molecular yz plane. The only minimal-basis 
symmetry orbitals that change sign on reflection in the molecular plane are C2 xp  and 
O2 xp . These two basis functions will give rise to two canonical π  MOs. The remaining 
10 σ  symmetry orbitals will give rise to 10 σ  canonical MOs. The canonical π  MOs are 
linear combinations of the π  symmetry orbitals and have the forms 1 2C2 O2x xc p c p+  and 

3 4C2 O2x xc p c p− , where the c's are positive. In the ground electronic state, the bonding 
π  MO 1 2C2 O2x xc p c p+  will be occupied by two electrons and the antibonding π  MO 

3 4C2 O2x xc p c p−  will be vacant. The molecule has 16 electrons, and the 14 electrons not 
in the bonding π  MO will occupy 7 canonical σ  MOs. (The symmetry species a and b 
indicate that all MOs in this molecule belong to orbitally nondegenerate electronic levels.) 

 (c)  The 8 occupied energy-localized MOs are as follows. An inner-shell orbital on C that 
has a significant contribution from only C1s; an inner-shell orbital on O that is largely 
O1s; two lone-pair orbitals on oxygen, each of which is a combination of O2py, O2pz, and 
O2s; a b(CH1) bonding orbital that is mainly a combination of H11s, C2s, C2pz, and C2py; 
a b(CH2) bonding orbital that is mainly a combination of H21s, C2s, C2pz, and C2py; a 
bonding σ  b(CO) orbital that is composed mainly of C2s, C2pz, O2s, and O2pz; a bonding 
π MO that is composed of C2px and O2px, where it was assumed that the localized MOs 
for the C to O bonds are the traditional σ, π orbitals. If the double-bond localized MOs 
turn out to be the "banana" bonds, we have two bonding b(CO) localized orbitals, each of 
which is formed mainly from C2s, C2pz, C2px, O2s, O2pz, O2px. 

 (d)  From part (a), there are 7 minimal-basis symmetry orbitals with a1 symmetry, and the 
maximum-size secular determinant is 7 by 7. 

 
15.14 The molecular point group is 2C v . The symmetry species are given by (15.3). The 

minimal-basis AOs are H11s, H21s, C11s, C12s, C12px, C12py, C12pz, C21s, C22s, C22px, 
C22py, C22pz, F11s, F12s, F12px, F12py, F12pz, F21s, F22s, F22px, F22py, F22pz. The z axis 
coincides with the C2 axis and we take the x axis as perpendicular to the molecular plane: 
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 As in H2O, H11s and H21s are transformed into each other by 2

ˆ ( )C z  and are not 

eigenfunctions of 
2 ( )

ˆ
C zO . We form symmetry orbitals as 1 2H 1 H 1s s+  and 1 2H 1 H 1s s− . 

The function 1 2H 1 H 1s s+  is unchanged by each of the four symmetry operations and 
belongs to the totally symmetric species 1a . The function 1 2H 1 H 1s s−  is unchanged by 

Ê  and by ˆ ( )yzσv  and is multiplied by –1 by 2
ˆ ( )C z  and by ˆ ( )xzσv , so it belongs to 

species 2b . We form the other symmetry orbitals by taking similar combinations of the 
AOs on C1 and C2, and of the AOs on F1 and F2, and we examine the effects of the 
symmetry operations on these symmetry orbitals. Consider for example, the symmetry 
orbital F12px + F22px. The AO F12px is transformed to –F22px by 2

ˆ ( )C z , is transformed to 
F22px by ˆ ( )xzσ , and is transformed to –F12px by ˆ ( )yzσ . Therefore F12px + F22px is 
unchanged by Ê ; is changed to –F22px – F12px = –(F12px + F22px) by 2

ˆ ( )C z , is unchanged 
by ˆ ( )xzσ , and is changed to –(F12px + F22px) by ˆ ( )yzσ . The symmetry species of  
F12px + F22px is thus b1. Proceeding similarly with the other symmetry orbitals, we find 
these results, where the y axis is taken to point to the right for all nuclei: 

 

1 2H 1 H 1s s+  1 2H 1 H 1s s−  1 2F1 F 1s s+ 1 2F1 F 1s s− 1 2C 1 C 1s s+  1 2C 1 C 1s s−

a1 b2 a1 b2 a1 b2 
  
 

1 2F 2 F 2s s+ 1 2F 2 F 2s s− 1 2C 2 C 2s s+ 1 2C 2 C 2s s− 1 2F 2 F 2x xp p+  

a1 b2 a1 b2 b1 

  
 

1 2F 2 F 2x xp p−  1 2C 2 C 2x xp p+ 1 2C 2 C 2x xp p− 1 2F 2 F 2y yp p+  1 2F 2 F 2y yp p−

a2 b1 a2 b2 a1 

  
 

1 2C 2 C 2y yp p+  1 2C 2 C 2y yp p−  1 2F 2 F 2z zp p+  1 2F 2 F 2z zp p−  

z

y

F1 F2 

H1 H2 

C1 C2 
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b2 a1 a1 b2 

  
 

1 2C 2 C 2z zp p+ 1 2C 2 C 2z zp p−

a1 b2 

 
15.15 Using the MOs (15.19), (15.22), and Fig. 15.2, we have 

 

 
 
15.16 2 2 2

1 2 1 2 1 21 (H 1 H 1 ) [ (H 1 ) (H 1 ) 2 (H 1 )(H 1 ) ]N s s d N s d s d s s dτ τ τ τ= ± = + ± =∫ ∫ ∫ ∫   

12(2 2 )N S±  and 1/2 1/2
122 (1 )N S− −= ± , where 12S  is the overlap integral. 

 
15.17 For choice c, M–, the MO of an excited electron would be best approximated by a virtual 

orbital of M. All the MOs that are filled in M are filled in the excited state of M–, so the 
virtual Hartree–Fock orbitals calculated for M are appropriate for use as occupied excited 
MOs of M–. 

 
15.18 We shall calculate the energy of the ion M+ at the equilibrium geometry of the ground-

state uncharged molecule M. When a ground-state molecule M is ionized, the process is 
so fast that the relatively heavy nuclei do not have time to adjust their locations to the 
equilibrium geometry of M+, so it most probable for M+ to be formed at a geometry close 

O

H1 H2 

y 

z

4a1 

O

H1 H2 

y 

z

2b2 
–

+
+

– + 

–

O 

H1 H2 

y 

z

1b1 

O

H1 H2 

y 

z

O

H1 H2 

y 

z 

–

+ 

3a1 
1a1 

+ –
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to that of ground-state M. The energy difference between M+ and M with both species at 
the ground-state equilibrium geometry of M is called the vertical ionization energy, and it 
is this ionization energy that Koopmans' theorem refers to. Since the two species have the 
same geometry, the NNV  nuclear-repulsion term cancels when the energy difference is 
taken. Both the closed-shell species M and the ion M+ have single-determinant Hartree–
Fock wave functions, so we use (11.80), where the sums go over the occupied spin-
orbitals. We assume that the MOs do not change on going from M to M+ at the same 
geometry as M. The ion M+ has one less spin-orbital than M. If the electron is removed 
from MO k, then for M+, the term 1̂(1) | | (1)k kfθ θ〈 〉  is missing from the first sum in 
(11.80), and all terms with i or j equal to k are missing from the second sum in (11.80). 
Let 

, ,s i s jij ij m m ijM J Kδ≡ − . Then for M+, the terms 1 2 1, , 1 , 2, , , , , ,k k k k k k k kM M M M M− + +…  

,, k nM…  are missing from the energy expression. The Hartree–Fock energy difference 
+(M ) (M)HF HFE E−  is therefore equal to minus the sum of the missing terms: 
+

1 1
ˆ(M ) (M) (1) | | (1) n

HF HF k k i kiE E f Mθ θ =− = −〈 〉 − ∑  (Eq. 1), where we used ik kiM M= , 
which follows from ij jiJ J=  and ij jiK K=  [Eq. (11.84)]. The sum 

, ,1 1 ( )
s k s i

n n
i ki i ki m m kiM J Kδ= =∑ = ∑ −  involves the spatial orbitals of the n occupied spin-

orbitals of the closed-shell species M. The n electrons reside in n/2 different spatial 
orbitals, so 1 2 3 4, ,θ θ θ θ= = …, etc. Hence 1 2 3 4 , 1, , ,k k k k k n knJ J J J J J−= = =… . If we 
define 1 1 2 2 3 4 /2 1, , , n n nφ θ θ φ θ θ φ θ θ−≡ = ≡ = ≡ =… , then for the J integrals, we can 

replace the sum over 1, , nθ θ…  with a sum over 1 /2, , nφ φ…  if we multiply each J by 2. 

From (11.82) and (14.27), we have core
1̂

ˆ (1)f H= , so core
1̂(1) | | (1)k k kkf Hθ θ〈 〉 =  [Eq. 

(14.23)]. The orbitals 1 3 5, , ,θ θ θ …  have the spin function α and the orbitals 2 4 6, , ,θ θ θ …  
have the spin function β. The Kronecker delta in 

, ,s i s jm m kiKδ  in the sum will thus alternate 

between 0 and 1 as we sum over i, and for the K integrals, we can replace the sum over 
1, , nθ θ…  with a sum over 1 /2, , nφ φ… . Therefore Eq. 1 becomes 

/2+ core
1(M ) (M) (2 )n

HF HF kk ki kiiE E H J K=− = − − ∑ − . Comparison with Eq. (14.30) gives 
+(M ) (M)HF HF kE E ε− = − , which is Koopmans' theorem. 

 
15.19 The minimal-basis AOs are H11s and H21s, and the symmetry orbitals are H11s + H21s 

and H11s –H21s. 
 
15.20 From Figs. 15.1 and 6.13, we see that each of the four symmetry operations leaves 23 zd  

unchanged and leaves 2 23 x yd −  unchanged, so these two AOs have symmetry species a1. 

From the discussion on p. 146 of the text, the other d orbitals look like this: 
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We find the effects of the symmetry operators on these three AOs to be 

 Ê 2
ˆ ( )C z ˆ ( )xzυσ ˆ ( )yzυσ  

3 xyd  1 1 –1 –1 2a

3 xzd  1 –1 1 –1 1b  

3 yzd  1 –1 –1 1 2b

 Therefore the 23 zd  and 2 23 x yd −  AOs contribute to the 11a , 12a , and 13a  MOs in (15.19), 

the 3 xzd  MO contributes to the 11b  MO, and the 3 yzd  AO contributes to the 21b  MO. 

 
15.21 (a)  Subtraction of the n = 3 equation from the n = 4 equation and the n = 5 equation gives  
 4 3

SCF SCF(4) (3) ( )B BE E A e e− −− = −   and  5 3
SCF SCF(5) (3) ( ).B BE E A e e− −− = −  Dividing 

the second equation by the first to eliminate A, we get  
5 3

SCF SCF
64 3

SCF SCF

(5) (3) 76.06778 76.05777 1.291
(4) (3) 76.06552 76.05777

B B

B B
E E e e
E E e e

− −

− −
− − − +

= = =
− − +−

 

 Defining ,Bx e−≡  we get 
5 3 4 3 2( ) ( ) ( 1) ( 1) ( 1)( 1) ( 1) 1 1.2916,x x x x x x x x x x− − = − − = + − − = + =  so 

0.2916.x =  Then ln 1.232.B x= − = (The Excel Solver can also be used to find B.) Then 
4 3

SCF SCF(4) (3) ( )B BE E A e e− −− = −  and 76.06552 76.05777 ( 0.017582),A− + = −  so 
0.4408.A =  Substitution in (15.23) with n = 5 gives 

1.232(5)
SCF76.06778 ( ) 0.4408E e−− = ∞ +  and SCF( ) 76.0687.E ∞ = −  

 (b) Using the Excel Solver, one finds that the optimum A and B values are nearly 
unchanged from those in (a), and SCF( ) 76.0686.E ∞ = −  

 
15.22 (a)  The L values are 4 and 5 for these two basis sets. Subtraction of (15.88) with 5n =  

from (15.88) with 4n =  gives 9 4 9 5
SCF SCF(aug-4) (aug-5) 5 6 ,E E Ae Ae− −− = −  so 

x 

y 
+ 

+ 

– 

– 

y 

+ 

+

–

– 

x 

+

+

–

–

z z 

3 xyd  3 yzd  3 xzd  
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8
h( 76.066676 76.068009) (6.52319 10 )E A −− + = ×  and h20435 ,A E=  where 

h 1 hartree.E =  Substitution in Eq. (15.88) with 4n =  gives 
9 4

h SCF h76.066676 ( ) (20435 )5E E E e−− = ∞ +  and SCF h( ) 76.06823 .E E∞ = −  

 (b)  9 5 9 6
SCF SCF(aug-5) (aug-6) 6 7E E Ae Ae− −− = −  so 

9
h( 76.068009 76.068153) (9.05206 10 )E A −− + = ×  and h15908 .A E=  From (15.88) with 

5n = , 9 5
h SCF h76.068009 ( ) (15908 )6E E E e−− = ∞ +  and SCF h( ) 76.06818 ,E E∞ = −  as 

compared with SCF h( ) 76.0683 E E∞ = −  listed in the table. 

 
15.23 (a)  This expression is just Eq. (15.24) written using sum notation. 
 (b)  Use of the definitions in the equations after (15.25) followed by use of (15.25) gives 

- , - ,r r r s s r s r i r i r s s i r s in n n n> >∑ + ∑ ∑ = ∑ ∑ + ∑ ∑ ∑ =  
2
, 2r i i r i r s s i i ri si rsn c n c c S>∑ ∑ + ∑ ∑ ∑ =  2

,( 2 )i i r r i r s s ri si rs i in c c c S n n>∑ ∑ + ∑ ∑ = ∑ = , 

where the result of part (a) was used. 
 
15.24 The reference of Prob. 15.29c (hereafter referred to as MROO) tabulates values of the 

overlap integral |a bχ χ〈 〉  between STOs with orbital exponents aζ  and bζ  separated by 
a distance abR  (in bohrs) in terms of the defined parameters  
                      1

2 ( )a b abp Rζ ζ≡ +    and   ( )/( )a b a bt ζ ζ ζ ζ≡ − + .  
In these tables, aχ  in |a bχ χ〈 〉  must be the AO with the smaller value of the quantum 
number n, or if the two n values are equal, aχ  must have the greater orbital exponent. The 
MOs (15.19) are calculated at the experimental geometry OH 0.958R =  Å = 1.81 bohr,  
θ = 104.5° = 1.824 rad. The H–H distance HHR  is found from 1

HH OH2sin( /2) /R Rθ = , so 

HH 2(1.81 bohr)sin(1.824/2) 2.86R = =  bohr. The orbital exponents are [see the paragraph 
preceding Eq. (15.18)]  
                       H1 1.27sζ = , O1 7.66sζ = , O2 2.25sζ = , O2 2.21pζ = .    

For 1O1 | H 1s s〈 〉 , 1
2 (7.66 1.27)1.81 8.08p = + = , (7.66 1.27)/(7.66 1.27) 0.716t = − + = . 

The MROO tables give the following 1 |1s s〈 〉  values: 0.054 at 8.0p = , 0.7t = ; 0.059 at 
8.0p = , 0.8t = ; 0.040 at 9.0p = , 0.7t = . To allow for the increase in t, we add 

(0.016/0.1)(0.059 – 0.054) = 0.001 to the 0.054 value. To allow for the increase in p, we 
add (0.08/1)(0.040 – 0.054) = –0.001 to the 0.054 value. Thus 1O1 | H 1s s〈 〉  = 0.054 + 
0.001 – 0.001 = 0.054.  
For 1 1H 1 | H 1s s〈 〉 , 1

2 (1.27 1.27)2.86 3.63p = + = , 0t = . The MROO tables give these 
1 |1s s〈 〉  values at 0t = : 0.244 at 3.6p = , 0.215 at 3.8p = . Interpolation gives 

1 1H 1 | H 1s s〈 〉  = 0.240.  
The MROO tables are for nonorthogonalized STOs, so we need to use (13.124) and the 
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formula in Prob. 13.37c to write 
3/2 5/2 1/2 4O1 | O2 24(7.66) (2.25) /3 (7.66 2.25) 0.2313s s〈 〉 = + =  and 

2 1/2O2 [1 (0.2313) ] (O2 0.2313 O1 ) 1.028 O2 0.2377 O1s s s s s−
⊥ = − − ⋅ = ⋅ − ⋅ .  

Then 1 1 1H 1 | O2 1.028 H 1 | O2 0.2377 H 1 | O1s s s s s s⊥〈 〉 = 〈 〉 − 〈 〉 .  
For 1H 1 | O2s s〈 〉 , 1

2 (1.27 2.25)1.81 3.19p = + = , (1.27 2.25)/(1.27 2.25) 0.278t = − + = − . 
The MROO tables give the following 1 | 2s s〈 〉  values: 0.468 at 3.2p = , 0.3t = − ; 0.508 at 

3.0p = , 0.3t = − ; 0.464 at 3.2p = , 0.2t = − . So 

1H 1 | O2 0.468 0.002 0.001 0.469s s〈 〉 = + − = . As found above, 1O1 | H 1s s〈 〉  = 0.054. So 

1 1 1H 1 | O2 1.028 H 1 | O2 0.2377 H 1 | O1 1.028(0.469) 0.2377(0.054)s s s s s s⊥〈 〉 = 〈 〉 − 〈 〉 = − =  
0.469. 
The MROO tables give values of 1H 1 | O2s pσ〈 〉  and 1H 1 | O2s pπ〈 〉 ; here the 2 pσ  AO is 
a 2 yp ′  AO on O, where the y′  axis is along the OH1 bond and points toward H1; the 2 pπ  
AO is a 2 zp ′  AO on O, where the z′  axis is in the molecular plane and is perpendicular to 
the OH1 line. We use modified versions of Fig. 15.6 and Eq. (15.40) with y and z 
interchanged. In the modified Fig. 15.6, ( )1

52 180 104.5 37.7α = ° − ° = ° . The 2 yp  and 
2 zp  AOs are proportional to y and z, respectively, and multiplication of the modified 
equations in (15.40) by the exponential part of a 2p AO gives 
 2 2 2 cos 2 siny y zp p p pσ α α′ = = +     and     2 2 2 sin 2 cosz y zp p p pπ α α′ = = − + . 

From these two equations, we get  
2 2 cos 2 sin 0.7907(2 ) 0.6122(2 )yp p p p pσ α π α σ π= − = −

2 2 sin 2 cos 0.6122(2 ) 0.7907(2 )zp p p p pσ α π α σ π= + = +  
Then 1 1 1H 1 | O2 0.7907 H 1 | O2 0.6122 H 1 | O2ys p s p s pσ π〈 〉 = 〈 〉 − 〈 〉 . The overlap of the 

negative half of O2pπ with H11s cancels the overlap of the positive half of O2pπ with 
H11s, so 1H 1 | O2s pπ〈 〉  = 0.  For 1H 1 | O2s pσ〈 〉 , 1

2 (1.27 2.21)1.81 3.15p = + = , 
(1.27 2.21)/(1.27 2.21) 0.270t = − + = − . The MROO tables give the following 1 | 2s pσ〈 〉  

values: 0.382 at 3.2p = , 0.3t = − ; 0.402 at 3.0p = , 0.3t = − ; 0.432 at 3.2p = , 
0.2t = − . So 1H 1 | O2s pσ〈 〉  = 0.382 + 0.005 + 0.015 = 0.402 and 

1 1H 1 | O2 0.7907 H 1 | O2 0.318ys p s pσ〈 〉 = 〈 〉 = .   Finally, 

1 1 1 1H 1 | O2 0.6122 H 1 | O2 0.7907 H 1 | O2 0.6122 H 1 | O2zs p s p s p s pσ π σ〈 〉 = 〈 〉 − 〈 〉 = 〈 〉 =  
0.6122(0.402) = 0.246. 

 
15.25 (a)  From the equation after (15.25), Eq. (15.25), and the MOs (15.19), 

2 2 2 2
O2 O2 , O2 , 2(0.015) 2(0.820) 2( 0.502) 1.85s i s i i i s in n n c

⊥ ⊥ ⊥
= ∑ = ∑ = + + − = ; 

2 2
O2 O2 , 2(1) 2

x xp i i p in n c= ∑ = = ;  2 2
O2 O2 , 2(0.624) 0.78

y yp i i p in n c= ∑ = = ; 
2 2 2 2

O2 O2 , 2(0.003) 2(0.132) 2(0.787) 1.27
z zp i i p in n c= ∑ = + + = ; 
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1 1

2 2 2 2 2
H 1 H 1 , 52( 0.004) 2(0.152) 2(0.424) 2(0.264) 0.54s i i s in n c= ∑ = − + + + = ; 

2 2

2 2 2 2 2
H 1 H 1 , 52( 0.004) 2(0.152) 2( 0.424) 2(0.264) 0.54s i i s in n c= ∑ = − + + − + = . 

 (b)  To find the interatomic overlap population, we take the sum of those - ,r s in  values for 

basis functions r and s that lie on different atoms, using (15.25) and the overlap integrals 
in the Sec. 15.6 example. For 2a1, we have 2(2)(–0.027)0.152(0.054) +  
2(2)(–0.027)0.152(0.054) + 2(2)(0.820)0.152(0.471) + 2(2)(0.820)0.152(0.471) + 
2(2)0.132(0.152)0.247 + 2(2)0.132(0.152)0.247 + 2(2)0.152(0.152)0.238 = 0.53.  
For 1b2, we have 2(2)0.624(0.424)0.319 + 2(2)0.624(–0.424)(–0.319) +  
2(2)0.424(–0.424)0.238 = 0.50. 

 (c)  The contribution of MO i to the gross population in the basis function rχ  is given by  
21 1

, , -s ,2 2 (2 )r i r i s r r i r i i s r ri si rsN n n n c n c c S≠ ≠= + ∑ = + ∑  [see the equation for rN  on p. 458 

and (15.25)]. Since we are using an orthogonalized 2s AO, rsS  is zero for two different 
AOs both on O. From (15.19), the contributions to the gross population of 2O s⊥  are 

1

2
O2 ,1 2(0.015) 2(0.015)( 0.004)0.471(2) 0.000s aN

⊥
= + − =  

1

2
O2 ,2 2(0.820) 2(0.820)(0.152)0.471(2) 1.580s aN

⊥
= + =  

1

2
O2 ,3 2( 0.502) 2( 0.502)(0.264)0.471(2) 0.254s aN

⊥
= − + − =  

 Summing these contributions, we find O2 1.83sN
⊥
= . Also, 

1

2
O1 ,1 2(1.000) 2(1.000)( 0.004)0.054(2) 2.001s aN = + − =  

1

2
O1 ,2 2( 0.027) 2( 0.027)(0.152)0.054(2) 0.001s aN = − + − =

1

2
O1 ,3 2( 0.026) 2( 0.026)(0.264)0.054(2) 0.000s aN = − + − =   

Summing these contributions, we find O1 2.00sN = . Then 

1

2
O2 ,1 O22(1) 2.000

x xp b pN N= = =     

2

2
O2 ,1 O22(0.624) 2(0.624)0.424(0.319) 2(0.624)( 0.424)( 0.319) 1.116

y yp b pN N= + + − − = =

1

2
O2 ,1 2(0.003) 2(0.003)( 0.004)0.247(2) 0.000

zp aN = + − =

1

2
O2 ,2 2(0.132) 2(0.132)(0.152)0.247(2) 0.055

zp aN = + =

1

2
O2 ,3 2(0.787) 2(0.787)(0.264)0.247(2) 1.444

zp aN = + =  

Summing these contributions, we find O2 1.50
zpN = . 

1 1

2
H 1 ,1 2( 0.004) 2(0.004)(1.000)0.054 2(0.004)(0.015)0.471s aN = − − −  

2(0.004)(0.003)0.247 2(0.004)( 0.004)0.238− − − = 0.000 . 

1 1

2
H 1 ,2 2(0.152) 2(0.152)( 0.027)0.054 2(0.152)(0.820)0.471s aN = + − + +

2(0.152)(0.132)0.247 2(0.152)0.152(0.238)+ = 0.184. 

1 1

2
H 1 ,3 2(0.264) 2(0.264)( 0.026)0.054 2(0.264)( 0.502)0.471s aN = + − + − +

2(0.264)(0.787)0.247 2(0.264)0.264(0.238)+ = 0.150. 



15-16 
Copyright © 2014 Pearson Education, Inc. 

 

1 2

2
H 1 ,1 2[(0.424) 0.424(0.624)0.319 0.424( 0.424)0.238]s bN = + + − = 0.443.  

Summing these contributions, we find 
1H 1sN = 0.777 = 

2H 1sN .  

 
15.26 Suppose Q and tQ  have the same sign. Imagine that we reversibly push tQ  toward Q 

(which is located at the origin) along the x axis, starting at x = ∞  and ending at x d= . 
Reversibility means that we exert a force that differs only infinitesimally from the 
electrical repulsive force between the charges. The infinitesimal work dw we do when we 
displace tQ  by dx is dw F dx= , where F is the force we exert on tQ . F is in the negative 
x direction and dx is negative, so dw is positive. Since F is in the negative x direction and 

tQQ  is positive, we have 2
0/4tF QQ xπε= −  and 2

0( /4 )tdw QQ x dxπε= − . Summing up 
the infinitesimal elements dw, we get w as a definite integral. So 

2 1
P P 0 0 0/ / [ /4 ] / ( /4 )( ) | /4d d d

t t t tw Q F dx Q QQ x dx Q Q x Q dφ πε πε πε−
∞→ ∞ ∞ ∞= = = − = =∫ ∫ .  

If Q and tQ  have the opposite sign, then they attract each other, and we have to exert a 

force in the positive x direction; the expression 2
0/4tF QQ xπε= −  is still valid here, since 

tQQ  is now negative and F is now in the positive x direction. Thus we get the same result. 

 
15.27 Gradient paths are perpendicular to the surfaces of constant probability density. 
 

 
 
15.28 Interchanging the x and z axes relabels the xy plane as the yz plane and relabels the yz 

plane as the xy plane, thereby interchanging the ˆ ( )xyσ  and ( )ˆ yzσ  operations. In Table 

15.3, interchange of the ˆ ( )xyσ  and ( )ˆ yzσ  eigenvalues leaves the symmetry species Ag, 

Au, B2g, and B2u unchanged and makes the following changes in the other species: 
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1 3 1 3 3 1 3 1, , ,g g u u g g u uB B B B B B B B→ → → → . Thus the 1 and 3 subscripts on the b 

MOs are interchanged. 
 
15.29 (a)  No. The normalization condition for the real MO i r ri rcφ χ= ∑  is 

2 2 2 2
1 1 2 2 1 1 1 2 1 2 1 1 2 121 ( ) 2 2i i i i i i i ic c d c d c c d c c c Sχ χ τ χ τ χ χ τ= + + = + + = + +∫∫ ∫" " " .  

This equation can be satisfied with 1 1ic >  if 1 2i ic c  is negative or if 12S  is negative. Note 
the negative coefficients for the H AOs in 11a . 

 (b)  In the notation of Prob. 13.37b, we have from (15.46): 0.064c = − , 0.584d = . From 
Prob. 13.37b, c a Sb= +  and 2 1/2(1 )d b S= − , where C1 | C2S s s= 〈 〉 =  

3/2 5/2 1/2 4 3/2 5/2 1/2 4
1 21 224 /3 ( ) 24(5.68) (1.76) /3 (5.68 1.76)ζ ζ ζ ζ+ = + = 0.2516.  

So 2 1/20.584[1 (0.2516) ] 0.603b −= − =  and 0.064 0.2516(0.603) 0.216a = − − = − .  
Then 1 1 2 3 42 0.186(H 1 H 1 H 1 H 1 ) 0.216(C1 ) 0.603(C2 )a s s s s s s= + + + − + . 

 (c)  2 2 2 2
1 1 2(2 ) (0.186) [4 12 H 1 | H 1 ] (0.216) (0.603)a d s sτ = + 〈 〉 + +∫  

1 10.186(0.216)8 H 1 | C1 0.186(0.603)8 H 1 | C2 0.216(0.603)2 C1 | C2s s s s s s− 〈 〉 + 〈 〉 − 〈 〉 , 
where the equivalence of all four H atoms was used. From part (b), C1 | C2s s〈 〉 =  0.2516. 
From p. 472 of the text, the C–H bond length is CH 1.085R =  Å = 2.050 bohrs. The H–H 
distance is given by the law of cosines as 

2 2 2 1/2
CH [(2.050) (2.050) 2(2.050) cos(109.47 )]R = + − °  = 3.348 bohrs. The orbital 

exponents are H1 1.17sζ = , C1 5.68sζ = , C2 1.76sζ = , C2 1.76pζ = . See Prob. 15.24 for 

information and notations on finding the overlap integrals from the reference given.  For 
1 2H 1 | H 1s s〈 〉 , 1 1

2 2( ) (1.17 1.17)3.348 3.92a b abp Rζ ζ≡ + = + = , ( )/( )a b a bt ζ ζ ζ ζ≡ − +  = 
0. The MROO tables give these 1 |1s s〈 〉  values at 0t = : 0.215 at 3.8p = , 0.189 at 

4.0p = . Interpolation gives 1 1H 1 | H 1s s〈 〉  = 0.199. For 1C1 | H 1s s〈 〉 , 
1
2 (5.68 1.17)2.050 7.02p = + = , (5.68 1.17)/(5.68 1.17) 0.658t = − + = . The MROO 

tables give these 1 |1s s〈 〉  values:  0.063 at p = 7.0 and t = 0.6; 0.052 at p = 7.5 and t = 0.6;  
0.073 at p = 7.0 and t = 0.7. Interpolation gives 1C1 | H 1s s〈 〉  = 0.063 – 0.011(0.02/0.50) + 
0.010(0.058/0.10) = 0.068. For 1H 1 | C2s s〈 〉 , 1

2 (1.17 1.76)2.050 3.00p = + = , 
(1.17 1.76)/(1.17 1.76) 0.201t = − + = − . The MROO tables give these 1 | 2s s〈 〉  values:  

0.505 at p = 3.0 and t = –0.2; 0.508 at p = 3.0 and t = –0.3. Interpolation gives 

1H 1 | C2s s〈 〉  = 0.505. Then 2 2 2 2
1(2 ) (0.186) [4 12(0.199)] (0.216) (0.603)a dτ = + + +∫  

0.186(0.216)8(0.068) 0.186(0.603)8(0.505) 0.216(0.603)2(0.2516)− + −  = 0.997. 

 
15.30 We use the electron configuration given on p. 477. The lowest-energy MOs will be two 

inner-shell MOs that involve the C1s AOs. The 1 ga  inner-shell MO will be almost 
entirely g2. The 11 ub  inner-shell MO will be g6. There will be six occupied bonding MOs. 
The 13g  symmetry orbital will give the occupied π MO 31 ub , the highest-energy occupied 
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MO. The 31 gb  MO will be a bonding combination of the 3gb  symmetry orbitals 11g  and 

12g , namely, 11 12( )N g cg+ . Since 1C 2 yp  is positive near H1 and 2C 2 yp−  is negative 
near H3, the coefficient c must be positive to give a bonding MO. The 21 ub  MO will be a 
bonding combination of the 2ub  symmetry orbitals 9g  and 10g , namely, 9 10( )N g ag+ . 
Since 1C 2 yp  is positive near H1 and 2C 2 yp  is positive near H3, the coefficient a must be 
positive to give a bonding MO. The 12 ub  MO will be a bonding combination of the 1ub  
symmetry orbitals 5g , 7g , and 8g , with the inner-shell symmetry orbital 6g  making only 
a negligible contribution. Thus 1 5 7 82 ( )ub N g g gα β= + + . Since 1C 2s  is positive near H1 
and H2 and 2C 2s−  is negative near H3 and H4, we see that α is positive. Since 1C 2 zp  is 
negative near H1 and H2 and 2C 2 zp  is positive near H3 and H4, we see that β is negative. 
The 2 ga  and 3 ga  MOs will each be a bonding combination of the ga  symmetry orbitals 

1g , 3g , and 4g , with the inner-shell symmetry orbital 2g  making a negligible 
contribution. In these MOs, the 1g  and 3g  functions will have positive coefficients. Since 

1C 2 zp  is negative near H1 and H2 and 2C 2 zp−  is negative near H3 and H4, the function 

4g  will have a negative coefficient in these MOs. As noted in the problem, 3g  makes a 
negligible contribution to 3 ga . Also, it turns out that the contribution of 4g  to 2 ga  is 

small, and can be neglected in drawing the MO. Combining the symmetry orbitals with 
the signs just deduced, we get the MO sketches shown on the next page. 

 
15.31 (a)  ∇U = 1 2 2( / ) ( / ) ( / ) 2 2 2U x U y U z c x c y c z∂ ∂ + ∂ ∂ + ∂ ∂ = + +i j k i j k . The ( , )thi j  element 

of the Hessian is 2( / )i jU q q∂ ∂ ∂ , where 1q x= , 2q y= , 3q z= . So the Hessian matrix is 

1

2

3

2 0 0
0 2 0
0 0 2

c
c

c

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 (b)  ∇U = 2 ( ) 2 ( ) 2 ( )c x y z c x y z c x y z+ + + + + + + +i j k . The Hessian is 
2 2 2
2 2 2
2 2 2

c c c
c c c
c c c

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 
15.32 We use Table 15.5, the VSEPR method, and the rules on p. 484.  

(a)  CHR =  1.09 Å, OHR =  0.96 Å, (CO) 1.43R = Å, ∠HCH = ∠HCO = 109.5°,  
∠COH = 106°, D(HCOH) = 60°, where D denotes a dihedral angle  

 (b)  CHR =  1.08 Å, CCR =  1.34 Å, ∠HCC = 122°, ∠HCH = 116° (the deviations from 
120° can be expected because the larger volume of the double bonds between the carbons 
produces extra repulsions on the C–H bond pairs, forcing them closer together). 

 (c)  CHR =  1.09 Å, CNR =  1.47 Å, NHR =  1.01 Å, ∠HCN = 109.5°, ∠CNH = 107°, 
D(HCNH) = 60°. 
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 (d)  CHR =  1.09 Å, CCR =  1.52 Å, COR =  1.22 Å, ∠HCH = ∠HCC = 109.5°,  
∠CCC = 116°, ∠CCO = 122°, D(CCOC) = 180°. In this unusual dihedral angle, the first 
and fourth carbons are both bonded to the second carbon, and the second carbon is bonded 
to O (see p. 503 of the text). The 180° value of this dihedral angle shows that the non-H 
atoms lie in the same plane. D(HCCO) = 0° for one H on each C (rule 2b on p. 484). 
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15.33 (a)  A stationary point has ∇U = 0, and so has / 0U x∂ ∂ =  and / 0U y∂ ∂ = . Hence 
4 0x =  and 2 0y− = , so the only stationary point is at 0, 0x y= =  (the origin). 

 (b)  For the function 2 22x y− , the stationary point (0, 0) is a minimum for the variable x, 
since 22x  increases as x either decreases or increases from 0, and is a maximum point for 
y, since 2y−  decreases as y either increases or decreases from 0. Hence the origin is a 
saddle point for U.  

 
15.34 (a)  The minimum is at 1, 2x y= = , since U is zero at this point and is positive at every 

other point.  
 (b)  The (1) superscripts in (15.72) denote the first estimates of the Hessian elements. Since 

we are evaluating all derivatives exactly in this problem, these superscripts are omitted. 
For 2 24( 1) 3( 2)U x y= − + − , we have 

2 2 2 2 2 2/ 8( 1), / 6( 2), / 8, / 6, / / 0U x x U y y U x U y U x y U y x∂ ∂ = − ∂ ∂ = − ∂ ∂ = ∂ ∂ = ∂ ∂ ∂ = ∂ ∂ ∂ =

,1 1 ,1 18( 1), 6( 2)x yU x U y= − = −   and (15.72) gives  

 1 1
2 1 1 1

0 6( 2) 6 8( 1) ( 1) 1
8 6 0

y xx x x x′
⋅ − − ⋅ −

= + = − − =
⋅ −

, 

1 1
2 1

0 8( 1) 8 6( 2) 2
8 6 0

x yy y′
⋅ − − ⋅ −

= + =
⋅ −

 

 
15.35 (a)  The minimum is at the origin, 0, 0x y= = . 

 (b)  1 (9, 9)=q ,  –∇U = 6 12 ( 6 , 12 )x y x y− − = − −i j ,  1 54 108 ( 54, 108)U− = − − = − −i j∇ . 
If the vector 1U−∇  is placed with its tail at the origin, its head is at ( 54, 108)− − ; the 
slope of the gradient-vector line is / 108/( 54) 2y xΔ Δ = − − = . The equation of the line with 
slope 2 that passes through the point (9, 9) is 2 ( 9)/( 9)y x= − −  or 2 9y x= − . We must 
find the minimum of the function 2 23 6U x y= +  on the line 2 9y x= − . On this line, 

2 2 23 6(2 9) 27 216 486U x x x x= + − = − + . For the minimum, / 0 54 216U x x∂ ∂ = = −  
and 4x = , 2 9 1y x= − = − . Thus the initial step (done using the steepest-descent method) 
is from (9, 9) to (4, –1). For point 2, 2 6 12 24 12 ( 24, 12)U x y− = − − = − + = − +i j i j∇ . The 
Fletcher–Reeves formula gives 

2 2 2 2
2 2 2 1 1( ) / ( ) [(24) ( 12) ]/[(54) (108) ] 0.0493827U U U Uβ = = + − + =∇ ⋅∇ ∇ ⋅∇ .  Then 

2 2 2 1 2 2 1) 24 12 (0.0493827)( 54 108 )U U Uβ β= − + = − + = − + + − − =d d i j i j∇ ∇ (−∇
26.66667 6.66667 ( 26.66667, 6.66667)− + = −i j . The slope of the 2d  vector is  

6.66667/(–26.66667) = –0.250000 and the equation of the line with this slope that passes 
through the point (4, –1) is 0.25000 ( 1)/( 4)y x− = + −  or 0.25000y x= − . We must find 
the minimum of the function 2 23 6U x y= +  on the line 0.25000y x= − . On this line, 

2 2 23 6( 0.25 ) 3.375U x x x= + − = . For the minimum, / 0 6.75U x x∂ ∂ = =  and 
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0, 0.25 0x y x= = − = . For point 3, 3 6 12 0 0 (0, 0)U x y− = − − = + =i j i j∇ . With a zero 
gradient, we have reached the minimum. 

 
15.36 The H–H distance HHR  is found from 1

HH OH2sin( /2) /R Rθ = , so 

HH 2(0.958 Å)sin[104.5 / (180)2] 1.515R π= =  Å. The distance matrix is 

0 0.958 Å 0.958 Å
0.958 Å 0 1.515 Å
0.958 Å 1.515 Å 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
15.37 (a)  True. Three non-collinear points determine a plane. If the nuclei are collinear, the 

molecule is best described as linear.    (b)  True.   (c)  True.   (d)  True. 
 
15.38 The four symmetry operations in (15.1) each leave 2ω  unchanged and this vibration has 

symmetry species 1.a  The operations 2
ˆ ( )C z  and ˆ ( )xzσv  convert the vectors of 3ω  to their 

negatives and the other two operations leave 3ω  unchanged, so this vibration has 
symmetry species 2.b  

 

15.39 34 10 23
s/ ( / ) (6.6261 10 J s)(2.9979 10 cm/s)/(1.3807 10 J/K)s s sh k hc kν ν ν− −Θ = = = × × ×�  

sΘ =  (1.4387 cm K) sν .  

 (a)  1(900 cm )(1.4387 cm K) 1295 Ks
−Θ = =   

/ 1295/298.1/( 1) (8.314 J/mol-K)(1295 K)/( 1) 0.142s T
sR e eΘΘ − = − =  kJ/mol 

 (b)  1(300 cm )(1.4387 cm K) 431.6 Ks
−Θ = =   

/ 431.6/298.1/( 1) (8.314 J/mol-K)(431.6 K) /( 1)s T
sR e eΘΘ − = − = 1.103 kJ/mol 

 (c)  1(2000 cm )(1.4387 cm K) 2877 Ks
−Θ = =  

/ 2877/298.1/( 1) (8.314 J/mol-K)(2877 K) /( 1)s T
sR e eΘΘ − = − = 0.0015 kJ/mol 

 
15.40 (a)  /hartrees 2( 74.783931) ( 37.680860) ( 187.634176) 0.385454eD = − + − − − = . 

(0.385454 hartree)(27.2114 eV/hartree)eD =  = 10.489 eV. 

 (b)  In the harmonic-oscillator approximation, each vibrational mode contributes 
1 1
2 2h hcν ν= �  to the ground-state vibrational energy. Adding up these contributions, we get 

as the ground-state vibrational energy 
34 10 1 201

2 (6.626 10  J s)(2.9979 10  cm/s)0.89(5595.1 cm ) 4.946 10  J− − −× × = × =  0.309 eV. 
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So 0 10.489D =  eV – 0.309 eV = 10.180 eV. The predicted atomization energy is 
19 23 1(10.180 eV)(1.6022 10  J/eV)(6.0221 10  mol ) 982.2 kJ/mol 234.8 kcal/mol− −× × = = .  

 (c)  1
2C( ) 2O( ) CO ( )g g g+ ⎯⎯→  

 
        2C(graphite) O ( )g+  

 These three processes are at 0 K, where there is no difference between energy changes and 
enthalpy changes for ideal gases. Thus, from part (b), 0,1HΔ °  for step 1 is estimated as  

–982.2 kJ/mol. From the thermodynamic data given in the problem, 
0,2/(kJ/mol) 2(246.79) 711.2 1204.78H °Δ = − − = − . Also, 

23 ,0,CO ( )f gH H °Δ = Δ . From 

1 2 3H H HΔ = Δ + Δ , we get 
23 ,0,CO ( ) ( 982.2 1204.8)f gH H °Δ = Δ = − +  kJ/mol =  

222.6 kJ/mol, which is greatly in error. To find the change in HΔ °  for the formation 
reaction (reaction 3) on going from 0 to 298 K, we include HΔ °  for taking each substance 
from 0 to 298 K. For each of the reaction-3 gases at 298 K, statistical mechanics gives:  
(a) a translational-motion contribution of 3

2 RT ; (b) a rotational contribution of RT ; 

(c) a vibrational contribution that is found from the formula in Prob. 15.39;  
(d) a negligible electronic contribution; (e) a contribution of RT  to mH °  of each gas, 
arising from the definition H U PV≡ + . Since the number of moles of gases is the same 
on each side of the formation reaction, contributions a, b, d, and e cancel, and we are left 
with only the vibrational contributions for the gases and the contribution from heating the 
graphite. From Prob. 15.39 and Table 13.2, 1(1580 cm )(1.4387 cm K) 2273 K−Θ = =  for 
O2(g) and the vibrational contribution at 298 K is  

/ 2273/298.1/( 1) (8.314 J/mol-K)(2273 K)/( 1) 0.009TR e eΘΘ − = − =  kJ/mol. For CO2(g), the 
two higher-frequency vibrations make negligible contributions; for each of the two lower-
frequency vibrations, 10.89(745.8 cm )(1.4387 cm K) 955 Ks

−Θ = =  and each contributes 
/ 955/298.1/( 1) (8.314 J/mol-K)(955 K)/( 1) 0.336s T

sR e eΘΘ − = − =  kJ/mol. Thus ,298fH °Δ =  

,0 2(0.336 kJ/mol) 1.05 kJ/molfH °Δ + − =  222.6 kJ/mol – 0.4 kJ/mol = 222.2 kJ/mol. 

 
15.41 (a)  To avoid a 180° angle in the Z-matrix, we use a dummy atom whose bond to the 

carbon makes an angle of 90° with the molecular axis, as explained on p. 503. So 
 C1 

X2   1   1.0 
O3   1   1.16   2   90.0 
O4   1   1.16   2   90.0   3   180.0 

 Alternative answers with different orderings of the atoms are possible in this problem. 

2 3 
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 (b)  See p. 503 for help on finding the dihedral angles. 
 C1 

H2   1   1.09 
H3   1   1.09   2   109.47 
H4   1   1.09   2   109.47   3   120.0 
H5   1   1.09   2   109.47   3   –120.0 

 (c) C1 
  O2   1   1.22 
  H3   1   1.08   2   122.0 
  H4   1   1.08   2   122.0   3   180.0 

 (d)  The simplest approach is to put a dummy atom on the other side of the C3 axis as the 
hydrogens. This makes the answer similar to that of part (b): 

 N1 
X2   1   1.0 
H3   1   1.01   2   111.0 
H4   1   1.01   2   111.0   3   –120.0 
H5   1   1.01   2   111.0   3   120.0 

 (e) C1 
  C2   1   1.34 
  H3   1   1.08   2   122.0 
  H4   1   1.08   2   122.0   3   180.0 
  H5   2   1.08   1   122.0   3   0.0 
  H6   2   1.08   1   122.0   3   180.0 

 (f)  In the Newman projections that follow, the O is behind the C. 
 

Z-matrixes for first the staggered conformation and then the eclipsed conformation are 
 C1 

O2   1   1.43 
H3   2   0.96   1   106.0 
H4   1   1.09   2   109.5   3   180.0 
H5   1   1.09   2   109.5   3   –60.0 
H6   1   1.09   2   109.5   3   60.0 

H4

H3 

H5 H6 

H4 H3 

H5 H6 

C O

H3

H4

H5 

H6 

C O

H3H4

H5

H6 

1 2
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 C1 
O2   1   1.43 
H3   2   0.96   1   106.0 
H4   1   1.09   2   109.5   3   0.0 
H5   1   1.09   2   109.5   3   120.0 
H6   1   1.09   2   109.5   3   –120.0 

 (g)  No standard C-Cl bond length is listed in Table 15.5. If one looks up bond radii, one 
find 0.77 and 0.99 Å for C and Cl single-bond radii, respectively, which gives a 1.76 Å 
length for the C-Cl bond. In the following Newman projections, C2 is behind C1. 

  
 Z-matrices for the gauche and anti conformers are  
 C1  C1 

C2   1   1.54 C2   1   1.54 
Cl3   2   1.76   1   109.5 H3   2   1.09   1   109.5 
H4   1   1.09   2   109.5   3   180.0 H4   1   1.09   2   109.5   3   180.0 
H5   1   1.09   2   109.5   3   –60.0 H5   1   1.09   2   109.5   3   –60.0 
Cl6   1   1.76   2   109.5   3   60.0 Cl6   1   1.76   2   109.5   3   60.0 
H7   2   1.09   1   109.5   5   180.0 H7   2   1.09   1   109.5   5   180.0 
H8   2   1.09   1   109.5   6   180.0 Cl8   2   1.76   1   109.5   6   180.0 

 
15.42 The two C's are bonded to each other. One F and two H's are bonded to C1, and an O and 

a Cl are bonded to C2. The O is bonded only to C2. Thus the formula is CH2FC(=O)Cl. 
The dihedral angle D(OCCF) is 180° and D(ClCCF) is 0°. So the molecule is 

 
 

Cl6

H8 
H4 H5 

H7 Cl3
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15.43 If we rotate the figure at the left by 180° about a vertical axis that goes through the 
midpoint of the ST bond and is perpendicular to the ST bond, we get the figure at the 
right, which shows that D(U, T, S, R) is also 60°. 

 

 
15.44 For the first atom, nothing is specified; for the second atom, one internal coordinate (IC) is 

specified (a bond length); for the third atom, two ICs (a bond length and a bond angle) are 
specified. for the fourth, fifth,…, Nth atoms, three ICs (a bond length, a bond angle, and a 
dihedral angle) are specified. So the total number of specified ICs is  
0 + 1 + 2 + (N – 3)3 = 3N – 6 (since there are N – 3 atoms for which three ICs are 
specified). However, for a diatomic molecule, nothing is specified for the first atom and 
one IC is specified for the second atom, so one IC is specified. For a linear polyatomic 
molecule, the situation is complicated by the need to use a dummy atom to avoid 180° 
bond angles in the Z-matrix, and discussion is omitted. 

 
15.45 (a)  A Z-matrix is given in the Prob. 15.41c solution. The calculated HF/3-21G 

equilibrium geometry, dipole moment, and harmonic vibrational wavenumbers are  
R(CO) = 1.207 Å, R(CH) = 1.083 Å, ∠OCH = 122.5°; 2.66 D;  
1337, 1378.5, 1693, 1916, 3162, 3233 cm–1. 

 (b)  The calculated HF/6-31G* equilibrium geometry, dipole moment, and equilibrium 
(harmonic) vibrational wavenumbers are R(CO) = 1.184 Å, R(CH) = 1.092 Å,  
∠OCH = 122.2°; 2.67 D; 1336, 1383, 1680, 2028, 3160, 3232 cm–1. Multiplication of the 
calculated harmonic values by the 0.895 scale factor gives as predicted fundamental 
wavenumbers: 1196, 1238, 1504, 1815, 2828, 2893. Experimental values are 1.205 Å, 
1.111 Å, 121.9°; 2.33 D; 1167, 1249, 1500, 1746, 2783, 2843 cm–1, where the 
wavenumbers are fundamental wavenumbers. Some sources of experimental data are the 
Handbook of Chemistry and Physics (CRC Press) and the NIST Computational Chemistry 
Comparison and Benchmark Database (cccbdb.nist.gov) for geometries, dipole moments 
and vibrational frequencies; the NIST Chemistry Webbook (webbook.nist.gov/chemistry) 
for vibrational frequencies; Landolt-Börnstein, New Series, Group II, vols. 7, 15, and 21, 
Structure Data of Free Polyatomic Molecules for geometries. 

 (c) The light H atoms have much larger displacements than the C and O atoms. The 
following diagrams (not drawn accurately to scale) show the modes. Plus and minus signs 
denote motions in the +x and –x directions, respectively. 

R 

U 
R

U
S T
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 One can also use the output of the Gaussian program to visualize the normal modes. After 
each calculated vibrational wavenumber, Gaussian gives the x, y, z vibrational 
displacements of the atoms for that normal mode. To see where the x, y, and z axes have 
been placed by Gaussian, consult the standard-orientation coordinates of the atoms given 
by Gaussian preceding the frequency calculation. 

 (d)  The predicted strongest mode is 2028 1cm .−  The weakest is 1336 1cm .−  
 (e)  Let the molecular plane be the yz plane, as in Fig. 15.1 and in the preceding normal-

mode figures. For the 1336 1cm−  mode, 2
ˆ ( )C z  and ˆ ( )yzσv  reverse each vibration vector 

and this is modes has symmetry species 1b  [see (15.3)]. For the 1383 and 3232 1cm−  

modes, 2
ˆ ( )C z  and ˆ ( )xzσv  reverse each vector and these modes have symmetry species 

2.b  For the 1680, 2028, and 3160 1cm−  modes, all four symmetry operations leave the 
vibration vectors unchanged and these are 1a  modes. 

 

15.46 (a)  1842 1cm−  for CC stretching.  776 1cm−  for CCl stretching. Out of plane 
wavenumbers are 698, 1077, and 1093 1cm− . 

 (b)  Calculated harmonic wavenumbers scaled by 0.895 are 386, 625, 694, 964, 978, 1024, 
1281, 1381, 1649, 3000, 3067, 3083 1cm− . Experimental fundamental frequencies are 
395, 620, 720, 896, 941, 1030, 1279, 1368, 1608, 3030, 3086, 3121 1cm− . 
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 (c)  The sum of the calculated wavenumbers in (b) is 18132 1cm− , which gives an 
estimated zero-point energy of 34 10 11

2 (6.6261 10  J s)(2.9979 10  cm/s)(18132 cm )− −× × =  
191.801 10  J 0.0413 hartree.−× =  

 
15.47  The 11a  MO has orbital energy h20.55787 Eε = − h( 1 hartree),E =  and is essentially the 

1s inner-shell orbital on O. The 12a  MO has h1.34613  Eε = −  and is a bonding MO that 
extends over all three atoms and is positive throughout  The 21b  MO has 

h0.71427  Eε = −  and is a bonding MO with two lobes of opposite sign that are separated 
by a nodal plane perpendicular to the molecular plane. One lobe extends over H1 and the 
OH1 bond line. The other lobe extends over H2 and the OH2 bond line. The 13a  MO has 

h0.57080  Eε = −  and has two lobes of opposite sign. One lobe is centered on the side of 
the oxygen that is away from the hydrogens, and the other lobe extends over the two 
hydrogens. As discussed in the text, this is a largely lone-pair MO. The 11b  MO has 

h0.49821  Eε = − , has two lobes of opposite sign (one above and one below the molecular 
plane), and is the lone pair 2 xp  AO on oxygen. 

 
15.48  When using WebMO it is best to use the Symmetry menu to symmetrize the molecule 

before running the geometry optimization, so as to ensure that the MOs have the proper 
symmetry. The 1 ga  MO has orbital energy h11.22433 Eε = −  and is an inner-shell σ  MO 
consisting of two positive lobes, the 1s AOs on each carbon. The 11 ub  MO has 

h11.22252 Eε = −  and is an inner-shell σ  MO consisting of one positive and one negative 
lobe, the carbon 1s AOs with opposite sign. The 2 ga  MO has h1.03317 Eε = −  and is a 
bonding σ  MO with one lobe extending over all six atoms. The 12 ub  MO has 

h0.7895 Eε = −  and is a bonding σ  MO with two lobes of opposite sign; each lobe 
extends over two hydrogens bonded to the same C and over the two CH bonds to that C. 
The 21 ub  MO has h0.64069 Eε = −  and is a bonding σ  MO with two lobes of opposite 
sign; each lobe extends over two cis hydrogens and their bonds to the carbons. The 3 ga  
MO has h0.58647 Eε = −  and is a bonding σ  MO with two positive lobes and one 
negative lobe. Each positive lobe encompasses two hydrogens bonded to the same carbon 
and the two CH bonds. The  negative lobe extends over the CC bonds. The 31 gb  MO has 

h0.50194 Eε = −  and is a bonding σ  MO with two positive and two negative lobes; each 
lobe extends over on CH bond and one H atom. The 31 ub  MO has h0.37440 Eε = −  and is 
a bonding π  MO with one positive and one negative lobe; the lobes lie either above or 
below the molecular plane. See also the figures in the Prob. 15.30 solution. 

 
15.49 (a)  Most negative near the O atom. Most positive near the hydrogens bonded to N. 
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 (b)  Most negative on the part of the isodensity surface near the center of the double bond. 
Most positive near the hydrogens. 

 (c)  Most negative on hexagonal regions (each with a hole) of the isosurface that lie above 
and below the interior of the ring. Most positive near the hydrogens. 

 (d)  The most negative regions of the isodensity surface are near the carbon-carbon bonds. 
The most positive regions are near the hydrogens and also above and below the ring near 
the center of the ring. 

 
15.50 Mulliken charges: 0.434 on H, –0.869 on O.  

MK charges: 0.409 on H, –0.817 on O. 
CHELP charges: 0.412 on H, –0.824 on O. 

 CHELPG charges: 0.408 on H, –0.816 on O. 
 
15.51 The ESP map suggests the T structure is lower energy, since it puts the negative charge 

near the center of one ring close to a positive hydrogen of the other ring, whereas the 
sandwich structure has the negative charges of the two monomers close to one another. 
(Two other benzene dimer structures are the parallel-displaced structure and theT-shaped 
tilted structure; see Figure 1 in the reference given in the text.) 

15.52 The following HF/3-21G energies as a function of bond angle are found: 

100° 102° 104° 106° 108° 110° 112° 

–75.583863 –75.584756 –75.585385 –75.585755 –75.585877 –75.585758 –75.585408 

 A quadratic polynomial gives a good fit, as shown by the Excel graph on the next page. 
The minimum of 2y ax bx c= + +  is found from / 0 2dy dx ax b= = + , so /2x b a= −  and 
the minimum is at 3 51

2 (6.72142 10 ) / (3.11042 10 ) 108.05− −× × = ° . Since the minimum is 

near 108°, it makes more sense to omit the points at 100° and 102° (where deviations from 
the harmonic-oscillator potential will be larger), and fit only the five points from 104° to 
112°. This gives an R2 value of 0.999932 and gives 

/2b a− = 3 51
2 (6.48631 10 )/(3.00179 10 ) 108.04− −× × = ° . 
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y = 3.11042E-05x2 - 6.72142E-03x - 7.52228E+01
R2 = 9.99889E-01

-75.5860

-75.5855

-75.5850

-75.5845

-75.5840

-75.5835
100 102 104 106 108 110 112

 
 
15.53 In the following Newman projections, C2 is behind C1.  
 

 Z-matrices for the staggered and eclipsed conformations are  
 C1  C1 

C2   1   R1 C2   1   R1 
H3   2   R2   1   A1 H3   2   R2  1   A1 
H4   1   R2   2   A1   3   D1 H4   1   R2   2   A1   3   D1 
H5   1   R2   2   A1   3   D2 H5   1   R2   2   A1   3   D2 
H6   1   R2   2   A1   3   D3 H6   1   R2   2   A1   3   D3 
H7   2   R2   1   A1   5   D1 H7   2   R2   1   A1   4   D3 
H8   2   R2   1   A1   6   D1 H8   2   R2   1   A1   5   D3 
   Variables:    Variables: 
R1   1.54 R1   1.54 
R2   1.09 R2   1.09 
A1   109.5 A1   109.5 
   Constants:    Constants: 
D1   180.0 D1   120.0 
D2   –60.0 D2   –120.0 
D3   60.0 D3   0. 
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H7 H3 
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 With the dihedral angles fixed, the optimized HF/6-31G** energies of the staggered and 
eclipsed forms are found to be –79.2382341 and –79.2334228 hartrees, respectively. The 
energy difference is 0.0048113 hartrees, which is equivalent to 3.02 kcal/mol. 

 
15.54 (a)  The SMILE string is CO or OC. The three-dimensional model shows a staggered 

conformation. You can either use Jmol to view the coordinates or click on PDB or MOL 
to download a file with the Cartesian coordinates and then use Microsoft Word to open the 
saved file.  For the SMILES string CO, CORINA gives the following coordinates (the 
string OC gives the atoms in a different order): 

C1      0.737  -0.015   0.000 
O2     -0.690   0.068  -0.000 
H3      1.070  -0.549   0.890 
H4      1.070  -0.549  -0.890 
H5      1.159   0.990   0.000 
H6     -1.133  -0.792  -0.000 

 (b)  The SMILES string is O=CO or OC=O. CORINA gives the conformation with the 
D(HCOH) dihedral angle equal to zero (conformer II in Prob. 15.57), which is not the 
lowest-energy conformer, and gives these coordinates for the string O=CO: 

O1   -1.124  -0.213   0.000 
C2   -0.095   0.420  -0.001 
O3    1.085  -0.218   0.000 
H4   -0.126   1.500   0.003 
H5    1.881   0.331  -0.000 

 
15.55 (a)  Begin by clicking ChemicalSearch; then choose Text Search or Structure Search and 

enter the name or SMILES string; then click the Chemical ID number (3969407 in this 
case); choose XYZ-XMol XYZ format in the drop-down list, click on Chemical, and save 
the file to your computer. Use Microsoft Word to open the file on your computer. The 
result is 

C     -0.01730    1.42480    0.00990 
O      0.00210   -0.00410    0.00200 
H      1.00530    1.80210    0.00210 
H     -0.54450    1.78590   -0.87320 
H     -0.52750    1.77630    0.90670 
H      0.46100   -0.27290   -0.80560 
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 (b)  ChemDB gives the conformation with the two H atoms eclipsing each other (II in 
Prob. 15.57), which is not the lowest-energy conformer. The coordinates are given as 

C     -0.01430    1.20410    0.00870 
O      0.00210   -0.00410    0.00200 
O      1.13890    1.89100    0.00130 
H     -0.95680    1.73130    0.01600 
H      1.12580    2.85790    0.00670 

15.56 (a)  Starting with the planar Z-matrix 
 N1 
 H2   1   1.0 
 H3   1   1.0   2   120.0 
 H4   1   1.0   2   120.0   3   180.0 
 Gaussian 09 gives the HF/6-31G* optimized geometry as the planar structure with RNH = 

0.988 Å, ∠HNH = 120.0°, and energy –56.173985 hartrees. A vibrational-frequency 
calculation gives one imaginary frequency, indicating that this structure is a saddle point, 
rather than a local minimum.  

 (b)  Starting with the nonplanar Z-matrix 
 N1 
 X2   1   1.0 
 H3   1   1.0   2   100.0 
 H4   1   1.0   2   100.0   3   -120.0 
 H5   1   1.0   2   100.0   3   120.0 
 Gaussian converges to a pyramidal structure with the HF/6-31G*  values RNH = 1.002 Å, 

∠HNH = 107.2°, and energy –56.184356 hartrees. A vibrational-frequency calculation 
gives all real frequencies, indicating that the structure is a local minimum. 

 (c)  The HF/6-31G* equilibrium inversion barrier is (–56.173985 + 56.184356) hartrees = 
0.010371 hartrees, which is 6.51 kcal/mol. (Experimental values for this barrier lie in the 
range 5.1 to 5.4 kcal/mol. ) 

 
15.57 (a)  The two conformers are  
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 where the D(OCOH) dihedral angles are given. A Z-matrix for Conformer I is 
 C1 

O2   1   1.22 
O3   1   1.36   2   120.0 
H4   1   1.08   2   120.0    3   180.0 
H5   3   0.96   1   109.5   2   0.0 

 To get the Z-matrix for conformer II, we change the last entry in the last line from 0.0 to 
180.0. The HF/6-31G* geometry-optimized results are planar structures with the 
following properties: 

 μ ∠HC=O ∠OCO ∠COH RCH RC=O RCO ROH 

I 1.60 D 124.7° 124.9° 118.7° 1.083 Å 1.182 Å 1.323 Å 0.953 Å 
II 4.37 D 123.1° 123.0° 111.5° 1.090 Å 1.176 Å 1.328 Å 0.948 Å 

 The energies are –188.762310 hartrees for I and –188.752546 for II. The HF/6-31G* 
energy difference is EII – EI = 0.009764 hartrees, corresponding to EII – EI =  
6.13 kcal/mol.  

 (b)  The unscaled frequencies are all real (indicating that these structures are local 
minima). For conformer I, the unscaled HF/6-31G* wavenumbers are 692, 715, 1192, 
1275, 1440, 1552, 2035, 3320, and 4042 cm–1. Using the scaling factor of 0.895, we find 

1 1 34 101
,scaled2 (7278 cm ) (7278 cm )(6.6261 10  J s)(2.9979 10  cm/s) i ihc hcν − − −∑ = = × × =�  

1.4457 × 10–19 J. Multiplication by the Avogadro constant gives a zero-point energy of 
87.06 kJ/mol = 20.81 kcal/mol for I. For conformer II, the unscaled HF/6-31G* 
wavenumbers are 517, 724, 1179, 1238, 1426, 1583, 2080, 3228, and 4107 cm–1 and the 
scaled frequencies give a zero-point energy of 20.58 kcal/mol. The zero-point energy 
difference is EII,ZPE – EI,ZPE = –0.23 kcal/mol. With inclusion of the zero-point vibrational 
energy, the HF/6-31G* calculation predicts EII – EI = 5.90 kcal/mol at 0 K. 

 
15.58 (a)  The anti conformer is 
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 The H's on C4 are staggered with respect to the atoms bonded to C3; the H's on C1 are 

staggered with respect to the atoms bonded to C2. Although the Gaussian input procedure 
described in Prob. 15.53 could be use to freeze the CCCC dihedral angle D(4321) while 
optimizing the remaining geometry, a slightly simpler procedure is to use the keyword 
Opt=AddRedundant with the following Z-matrix: 

 C1 
C2   1   1.54 
C3   2   1.54   1   109.5 
C4   3   1.54   2   109.5   1    180.0 
H5   1   1.09   2   109.5   3   180.0 
H6   1   1.09   2   109.5   5   -120.0 
H7   1   1.09   2   109.5   5   120.0 
H8   2   1.09   1   109.5   3   -120.0 
H9   2   1.09   1   109.5   3   120.0 
H10  3   1.09   4   109.5   2   120.0 
H11  3   1.09   4   109.5   2   -120.0 
H12  4   1.09   3   109.5   2   180.0 
H13  4   1.09   3   109.5   12   -120.0 
H14  4   1.09   3   109.5   12   120.0 

 4   3   2   1    F 
 The last line (which is preceded by a blank line) freezes D(4321) at the value entered at 

the end of line 4. By varying this line 4 entry from 180.0 to 0.0, we generate the potential-
energy curve of internal rotation. The following HF/6-31G* values are found: 

D(4321) 180° 150° 120° 90° 
EHF/hartrees –157.298409 –157.295624 –157.292592 –157.295152 

 
D(4321) 60° 30° 0° 
EHF/hartrees –157.296793 –157.292618 –157.288547 
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 With the addition of points at –30° and 210°, Excel gives the following smoothed graph: 

0
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3

4
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7
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D (4321)

(E – E 180)/(kcal/mol)

 
 The gauche conformer occurs at slightly more than 60° with a relative energy of a bit less 

than 1.0 kcal/mol, the anti is at 180°, and the maximum between them occurs at 120° with 
relative energy 3.6 kcal/mol. The gauche → anti barrier is estimated at 2.6 kcal/mol and 
the anti → gauche barrier is 3.6 kcal/mol. 

 (b)  Setting the last entry in row four of the Z-matrix in part (a) equal to 60.0, eliminating 
the last line, and using the keyword Opt, one finds the optimized gauche energy and 
CCCC dihedral angle to be –157.296895 hartrees and 65.4°. The HF/6-31G*  
gauche – anti energy difference is 0.001514 hartrees, or 0.95 kcal/mol. 

 
15.59 We expect the following two conformations, with the bonds and lone pairs staggered on 

the N's, where N1 is behind N2: 

 
 HF/6-31G* calculations give the following equilibrium properties: 

 μ/D RNN/Å RNH3/Å RNH4/Å ∠NNH3 ∠NNH4 ∠314 D(5213) D(6214)

I 0 1.451 1.004 1.004 104.8° 104.8° 103.7° 71.1° 71.1° 

II 2.24 1.414 0.999 1.003 107.8° 112.2° 108.1° 150.6° 28.5° 

 HF/6-31G* energies are –111.1649155 hartrees for I and –111.1693737 hartrees for II. 
With zero-point energy (ZPE) omitted, EI – EII = 0.004458 hartrees =̂  2.80 kcal/mol. 
Unscaled wavenumbers for I are 125, 1111, 1165, 1209, 1370, 1641, 1819, 1879, 3692, 
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3709, 3769, and 3794 cm–1 and for II are 473, 979, 1113, 1225, 1435, 1468, 1854, 1871, 
3707, 3718, 3820, and 3826 cm–1. With a scaling factor of 0.89, we find (using the 
procedure in the Prob. 15.57b solution) I,ZPE 32.16E =  kcal/mol and II,ZPE 32.43E =  

kcal/mol, so with zero-point energy included, EI – EII = 2.53 kcal/mol. Since all the 
vibrational frequencies are real, I and II are local minima.  

 
15.60 The doubly bonded carbons and the four atoms bonded to them will lie in the same plane. 

What is unclear is the conformation around the CC single bond. In the following drawing, 
H7 might eclipse C1 with H8 and H9 staggered with respect to H6 (as drawn) or H8 might 
eclipse H6 with H7 and H9 staggered with respect to C1: 

 
 HF/6-31G* optimization and frequency calculations starting from a structure with 

dihedral angle D(7321) = 0° and from a structure with D(7321) = 60°, show that the 0° 
structure is a minimum but the 60° structure is not. Calculated properties of the 0° 
conformer are: 0.31μ =  D, RC=C = 1.318 Å, RC-C = 1.503 Å, RCH5 = 1.075 Å, RCH4 = 
1.077 Å, RCH6 = 1.079 Å, RCH7 = 1.084 Å, RCH8 = 1.087 Å, ∠512 = 121.6°, ∠412 = 
121.8°, ∠123 =125.2°, ∠126 =118.9°, ∠237 = 111.4°, ∠238 = 110.9°, D(7321) = 0.0°; 
unscaled vibrational wavenumbers range from 212 to 3405 cm–1. 

 
15.61 There are two basis functions, namely, 1 as  and 1 bs , which we shall abbreviate as a and b. 

With two choices for each of the four functions in ( | )rs tu , there are 16 electron-repulsion 
integrals. Because of the symmetry of the molecule, we have ( | ) ( | )aa aa bb bb= . Use of 
(14.47) gives ( | ) ( | )aa bb bb aa= ,  ( | ) ( | ) ( | ) ( | )ab ab ba ab ab ba ba ba= = = , 
( | ) ( | ) ( | ) ( | )aa ab aa ba ab aa ba aa= = = ,  ( | ) ( | ) ( | ) ( | )ab bb bb ab ba bb bb ba= = = . 

Because of the molecular symmetry, interchange of a and b does not change the value of 
an integral. Hence ( | ) ( | )aa ab bb ba=  and all of the integrals in the boxed equations are 
equal to one another. Thus only the 4 integrals ( | )aa aa , ( | )aa bb , ( | )ab ab , ( | )aa ab  
need to be calculated. 

 
15.62 For H, s = 0 and ζ = 1. For He, s = 0.30 and ζ = (2 – 0.30)/1 = 1.70.  

For C, 2 2 3(0.35) 2(0.85) 2.75s ps s= = + =  and 2 2 (6 2.75)/2 1.625s pζ ζ= = − = ; 
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1 0.30ss =  and 1 (6 0.30)/1 5.70sζ = − = .  
For N, 2 2 4(0.35) 2(0.85) 3.1s ps s= = + =  and 2 2 (7 3.1)/2 1.95s pζ ζ= = − = ;  

1 0.30ss =  and 1 (7 0.30)/1 6.70sζ = − = . 
For O, 2 2 5(0.35) 2(0.85) 3.45s ps s= = + =  and 2 2 (8 3.45)/2 2.275s pζ ζ= = − = ;  

1 0.30ss =  and 1 (8 0.30)/1 7.70sζ = − = . 

For S with electron configuration 2 2 6 2 41 | 2 2 | 3 3s s p s p , 

3 3 5(0.35) 8(0.85) 2(1.0) 10.55s ps s= = + + =  and 3 3 (16 10.55)/3 2.1833s pζ ζ= = − = ; 

2 2 7(0.35) 2(0.85) 4.15s ps s= = + =  and 2 2 (16 4.15)/2 6.075s pζ ζ= = − = ;  

1 0.30ss =  and 1 (16 0.30)/1 15.70sζ = − = .  

 For Ar, with electron configuration 2 2 6 2 61 | 2 2 | 3 3s s p s p , 

3 3 7(0.35) 8(0.85) 2(1.0) 11.25s ps s= = + + =  and 3 3 (18 11.55)/3 2.15s pζ ζ= = − = ; 

2 2 7(0.35) 2(0.85) 4.15s ps s= = + =  and 2 2 (18 4.15)/2 6.925s pζ ζ= = − = ; 1 0.30ss =  
and 1 (18 0.30)/1 17.70sζ = − = .   
The Clementi–Raimondi (CR) values compared with the Slater-rule values are 
 

ζ values 1s 2s 2p 3s 3p 
He, Slater 1.70     
He, CR 1.6875     
C, Slater 5.70 1.625 1.625   
C, CR 5.6727 1.6083 1.5679   
N, Slater 6.70 1.95 1.95   
N, CR 6.6651 1.9237 1.9170   
O, Slater 7.70 2.275 2.275   
O, CR 7.6579 2.2458 2.2266   
S, Slater 15.70 6.075 6.075 2.1833 2.1833 
S, CR 15.5409 5.3144 5.9885 2.1223 1.8273 
Ar, Slater 17.70 6.925 6.925 2.15 2.15 
Ar, CR 17.5075 6.1152 7.0041 2.5856 2.2547 
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Chapter 16 

Electron-Correlation Methods 

 
 
16.1 The number of electrons is n = 6 + 3 + 14 + 9 = 32. For 6-31G**, each H atom has  

1 + 1 + 3 = 5 basis functions; the C atom and the F atom each have 1 + 2 +2(3) + 6 = 15 
basis functions (see the Prob. 15.5c and d solution for details); the Si atom has one basis 
function for the 1s AO, one for the 2s AO, one for each of the three 2p AOs, two for the 
3s AO, two for each of the three 2p AOs, and 6 d-type basis functions, for a total of 19 
basis functions. The molecule thus has 5(3) + 15 + 15 + 19 = 64 basis functions. The 
number of CSFs is given by (16.1) as 2864!65!/ 16!17!48!49! 1.862 10= × . 

 
16.2 Multiplication of the relation by γ  gives 21

2 (1 ) 1 0nβ γ β γ+ − − =  and the quadratic 

formula gives the positive root as 2 1/2{ 1 [(1 ) 2 ] }/n nγ β β β β= − + − + . We find the 
following values: 

n 20 20 50 50 100 100 200 200 
β 0.015 0.03 0.015 0.03 0.015 0.03 0.015 0.03 
γ 0.89 0.82 0.78 0.68 0.67 0.55 0.55 0.44 

 which indicates, for example, that for a 50-electron molecule, CISD gives 68 to 78% of 
the basis-set correlation energy. 

 
16.3 Substitution in Eq. (16.2) gives 

2
076.254549 76.243772 (1 )( 76.243772 76.040542)a− + = − − +  

and we get 0 0.9731a = . 

 
16.4 The H2 ground state is a 1

g
+Σ  state, and only configurations that give rise to a 1

g
+Σ  term 

can contribute to the ground-state CI wave function. We can use Table 11.3. 
 (a)  Does contribute.   (b)  By the rule on p. 378, this configuration gives u terms and 

cannot contribute.  (c)  Contributes.   (d)  This configuration gives u terms and does not 
contribute.   (e)  This gives only Π  terms and does not contribute.   (f)  Contributes.     
(g)  Contributes. 

 
16.5 Equation (8.54) gives 
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 1 5 2 1 5 2

5 1 6 2 5 1 2

( 2.862 ) 0.289 0.014 0.289 0
0.289 (3.22 ) 0.289 6.102 0

E c c c c
c E c c c

− − + = + =
+ − = + =

 

 The second equation (which has more significant figures) gives 2 4 10.0474c c= − , so 

1 1 4 2( 0.0474 )cψ = Φ − Φ . Then 

1 1 4 2 1 1 4 21 | ( 0.0474 ) | ( 0.0474 )c cψ ψ= 〈 〉 = 〈 Φ − Φ Φ − Φ 〉 =  
2 2

1 1 1 4 1 2 1 2 2 1 1[ | 2(0.0474 ) | 0.00225 | ] 1.00225c c〈Φ Φ 〉 − 〈Φ Φ 〉 + 〈Φ Φ 〉 =  and 

1 0.9989c = , 2 4 10.0474 0.0474c c= − = − . So 1 20.9989 0.0474ψ = Φ − Φ . 

 
16.6 (a)  From p. 533, core core

2 2 2 2 2 2
ˆ ˆ ˆ| | (1) | (1) | (1) (2) | (2) | (2)H H Hφ φ φ φ〈Φ Φ 〉 = 〈 〉 + 〈 〉 +  

1 core 1
2 2 12 2 2 2 2 2 2 12 2 2

ˆ(1) (2) | | (1) (2) 2 (1) | (1) | (1) (1) (2) | | (1) (2)r H rφ φ φ φ φ φ φ φ φ φ− −〈 〉 = 〈 〉 + 〈 〉 , 
since changing the label on the dummy integration variables from 1 to 2 does not change 
the value of a definite integral. From (16.5) with 2i j= =  and 2b = , we have 

core 2 core core 2 core
2 2 12 11 12 22 12 22 22

ˆ(1) | (1) | (1) 2H c H c c H c Hφ φ〈 〉 = + + , since the coefficients are 
real. From (16.6) with 2i j k l= = = =  and 2b = , we have 

1
2 2 12 2 2(1) (2) | | (1) (2)rφ φ φ φ−〈 〉 =  

4 3 2 2 2 2
12 12 22 12 22 12 12 22 12 22 12(11 |11) (11 |12) (11 | 21) (11 | 22) (12 |11)c c c c c c c c c c c+ + + + +

2 3
12 22 12 22 12 22 12 12 22(12 |12) (12 | 21) (12 | 22)c c c c c c c c c+ + +

3 2 2 2
22 12 22 12 22 22 12 22 12 22 12 22 22 22 12(21 |11) (21 |12) (21 | 21) (21 | 22) (22 |11)c c c c c c c c c c c c c c c+ + + + +
2 3 4
22 12 22 22 12 22(22 |12) (22 | 21) (22 | 22)c c c c c c+ + . From (14.47), we have  

(11 |12) (12 |11) (11 | 21) (21 |11), (12 |12) (12 | 21) (21 |12) (21 | 21),= = = = = =   
(11 | 22) (22 |11),=   (12 | 22) (22 |12) (21 | 22) (22 | 21)= = = .  So 

1 4 3
2 2 12 2 2 12 12 22

2 2 2 2 3 4
12 22 12 22 12 22 22

(1) (2) | | (1) (2) (11 |11) 4 (11 |12)

4 (12 |12) 2 (11 | 22) 4 (12 | 22) (22 | 22)

r c c c

c c c c c c c

φ φ φ φ−〈 〉 = + +

+ + +

Substitution of the boxed equations gives the desired result for 2 2
ˆ| |H〈Φ Φ 〉 . 

 (b)  core core 1
2 1 2 2 12 1 1

ˆ ˆ ˆ| | (1) (2) | (1) (2) | (1) (2)H H H rφ φ φ φ−〈Φ Φ 〉 = 〈 + + 〉 =  
core core

2 1 2 1 2 1 2 1
ˆ ˆ(1) | (1) | (1) (2) | (2) (2) | (2) | (2) (1) | (1)H Hφ φ φ φ φ φ φ φ〈 〉〈 〉 + 〈 〉〈 〉 +  

1
2 2 12 1 1(1) (2) | | (1) (2)rφ φ φ φ−〈 〉 . Since 2 1 2 1(2) | (2) 0 (1) | (1)φ φ φ φ〈 〉 = = 〈 〉 , we have 

1
2 1 2 2 12 1 1

ˆ| | (1) (2) | | (1) (2)H rφ φ φ φ−〈Φ Φ 〉 = 〈 〉 . Equation (16.6) with 2i j= = , 1k l= = , 
and 2b =  gives (just change the second subscript from 2 to 1 on the second and fourth 
coefficients in each term of the result in part (a) for 1

2 2 12 2 2(1) (2) | | (1) (2)rφ φ φ φ−〈 〉 ) 
1

2 2 12 1 1(1) (2) | | (1) (2)rφ φ φ φ−〈 〉 = 2 1
ˆ| |H〈Φ Φ 〉 =  

2 2 2
12 11 12 11 21 12 11 22 11 12 11 22 21(11 |11) (11 |12) (11 | 21) (11 | 22)c c c c c c c c c c c c c+ + + +

12 21 12 11 12 21 12 21 12 21 22 11 12 21 22 21(12 |11) (12 |12) (12 | 21) (12 | 22)c c c c c c c c c c c c c c c c+ + + +
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22 11 12 11 22 11 12 21 22 11 22 11 22 11 22 21(21 |11) (21 |12) (21 | 21) (21 | 22)c c c c c c c c c c c c c c c c+ + + +
2 2

22 21 12 11 22 21 12 21 22 21 22 11 22 21(22 |11) (22 |12) (22 | 21) (22 | 22)c c c c c c c c c c c c c c+ + + . 

Use of the integral identities in part (a) gives 1
2 2 12 1 1(1) (2) | | (1) (2)rφ φ φ φ−〈 〉 =  

2 2 2 2 2 2 2 2
12 11 12 11 21 12 11 22 12 21 11 12 21 22 11 22(11 |11) 2( )(11 |12) ( 2 )(12 |12)c c c c c c c c c c c c c c c c+ + + + +

2 2
11 12 21 22 12 22 21 22 21 112 (11 | 22) 2( )(12 | 22)c c c c c c c c c c+ + + 2 2

22 21(22 | 22)c c .  

 
16.7 From Table 13.1, the homonuclear diatomic MOs that arise from the 2s and 2p AOs are 

2 , 2 , 1 , 1 , 3 , 1 , 1 , 3g u ux uy g gx gy uσ σ π π σ π π σ . The inactive electrons are the 4 electrons in 
the 1 gσ  and 1 uσ  MOs.  

 (a)  C2 has 12 electrons and there are 12 – 4 = 8 active electrons. The 8 valence electrons 
in C2 occupy the 2 , 2 , 1 , 1g u ux uyσ σ π π  MOs, leaving the 3 , 1 , 1 , 3g gx gy uσ π π σ  MOs 

available to move active electrons into. We can move as many as 8 electrons into these 4 
vacant MOs, so the maximum number of electrons excited into vacant MOs is 8. 

 (b)  N2 has 14 electrons and there are 14 – 4 = 10 active electrons. The 10 valence 
electrons in N2 occupy the 2 , 2 , 1 , 1 , 3g u ux uy gσ σ π π σ  MOs, leaving the 1 , 1 , 3gx gy uπ π σ  

MOs available to move active electrons into. We can move as many as 6 electrons into 
these 3 vacant MOs, so the maximum number of electrons excited into vacant MOs is 6. 

 (c)  O2 has 16 electrons and there are 16 – 4 = 12 active electrons. The 12 valence 
electrons in O2 occupy the 2 , 2 , 1 , 1 , 3g u ux uy gσ σ π π σ  MOs and half fill each of the 1 gxπ  
and 1 gyπ  MOs, leaving the 3 uσ  MO and one vacancy in each of the 1 gxπ  and 1 gyπ  MOs 

available to move active electrons into. We can move as many as 4 electrons into these 
MOs, so the maximum number of electrons excited into vacant or partly vacant MOs is 4. 

 (d)  F2 has 18 electrons and there are 18 – 4 = 14 active electrons. The 14 valence 
electrons in F2 occupy the 2 , 2 , 1 , 1 , 3 , 1 , 1g u ux uy g gx gyσ σ π π σ π π  MOs, leaving the 3 uσ  

MO available to move active electrons into. We can move as many as 2 electrons into this 
MO, so the maximum number of electrons excited is 2. 

 

16.8 (a)  6!7! 6(5)4(7)6(5) 5(7)5 175
3!4!3!4! 6(24)

N = = = =  

 (b)  14!15! 14(13)12(11)10(9)8(15)14(13)12(11)10(9) 2 760 615
7!8!7!8! 5040(40320)

N = = =  

 
16.9 From (15.10), 2 11

2
ˆ ( / )i i i i i j i ijH Z r rα α α

−
>= − ∑ ∇ − ∑ ∑ + ∑ ∑ . From (16.9) and (16.8), 

0 21
2

ˆ ˆˆ ˆ( ) ( / ) [ ( ) ( )]i i i i i i j j jH f i Z r j i k iα α α= ∑ = − ∑ ∇ − ∑ ∑ + ∑ ∑ − . So 
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0 1 ˆˆ ˆ ˆ[ ( ) ( )]i j i ij i j j jH H r j i k i−
>− = ∑ ∑ − ∑ ∑ − , which is (16.11) with dummy variables 

relabeled. 
 
16.10 (a)  In the ground state, each of the n electrons is in a different spin-orbital (the Pauli 

exclusion principle). The occupied spin-orbitals are numbered 1 to n (which are the 
smallest and largest values that occur in the sums over i and j). In ab

ijΦ , two electrons are 

excited from the occupied spin-orbitals i and j to the unoccupied spin-orbitals a and b. The 
spin-orbitals i and j must be different, and having j > i in the sum ensures that this 
requirement is met. Also, having j > i ensures that we do not count the same double 
excitation twice. Thus, we include 12

abΦ  but do not include 21
abΦ , which is the same as 

12
abΦ . If b = a, then two electrons have been excited to the same spin-orbital, which makes 

the Slater determinant zero and violates the Pauli exclusion principle. The numbering of 
the vacant spin-orbitals starts at n + 1 and goes to infinity, and these are the smallest and 
largest values that occur in the sums over a and b. Having b > a, ensures that we do not 
put the two excited electrons into the same spin-orbital and ensures that we do not count 
the same excitation twice.  

 (b)  From (16.11), we have 
(0) 1

0 1 1 0
ˆˆ ˆ| | | [ ( ) ( )] |ab n n

s ij l m l lm m j j jH r j m k mψ −
> = =′〈 Φ 〉 = 〈Φ ∑ ∑ − ∑ ∑ − Φ 〉 =

1
0 1 1 0

ˆˆ| | | [ ( ) ( )] |ab n ab n
ij l m l lm m ij j j jr j m k m−

> = =〈Φ ∑ ∑ Φ 〉 − ∑ 〈Φ ∑ − Φ 〉 . The operators ˆ ( )jj m  and 
ˆ ( )jk m  are one-electron operators, and since 0Φ  and ab

ijΦ  differ by two spin-orbitals, the 

Condon–Slater rules in Table 11.3 give 1 0
ˆ| ( ) | 0ab n

ij j jj m=〈Φ ∑ Φ 〉 =  and 

1 0
ˆ| ( ) | 0ab n

ij j jk m=〈Φ ∑ Φ 〉 = . The Condon-Slater rules for the two-electron operator 1
lmr−  

give 
1 1 1

0 12 12| | (1) (2) | | (1) (2) (1) (2) | | (1) (2)ab
ij l m l lm b a j i b a i jr u u r u u u u r u u− − −

>〈Φ ∑ ∑ Φ 〉 = 〈 〉 − 〈 〉 . 

Therefore (0) 1 1
0 12 12

ˆ| | (2) (1) | | (2) (1) (2) (1) | | (2) (1)s b a j i b a i jH u u r u u u u r u uψ − −′〈 Φ 〉 = 〈 〉 − 〈 〉 , 

where the dummy variables 1 and 2 were interchanged. Substitution in (16.12), use of the 
summation ranges discussed in part (a), and use of the (0) (0)

0 sE E−  expression in the 
paragraph preceding Eq. (16.13) gives Eq. (16.13). 

 
16.11 True. As noted on p. 542, MP calculations are not variational. 
 
16.12 (a)  A Z-matrix is given in Prob. 15.41a. The MP2(FC)/6-31G* geometry is found to be a 

bond length of 1.180 Å and a bond angle of 180°. The HF/6-31G* results are 1.143 Å and 
180°. The experimental values are 1.162 Å and 180°. The calculated and experimental 
dipole moments are zero. The calculated equilibrium unscaled and scaled vibrational 
wavenumbers and the experimental fundamental vibrational wavenumbers in cm–1 are 
(see the Prob. 15.45a solution for sources of data) 
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HF/6-31G* 746 746 1518 2585 
MP2(FC)/6-31G* 636 636 1333 2448 
scaled HF/6-31G* 664 664 1351 2301 
scaled MP2(FC)/6-31G* 604 604 1266 2326 
experimental 667 667 1333 2349 

 The MP2(FC)/6-31G* energy is –188.1077474 hartrees. (In Gaussian, this energy is 
found after EUMP2 = in the last cycle of calculation preceding the listing of the optimized 
geometry and after MP2 = in the calculation summary at the end of the output.) The 
MP2(FC)/6-31G* energies of C and O are found to be –37.7329745 and –74.8800367 
hartrees, respectively. The calculated MP2(FC)/6-31G* eD  is  
(–37.7329745) + 2(–74.8800367) – (–188.1077474) = 0.614700 hartrees = 16.727 eV. To 
calculate 0D , we estimate the zero-point vibrational energy as 

34 10 11 1 1
2 2 2 (6.626 10 J s)(2.998 10 cm/s)(604+604+1266+2326)cmi i i ih hcν ν − −∑ = ∑ = × × =�

4.768 × 10–20 J = 0.2976 eV. So the MP2(FC)/6-31G* dissociation energy is 
0 16.727 eV 0.298 eVD = −  = 16.43 eV, not far from the 16.56 eV experimental value. 

 (b)  The MP2(FC)/6-31G* bond length and bond angle are found to be 0.969 Å and 
103.9°. The HF/6-31G* results are 0.947 Å and 105.5°. The experimental values are 0.958 
Å and 104.5°. Dipole moments are 2.24 D for MP2(FC)/6-31G*, 2.20 D for HF/6-31G*, 
and 1.85 D experimental. The calculated equilibrium unscaled and scaled vibrational 
wavenumbers and the experimental fundamental vibrational wavenumbers in cm–1 are  

HF/6-31G* 1827 4070 4188
MP2(FC)/6-31G* 1736 3775 3917
scaled HF/6-31G* 1626 3622 3727
scaled MP2(FC)/6-31G* 1649 3586 3721
experimental 1595 3657 3756

 The MP2(FC)/6-31G* energy is –76.1968475 hartrees. The MP2(FC)/6-31G* energies of 
H and O are found to be –0.498233 and –74.8800367 hartrees, respectively. The 
calculated MP2(FC)/6-31G* eD  is (–74.8800367) + 2(–0.498233) – (–76.1968475) = 
0.320345 hartrees = 8.717 eV. To get 0D , we estimate the zero-point vibrational energy 
as 

34 10 11 1 1
2 2 2 (6.626 10 J s)(2.998 10 cm/s)(1649+3586+3721)cmi i i ih hcν ν − −∑ = ∑ = × × =�  
8.895 × 10–20 J = 0.5552 eV. So 0 8.717 eV 0.555 eVD = −  = 8.16 eV, compared with the 
9.51 eV experimental value (p. 499 of the text). 
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16.13 In the Thermochemistry section of the Gaussian output (which occurs after the vibrational 

frequency listing), the quantity listed as E (thermal) is the sum of the molar zero-point 
vibrational energy and the molar translational, rotational, and vibrational energy 
differences between 298 K and 0 K. Therefore, subtraction of the molar zero-point 
vibrational energy (which is listed in the Gaussian thermochemistry section) from  

E (thermal) gives 298 0 .U U° °−  (Click on Raw Output to see the Gaussian  output in 
WebMO.)  

 (a)  0.934 Å, 2.01 D, –100.182171 hartrees, 4041 cm–1, (7.26 – 5.78) kcal/mol = 1.48 
kcal/mol, 41.54 cal/mol-K.  

 (b)  0.935 Å, 2.01 D, –100.188436 hartrees, 4009 cm–1, (7.21 – 5.73) kcal/mol = 1.48 
kcal/mol, 41.54 cal/mol-K. 

 HF/6-31G* results are 0.911 Å, 1.97 D, –100.002907 hartrees, 4357 cm–1, (7.71 – 6.23) 
kcal/mol = 1.48 kcal/mol, 41.44 cal/mol-K. 

 Experimental results are 0.917 Å (for )eR , 1.83 D, 4138 cm–1 (for the harmonic 
frequency), 1.46 kcal/mol, 41.51 cal/mol-K (at 1 atm). The CCCBDB or the NBS Tables 
of Thermodynamic Properties¸ D. D. Wagman et al., 1982, give for HF: 

298 0 298 0(298.15 K) 8.60 kJ/mol,H H U R U° °° °− = + − =  so 298 0U U °° − =  6.12 kJ/mol = 1.46 
kcal/mol.  

  
16.14 (a)  3CH4 + C3H6  →  3C2H6.  and   CH4 + CH3CHO  →  C2H6 + H2CO 
 (b)  To save time, rather than deal with the individual vibration frequencies, it is simplest 

to look at the zero-point energy (ZPE) reported by, for example, WebMO. HF/6-31G* 
results in hartrees for the electronic energies, ZPEs, and scaled ZPEs (using the scale 
factor 0.895) are 

  
CH4 CH3CHO C2H6 H2CO 

–40.195172 –152.915966 –79.228755 –113.866331 
0.047777 0.059933 0.079762 0.029203 
0.042760 0.053640 0.071387 0.026137 

 
 The computed energy change in hartrees for the 0 K reaction (including ZPE) is 

–113.866331 – 79.228755 152.915966 40.195172 0.026137 0.071387 0.053640 0.042760+ + + + − −
0.017176 hartrees,=  which is 10.8 kcal/mol. 

 (c) MP2(FC)/6-31G* results in hartrees for the electronic energies, ZPEs, and scaled ZPEs 
(using the scale factor 0.943 given by the CCCBDB) are 

 CH4 CH3CHO C2H6 H2CO 
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–40.332552 –153.346919 –79.494741 –114.167748 
0.046330 0.056955 0.077164 0.027283 
0.043689 0.053709 0.072766 0.025728 

  The computed energy change is 0.018078 hartrees, which is 11.3 kcal/mol. 
 
16.15 Use of (16.15) and equations in the paragraph after (16.20) gives 

ˆ 21
0 0 0 0 0 0 02

ˆ ˆ| | |Te T Tψ〈 Φ 〉 = 〈 Φ Φ 〉 = 〈Φ + Φ + Φ + Φ 〉" . As discussed in the paragraph 
after (16.20), all the excited Slater determinants are orthogonal to 0Φ , so 

0 0 0| | 1.ψ〈 Φ 〉 = 〈Φ Φ 〉 =  [This equation is similar to Eq. (9.15).] We have 
ˆ ˆ 2 21 1

0 0 0 0 0 0 0 02 2
ˆ ˆ ˆ ˆ| | |T Te e T T T Tψ ψ〈 〉 = 〈 Φ Φ 〉 = 〈Φ + Φ + Φ + Φ + Φ + Φ + 〉" " . We have 

0 0| 1〈Φ Φ 〉 = , but there is no reason for an integral like 0 0
ˆ ˆ|T T〈 Φ Φ 〉  to be zero, so 

| 1ψ ψ〈 〉 ≠ . 

 
16.16 (a)  If the molecule has only two electrons, then triple excitations are not possible and the 

CCSD and CCSD(T) energies are equal. An example is H2. 
 (b)  If the molecule has only two valence electrons but more than two electrons, then the 

frozen-core CCSD and CCSD(T) energies are equal, but the full CCSD and CCSD(T) 
energies differ. An example is Li2.  

 (c)  If the molecule has only two electrons, then 2n =  in (16.15) and (16.17) and the CBS 
CCSD energy is the exact nonrelativistic energy. H2 is an example. 

 

16.17 (a)  We have 2̂ 2 31 1
0 2 2 2 02 6

ˆ ˆ ˆ ˆ ˆ| | | | (1 )Tab ab
ij ijH e H T T T〈Φ Φ 〉 = 〈Φ + + + + Φ 〉" , where (16.16) 

with T̂  replaced by 2̂T  was used. The determinant ab
ijΦ  is doubly excited. The quantity 

3
2 0T̂ Φ  contains only sextuply excited determinants. Hence 31

2 06
ˆ ˆ| |ab

ij H T〈Φ Φ 〉  is zero since 

the matrix elements of Ĥ  between Slater determinants differing by four (or more) spin 
orbitals are zero (Table 11.3). The integrals involving powers of T̂  higher than 3 involve 
Slater determinants differing by more than four spin-orbitals and so are zero. Thus 

2̂ 21
0 2 2 02

ˆ ˆ ˆ ˆ| | | | (1 )Tab ab
ij ijH e H T T〈Φ Φ 〉 = 〈Φ + + Φ 〉 . 

 (b)  2̂ 2 31 1
0 2 2 2 02 6

ˆ ˆ ˆ| | (1 )Tab ab
ij ije T T T〈Φ Φ 〉 = 〈Φ + + + + Φ 〉" . The determinant ab

ijΦ  is doubly 

excited. 0Φ  is unexcited. 2 0T̂ Φ  contains only doubly excited determinants. 2
2 0T̂ Φ  

contains only quadruply excited determinants; etc. Because of the orthogonality of Slater 
determinants having different degrees of excitation (this follows from Table 11.3 if i if∑  

is replaced by 1), we get 2̂
0 2 0

ˆ| |Tab ab
ij ije T〈Φ Φ 〉 = 〈Φ Φ 〉 . 
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16.18 Multiplication of (16.31) by 3n  gives 3 corr 3 corr
nn E n E A∞= + . Replacement of n by 1n −  in 

this equation gives 3 corr 3 corr
1( 1) ( 1)nn E n E A− ∞− = − + . Subtracting the second equation from 

the first, we have 3 corr 3 corr 3 3 corr
1( 1) [ ( 1) ] ,n nn E n E n n E− ∞− − = − −  so 

3 corr 3 corr 3 3 corr
1[ ( 1) ] [ ( 1) ] .n nn E n E n n E− ∞− − − − =  

 
16.19 (a)  

14 41 1
2 2

  and    so
( ) ( )n n

B BE E E E
n n∞ − ∞= + = +
+ −

4 41 1
1 2 2( ) ( )n nE E B n n− −
− ⎡ ⎤− = + − −⎣ ⎦  

and 1
4 41 1

2 2

.
( ) ( )

n nE EB
n n

−
− −
−

=
+ − −

 So 

41 1
24 41 1

2 2

( )
( ) ( )

n n
n

E EE E n
n n

−−
∞ − −

−
= − + =

+ − −
1

41 1
2 21 [( )/( )]

n n
n

E EE
n n

−−
−

− + −
 

 (b)  For 5,n =  we get 4
76.370298 76.36358876.370298 76.375747

1 (5.5/4.5)
E∞

− +
= − − = −

−
 

 For 6,n =  4
76.372559 76.37029876.372559 76.374937

1 (6.5/5.5)
E∞

− +
= − − = −

−
 

 For 7,n =  4
76.373672 76.37255976.373672 76.375113

1 (7.5/6.5)
E∞

− +
= − − = −

−
 

 
16.20 (a)  The results are 0.934 Å, 4024 cm–1, 1.93 D, –100.186601 hartrees,  (7.23 – 5.75) 

kcal/mol = 1.48 kcal/mol, 41.54 cal/mol-K (where 298 0U U° °−   is found as in Prob. 16.13). 

 (b)   0.935 Å, 4003 cm–1, 2.02 D, –100.188327 hartrees,  (7.20 – 5.72) kcal/mol =  
1.48 kcal/mol, 41.54 cal/mol-K. 

 (c)  See Prob. 16.13. 
 
16.21 (a)  The indefinite integral of a function is another function, whereas a functional converts 

a function to a number, so the indefinite integral is not a functional. 
 (b)  The definite integral converts a function to a number and is a functional. 
 (c)  This is a functional.   (d)  This is not a functional.   (e)  This is a functional. 
 
16.22 If we assume that the ground-state wave functions 0,aψ  and 0,bψ  of ˆ

aH  and ˆ
bH  are the 

same, then 0, 0, 0,
ˆ

a a a aH Eψ ψ=  and 0, 0, 0,
ˆ

b a b aH Eψ ψ= . Subtraction gives 

0, 0, 0, 0,
ˆ ˆ( ) ( )a b a a b aH H E Eψ ψ− = − . But ˆ

aH  and ˆ
bH  differ only in ( )iv r , so 

1
ˆ ˆ [ ( ) ( )]n

a b i a i b iH H =− = ∑ −v r v r  and we have 1 0, 0, 0, 0,[ ( ) ( )] ( )n
i a i b i a a b aE Eψ ψ=∑ − = −v r v r  
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and 1 0, 0,[ ( ) ( )]n
i a i b i a bE E=∑ − = −v r v r . By hypothesis, ( )a iv r  and ( )b iv r  differ by more 

than a constant. Since [ ( ) ( )]a i b i−v r v r  does not equal a constant, and since 
[ ( ) ( )]a j b j−v r v r  for j i≠  depends on different variables than does [ ( ) ( )]a i b i−v r v r , the 
sum on the left side of the boxed equation does not equal a constant. But 0, 0,a bE E−  does 

equal a constant. Hence the boxed equation cannot be true. We were led to this erroneous 
equation by the assumption that the ground-state wave functions 0,aψ  and 0,bψ  of ˆ

aH  and 
ˆ

bH  are the same. Hence this assumption must be false. 

 
16.23 (a)  We use Eq. (16.51). Comparison of (16.61) with the equation preceding (16.51) gives 

1/3 4/3(9/8)(3/ )g π αρ= − . Here, g depends on ρ but not on , , or x y zρ ρ ρ , so 
X 1/3 1/3/ / (3/2)(3/ )xE gαδ δρ δ δρ π αρ= = − . 

 (b)  Here 1 1 2 2 2 1 2 2 2[( / ) ( / ) ( / ) ] ( )x y zg x y zρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ− − −= = ∂ ∂ + ∂ ∂ + ∂ ∂ = + +∇ ⋅∇  

where Eqs. (5.31) and (5.23) were used. Equation (16.51) gives 
/Fδ δρ = 2 2 2 2 1 1 1( ) ( / )(2 ) ( / )(2 ) ( / )(2 )x y z x y zx y zρ ρ ρ ρ ρ ρ ρ ρ ρ ρ− − − −− + + − ∂ ∂ − ∂ ∂ − ∂ ∂ . We 

have 1 2 1 2 2 1( / )(2 ) 2 ( / ) 2 ( / ) 2 2x x x x xxx x xρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ− − − − −∂ ∂ = − ∂ ∂ + ∂ ∂ = − + , where 
2 2/xx xρ ρ≡ ∂ ∂ . So /Fδ δρ = 2 2 2 2 1( ) 2 ( )x y z xx yy zzρ ρ ρ ρ ρ ρ ρ ρ− −+ + − + + =  

2 2 2 2 1 2( ) 2x y zρ ρ ρ ρ ρ ρ− −+ + − ∇ , where (3.46) was used. 

 

16.24 The operator KSĥ  in (16.49) is given by the terms in brackets in Eq. (16.47). The first two 
terms in these brackets match the first two terms in the right side of Eq. (16.8) (except 
that different labels are used for the electron). The third term in brackets in (16.47) is 
given by (16.45) to be 1 KS 2 1

12 2 2 1 2 12 2( ) | ( ) |n
i ir d r dρ θ− −
== ∑∫ ∫r r r r  (Eq. 1). From (16.8) and 

(14.28), 2 1
1 1 12 2

ˆ ( ) | (2) |n n
j j j jj m r dφ υ−
= =∑ = ∑ ∫ (Eq. 2). [The summation over the spin 

coordinates of electron j that is mentioned after (16.8) gives 1 for each ˆ
jj  term.] The 

right sides of Eq. 1 and 2 are the same, except that different letters are used for the 
dummy summation variables and the Kohn–Sham orbitals are used in Eq. 1 instead of the 
Hartree–Fock orbitals used in Eq. 2. Thus the only difference between the Hartree–Fock 
operator (16.8) and the Kohn–Sham Hamiltonian in (16.47) is that 1

ˆ ( )n
j jk m=−∑  is 

replaced by ( )xc mυ . 

 
16.25 Use of (16.54) in (16.52) gives LDA[ ] ( )xc x cE dρ ρε ρε= +∫ r . From (16.50) and (16.51), 

LDA LDA / ( / )( ) ( / ) ( / )xc xc x c x x c cEυ δ δρ ρ ρε ρε ε ρ ε ρ ε ρ ε ρ≡ = ∂ ∂ + = + ∂ ∂ + + ∂ ∂ . Let 
LDA ( / )x x xυ ε ρ ε ρ≡ + ∂ ∂  and LDA ( / )c c cυ ε ρ ε ρ≡ + ∂ ∂ . So LDA LDA LDA.xc x cυ υ υ= +  Then 
LDA 1/3 1/3 1/3 2/3( / ) (3/4)(3/ ) ( 3/4)(3/ ) (1/3)x x xυ ε ρ ε ρ π ρ ρ π ρ−≡ + ∂ ∂ = − + − = 1/3 1/3(3/ )π ρ− , 
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where (16.55) was used. Also LDA VWN VWN VWN( / ) ( / )c c c c c cυ ε ρ ε ρ ε ρ ε ρ υ≡ + ∂ ∂ = + ∂ ∂ ≡ , 

where (16.56) was used. Finally, LDA 1/3 4/30.75(3/ )x xE d dρε π ρ≡ = − ∫∫ r r , where (16.55) 
was used. 

 
16.26 The Hartree–Fock exchange energy ,HFxE  is given by the ijK  terms in (14.22) and is 

/2 /2
,HF 1 1

n n
x iji jE K= == −∑ ∑  (Eq. 1), where each sum goes over the n/2 different occupied 

spatial orbitals of the n-electron molecule, and the exchange integrals are defined by 
(14.24). If, instead of summing over the n/2 occupied MOs, we sum over the n electrons, 
then each sum will have n (instead of n/2) terms, with each MO occurring twice in each 
sum, since each MO is occupied by two electrons. We thus want to consider the relation 
between the double sum 1 1

n n
i j ijK= =∑ ∑  (Eq. 2) and the double sum in Eq. 1.  

       In the double sum in Eq. 1, we have two types of terms: those that involve only one 
MO and those that involve two different MOs. Consider first the terms that involve only 
one MO. Let r be a particular MO in the sums in Eq. 1. In each sum in Eq. 2, the MO r 
will occur twice, once for each electron that occupies MO r. Let ra and rb denote these 
two occurrences of MO r. In place of the term rrK  in Eq. 1, we will get the four terms 

, , , ,, , ,ra ra ra rb rb ra rb rbK K K K . Since ra and rb are the same MOs as each other, these four 
terms are each equal to rrK  and their sum equals 4 rrK . 
       Now consider terms that involve the two different MOs r and p. In the Eq. 1 double 
sum, these terms give the contribution rp prK K+ . In the Eq. 2 double sum, these terms 
give the contribution , , , , , , , ,ra pa ra pb rb pa rb pb pa ra pa rb pb ra pb rbK K K K K K K K+ + + + + + + . 

Since ra and rb are the same MOs and pa and pb are the same MOs, we have 
, , , , , , , , 4( )ra pa ra pb rb pa rb pb pa ra pa rb pb ra pb rb rp prK K K K K K K K K K+ + + + + + + = +  [which 

could be simplified using (11.84)].  
       Thus we see that the double sum in Eq. 2 is four times the double sum in Eq. 1, which 
justifies the factor 1/4 in Eq. (16.60). Changing the upper limits to n in Eq. 1 and 
multiplying by 1/4 to compensate, and replacing the Hartree–Fock MOs by the Kohn–
Sham MOs in the exchange integrals (14.24), we get Eq. (16.60). 

 
16.27 The electron density is the sum of the densities due to the spin-α electrons and the spin-β 

electrons: .α βρ ρ ρ= +  If ,α βρ ρ=  then 2 αρ ρ=  and 
4/3 4/3 4/3 4/3 1/3 4/31

2( ) ( ) 2( ) 2( ) 2α β αρ ρ ρ ρ ρ−+ = = =  and the right side of (16.65) 

becomes 1/3 1/3 4/3 1/3 4/3(3/4)(6/ ) (1/2) (3/4)(3/ )d dπ ρ π ρ− = −∫ ∫r r , which is (16.58). 

 
16.28 (a)  2

1 all 1 2 1 1 1 2| ( )| | ( , , , , , , )| ( )
sm n s sn nn n m m d d dψ δ ψ ψ δ〈 − 〉 = ∑ −∫ ∫ ∫r r r r r r r r r r" … … " , 

where the vector notation for spatial variables (Sec. 5.2) is used. In the integral over 1r  
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(which is really a triple integral), the Dirac delta function 1( )δ −r r  has the same effect as 

1( )δ −r r  (this will be proved below), so use of (7.91) to do the 1r  integration gives 
2

1 all 2 1 2| ( )| | ( , , , , , , )|
sm n s sn nn n m m d dψ δ ψ ψ〈 − 〉 = ∑ ∫ ∫r r r r r r r" … … "  (Eq. 1). Equation 

(14.5) then gives 1| ( )| ( )n ψ δ ψ ρ〈 − 〉 =r r r  (Eq. 2). To verify the statement made about the 

delta function, we start with Eq. (7.91): ( ) ( ) ( )f a f x x a dxδ∞
−∞= −∫ . Let w x≡ − . Then 

dw dx= −  and ( ) ( ) ( ) ( ) ( )f a f w w a dw f w a w dwδ δ∞ ∞−
∞ −∞= − − − − = − − −∫ ∫ . Let b a≡ − . 

Then ( ) ( ) ( )f b f w b w dwδ∞
−∞− = − −∫  (Eq. 3). Let ( ) ( )g w f w≡ − . [For example, if 

2( ) 2f w w w= + , then 2( ) 2f w w w− = −  and 2( ) 2g w w w= − .] Then Eq. 3 becomes 
( ) ( ) ( ) ( ) ( )g b g w b w dw g x b x dxδ δ∞ ∞

−∞ −∞= − = −∫ ∫ , where the dummy integration variable 
was changed to x. Comparison with (7.91) shows that ( )b xδ −  in the integrand has the 
same effect as ( )x bδ − . 
        Also, 1 1| ( )| | ( )|n n

i i i iψ δ ψ ψ δ ψ= =〈 ∑ − 〉 = ∑ 〈 − 〉r r r r  (Eq. 4). When 1r  is changed to ir  
in Eq. 1, we get an integrand on the right side of the equation in which ir  (instead of 1r ) is 
replaced by r . As discussed after Eq. (14.4), the location of the r  in ψ does not affect the 
value of the integral, so 1| ( )| | ( ) |iψ δ ψ ψ δ ψ〈 − 〉 = 〈 − 〉r r r r  and Eq. 4 becomes 

1 1 1 1| ( )| | ( )| | ( )| ( )n n
i i i nψ δ ψ ψ δ ψ ψ δ ψ ρ= =〈 ∑ − 〉 = ∑ 〈 − 〉 = 〈 − 〉 =r r r r r r r  (Eq. 5), where Eq. 

2 was used.  

 (b)  Starting with Eq. 5 and using Eq. (11.78) with D ψ=  and ˆ ( )i if δ= −r r , we get 
2

1 1 1 1( ) | ( )| (1)| ( ) | (1) | ( )|n n n
i i i i i i iρ ψ δ ψ θ δ θ θ= = == 〈 ∑ − 〉 = ∑ 〈 − 〉 = ∑r r r r r r . 

 
16.29 (a)  The following results are found 

 RCO/Å 1/cmiν
−�  2CO h/E E  C h/E E  O h/E E  

SVWN/6-31G* 1.171 624, 624, 1359, 2459 –187.616774 –37.566160 –74.643343

BLYP/6-31G* 1.183 601, 601, 1304, 2346 –188.563058 –37.832017 –75.046947

B3LYP/6-31G* 1.169 640, 640, 1372, 2436 –188.580940 –37.846279 –75.060611

 where hE  = 1 hartree and the equilibrium bond angle is 180° in all cases. (A spin 
multiplicity of 3 must be entered for C and for O in the input.) The calculated eD  values 
are found from 

2C O CO2E E E+ − . The 0D  values are found by adding the zero-point 

energy 1
ZPE 2 i iE h ν= ∑  to eD , as in Prob. 16.12a. Using the conversion factor in Table 

A.2, we find the atomization energies atEΔ  from the 0D  values. We find  

  h/eD E  /eVeD EZPE/eV 0 /eVD atEΔ /(kcal/mol) 

SVWN/6-31G* 0.763928 20.79 0.314 20.47 472 

BLYP/6-31G* 0.637147 17.34 0.301 17.04 393 
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B3LYP/6-31G* 0.613437 16.69 0.315 16.38 378 
 The experimental atEΔ  found from thermodynamic data is 382 kcal/mol.  

 (b)  The results found for H2O are 

 ROH/Å ∠HOH 1/cmiν
−�  2H O h/E E  H h/E E  

SVWN/6-31G* 0.975 103.7° 1649, 3673, 3805 –76.040301 –0.493937 

BLYP/6-31G* 0.980 102.7° 1682, 3567, 3689 –76.388543 –0.495446 

B3LYP/6-31G* 0.969 103.6° 1713, 3727, 3849 –76.408953 –0.500273 

 (A spin multiplicity of 2 must be entered for H when doing the calculations.) The 
calculated eD  values are found from 

2O H H O2E E E+ − . We find  

 h/eD E  /eVeD EZPE/eV 0 /eVD atEΔ /(kcal/mol) 

SVWN/6-31G* 0.409085 11.132 0.566 10.566 243.7 

BLYP/6-31G* 0.350704 9.543 0.554 8.989 207.3 

B3LYP/6-31G* 0.347796 9.464 0.576 8.888 205.0 

 The experimental atEΔ  found from thermodynamic data is 219.4 kcal/mol. 

 

16.30 Figures and Z-matrixes for the two conformers are given in Prob. 15.57. The  
B3LYP/6-31G* geometry-optimized structures are planar with the following properties: 

 μ ∠HC=O ∠OCO ∠COH RCH RC=O RCO ROH 

I 1.43 D 125.5° 125.2° 106.6° 1.100 Å 1.205 Å 1.347 Å 0.977 Å
II 3.87 D 123.8° 122.7° 109.5° 1.108 Å 1.198 Å 1.353 Å 0.972 Å

 The energies are –189.755456 hartrees for I and –189.747166 for II. The B3LYP/6-31G* 
electronic energy difference is EII – EI = 0.008290 hartrees, corresponding to EII – EI =  
5.20 kcal/mol. The vibrational wavenumbers are 626, 707, 1055, 1147, 1326, 1423, 1855, 
3086, and 3666 cm–1 for I and 533, 658, 1041, 1132, 1299, 1450, 1901, 2978, and 3722 
cm–1 for II. The CCCBDB gives the scale factor for B3LYP/6-31G* frequencies as 0.96. 
For conformer I, we find 11

,scaled2 (7148 cm )i ihc hcν −∑ = =�  
1 34 10(7148 cm )(6.6261 10  J s)(2.9979 10  cm/s) − −× × = 191.420 10 J−× . Multiplication by 

the Avogadro constant gives a zero-point energy of 85.51 kJ/mol = 20.44 kcal/mol. For 
conformer II, we find a zero-point energy of 20.19 kcal/mol. With inclusion of zero-point 
energies, we have EII – EI = 4.95 kcal/mol. 

 
16.31 B3LYP/6-31G* results in hartrees for the electronic energies, ZPEs, and scaled ZPEs 

(using the scale factor 0.960 given by the CCCBDB) are 
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CH4 CH3CHO C2H6 H2CO 
–40.518389 –153.830119 –79.830417 –114.500472 
0.045224 0.055825 0.075234 0.026837 
0.043415 0.053592 0.072225 0.025764 

 The computed energy change in hartrees for the 0 K reaction (including ZPE) is 0.018601 
hartrees, which is 11.7 kcal/mol. 

 
16.32 (a)  With the definition /itτ ≡ = , we write (7.100) as ( )nE

n n nc e qτψ−Ψ = ∑ , where the 
'nc s  are constants. In the computer simulation, τ is considered as a real variable. The 

ratio of the coefficient of an excited-state (es) wave function with energy esE  to the 

coefficient of the ground-state (gs) wave function in the sum is ( )( / ) es gsE E
es gsc c e τ− − . Since 

es gsE E> , this ratio goes to zero as τ → ∞ , so the contributions of terms involving 

excited states become negligible as τ → ∞ . From Prob. 4.52, the addition of refV−  to Ĥ  
changes each energy from nE  to refnE V− . 

 (b)  Equation (7.97) with refV  subtracted from Ĥ  is ref
ˆ( / ) / ( )i t T V V− ∂Ψ ∂ = + − Ψ= . We 

have ( / ) / ( / )( / )( / ) ( / )( / )( / ) ( / )i t i t i iτ τ τ τ− ∂Ψ ∂ = − ∂Ψ ∂ ∂ ∂ = − ∂Ψ ∂ = − ∂Ψ ∂= = = = , from 
which the equation given in the problem follows. Atomic units are used, so =  and em  are 
missing from the kinetic-energy operator.  

 
16.33 (a)  The Pauli exclusion principle allows us to put two electrons (with opposite spins) into 

the 1n =  particle-in-a-box orbital and one electron into the 2n =  orbital. Let the notation 
1(1) and 2(1) denote electron 1 in the 1n =  orbital and electron 1 in the 2n =  orbital, 
respectively. From (10.48) (which is the expansion of a Slater determinant), we have 

1/2

1/2

1/2

6 [1(1)2(2)1(3) 1(1)1(2)2(3)] (1) (2) (3)

6 [1(1)1(2)2(3) 2(1)1(2)1(3)] (1) (2) (3)

6 [2(1)1(2)1(3) 1(1)2(2)1(3)] (1) (2) (3)
(1) (2) (3) (1) (2) (3) (1) (2) (3)

gs

a b c

ψ β α α

α β α

α α β
β α α α β α α α β

−

−

−

= − +

− +

−
≡ + +

. 

 (b)  Multiplication of  
ˆ ˆ ˆ ˆ( ) (1) (2) (3) ( ) (1) (2) (3) ( ) (1) (2) (3)gsH Ha Hb Hcψ β α α α β α α α β= + + =   

[ (1) (2) (3) (1) (2) (3) (1) (2) (3)]gsE a b cβ α α α β α α α β+ +  by (1) (2) (3)β α α  followed by 

summation over all the spin variables gives ˆ
gsHa E a= , where orthogonality of different 

spin functions was used. The nodes of a are where 1(1)2(2)1(3) 1(1)1(2)2(3) 0a = − = . 
Since the function 1/2

11(1) (2/ ) sin( / )l x lπ=  is never zero for 10 x l< < , we can divide by 
1(1), and the nodes of a are where 2(2)1(3) 1(2)2(3) 0− = . This equation is 

2 3 2 3sin(2 / )sin( / ) sin( / )sin(2 / )x l x l x l x lπ π π π= . Use of sin 2 2sin cosz z z=  gives 
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2 2 3 2 3 32sin( / ) cos( / )sin( / ) 2sin( / )sin( / ) cos( / )x l x l x l x l x l x lπ π π π π π=  and 

2 3cos( / ) cos( / )x l x lπ π= . The cosine functions in this equation decrease from 1 to –1 as 

2x  and 3x  go from 0 to l. Only when 2 3x x=  is this equation satisfied, and this defines 
the location of the nodal surface. 

 (c)  The heavy dashed line in the figure shows the nodal plane where 2 3x x= . With use of 
the boxed identity for sin 2z, the equation 1(1)[2(2)1(3) 1(2)2(3)]a = −  becomes 

3/2
1 2 2 3 2 3 3(2/ ) sin( / )2[sin( / ) cos( / )sin( / ) sin( / )sin( / ) cos( / )]a l x l x l x l x l x l x l x lπ π π π π π π= −

3/2
1 2 3 2 3(2/ ) sin( / )2sin( / )sin( / )[cos( / ) cos( / )]a l x l x l x l x l x lπ π π π π= − . The sine functions 

in a are never negative in the range 0 to l, and the cosine functions continually decrease as 
2x  and 3x  increase from 0 to l. Hence a is positive when 2 3x x>  (above the nodal plane) 

and a is negative below the nodal plane, where 2 3x x< . If 2x  and 3x  in a are 
interchanged, a is multiplied by –1. 

  
 
16.34 (a)  The isotropic shielding constants in ppm are: 159.91 for the methyl carbon, 4.26 for 

the carbonyl carbon, 22.17 for the carbonyl hydrogen, and 30.41, 30.18, 30.18 for the 
methyl hydrogens. Because of the nearly free rotation about the CC single bond, we 
average the methyl shielding constants to get 30.33 ppm. (If you are using WebMO, first 
run a geometry optimization; then click on New Job Using This Geometry; then click the 
right arrow, choose Gaussian, and choose NMR as the Calculation.) 

 (b)  Subtraction [see (16.73)] gives the shifts in ppm as 29.87 for the methyl C, 185.52 for 
the carbonyl C, 10.01 for the carbonyl hydrogen, and 1.85 for the methyl hydrogens. 

 (c)  Clicking on Scaling Factors, we get Table 1a, which gives for gas-phase  
B3LYP/6-31G* calculations the following values. For 1H , 0.9957, 32.288m b= − = ; for 
13C,  0.9269, 187.474.m b= − =  Therefore the equation ( )/i i b mδ σ= −  in Sec. 16.9 gives 

as the predicted 13C  shifts: (159.91 187.47)/0.9269 29.73− − =  ppm for the methyl C and 
(4.26 187.47)/0.9269 197.66− − =  ppm for the carbonyl carbon. The predicted proton 

shifts are (22.17 32.29)/0.9957 10.16− − =  ppm for the carbonyl H and 
(30.33 32.29)/0.9957 1.97− − =  ppm for the methyl hydrogens. The database at 

x1 

x2

x3
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sdbs.riodb.aist.go.jp gives carbon shifts in chloroform as 30.89 and 199.93 and gives the 
proton shifts as 9.79 and 2.21. 

 
16.35 (a)  The isotropic shielding constants in ppm are: 175.24 for the methyl carbon, 25.84 for 

the carbonyl carbon, 22.19 for the carbonyl hydrogen, and 29.93, 29.81, 29.81 for the 
methyl hydrogens. Because of the nearly free rotation about the CC single bond, we 
average the methyl shielding constants to get 29.85 ppm. (If you are using WebMO, 
choose Other as the Basis Set and enter the desired basis set; see also Prob. 16.34a.) 

 (b)  Subtraction [see (16.73)] gives the shifts in ppm as 14.54 for the methyl C, 163.96 for 
the carbonyl C, 9.99 for the carbonyl hydrogen, and 2.33 for the methyl hydrogens. 

 (c)  Clicking on Scaling Factors, we get Table 1a, which gives for gas-phase GIAO 
MP2/6-31+G(d,p) calculations the following values. For 1H , 1.0565, 32.019m b= − = ; 
for 13C,  0.9077, 202.752.m b= − =  Therefore the equation ( )/i i b mδ σ= −  in Sec. 16.9 

gives as the predicted 13C  shifts: (175.24 202.75)/0.9077 30.31− − =  ppm for the methyl 
C and (25.84 202.75)/0.9077 194.90− − =  ppm for the carbonyl carbon. The predicted 
proton shifts are (22.19 32.02)/1.0565 9.30− − =  ppm for the carbonyl H and 

(29.85 32.02)/1.0565 2.05− − =  ppm for the methyl hydrogens. The database at 
sdbs.riodb.aist.go.jp gives carbon shifts in chloroform as 30.89 and 199.93 and gives the 
proton shifts as 9.79 and 2.21. 

 
16.36 From (14.76), (6.94), and (6.63), 

2 2 2 2 2 2 21
0 0 02 /8 /8 (4 )T E Z e a Z e eμυ πε μ πε πε〈 〉 = 〈 〉 = − = = = , where we use the reduced 

mass μ in T〈 〉 , since it is μ that occurs in the kinetic-energy part of the Hamiltonian for 
internal motion; T〈 〉  is the kinetic energy of the electron's motion relative to the nucleus. 
We get 2 2 4 2 2

0/(4 )Z eυ πε〈 〉 = =  and 2 1/2 2
0/ /4c Ze cυ πε〈 〉 = ==   

19 2 12 2 2 34 8(1.6022 10  C) 2 4 (8.854 10  C / N-m )(6.626 10  J s)(2.9979 10  m/s)Z π π− − −× × × ×
= 0.0072974Z = Z/137.04. 

 
16.37 From the p. 583 definition, * *i i i i j j ij i j i j ijn c c S c c S∑ = ∑ ∑ = ∑ ∑ . We have i i icψ = ∑ Φ  

and 1 | | * | *i i i j j j i j i j i j i j i j ijc c c c c c Sψ ψ= 〈 〉 = 〈∑ Φ ∑ Φ 〉 = ∑ ∑ 〈Φ Φ 〉 = ∑ ∑ . So 
1i in∑ = . 

 
16.38 We have 1 2| |B y zN p p s sΦ = ="  

1 2 1 2 1 2 1 2| | | | | | | |y z y z y z y zN p p s s N p p s s N p p s s N p p s s− − + =" " " "

1 2 1 2 1 2 1 2| | | | | | | |y z y z y z y zN p p s s N p s p s N p s p s N p p s s+ + +" " " " ,  

where Theorem II on in Sec. 8.3 was used. Adding this equation to (16.74), we get 
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A BΦ +Φ = 1 2 1 2 1 2 1 2| | | | | | | |y z y z y z y zN p s p s N p s p s N p p s s N p p s s+ + +" " " " .  
Also 2 1| |C y zN p s p sΦ = ="  

2 1 2 1 2 1 2 1| | | | | | | |y z y z y z y zN p s p s N p s p s N p s p s N p s p s− − +" " " " . Let the last four 
columns of each determinant in CΦ  be numbered 1, 2, 3, and 4. We now interchange 
columns 2 and 4 of the first determinant in CΦ , interchange columns 2 and 3 of the 
second determinant in CΦ  and then interchange columns 3 and 4 in the resulting 
determinant, interchange columns 2 and 3 of the third determinant in CΦ  and then 
interchange columns 3 and 4 in the resulting determinant, and interchange columns 2 and 
4 of the last determinant in CΦ . This gives 

CΦ = 1 2 1 2 1 2 1 2| | | | | | | |y z y z y z y zN p s p s N p p s s N p p s s N p s p s− − − −" " " " , which is 
seen to equal ( )A B− Φ +Φ .  

 
16.39 Using (16.78), we have 
 

 
 
 
 
 
 

 
 
 
 
 

 where each diagram stands for a bond eigenfunction. 
 
16.40 The types of singly polar VB structures are 

1 

2 

3 

4 

5 

6 
= – – =

+ + +



16-17 
Copyright © 2014 Pearson Education, Inc. 

 

 
 There are 12 individual structures of the form VI, since the plus sign can be put on each of 

6 carbons and the minus sign can be put on the preceding or following carbon. Similarly, 
there are 12 individual structures of the form VII, 12 of the form VIII, and 12 of the form 
IX. There are 6 of the form X and 6 of the form XI.  

 
16.41 (a)  There are 4 π AOs (one on each C) to be paired. Equation (16.77) gives 4!/2!3! 2=  

canonical covalent VB π-electron structures.  
 (b)  If we put the four carbons on a ring, the pairings with no lines crossing are 1–2  3–4 

and 4–1  2–3, so the canonical covalent structures are  

 
 (c) The singly polar structures are 

 
16.42 (a)  For naphthalene, there are 10 π AOs (one on each C) to be paired, and (16.77) gives 

10!/5!6! 42=  canonical covalent π-electron structures.  

VI VII VIII 

IX X XI 

+

–

–

–

–
–

–

+ +

+ + +

CH2==CH––CH==CH2 CH2––CH==CH––CH2 

CH2––CH––CH==CH2 

+ –
CH2––CH––CH==CH2 

– +
CH2==CH––CH––CH2 

+ –

CH2==CH––CH––CH2 
– +

CH2––CH––CH––CH2 CH2––CH––CH––CH2 
+ – – +

CH2––CH––CH––CH2 

– +
CH2––CH––CH––CH2 

+ –
CH2––CH––CH––CH2 

– +

CH2––CH––CH––CH2 

+ –
CH2––CH==CH––CH2 

+ –
CH2––CH==CH––CH2 

+ –
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 (b)  There are only the following three ways to draw 5 pairs of double bonds between 
adjacent carbons in naphthalene: 

 

 
 
  (c)  The 1–2, 3–4, 5–6, and 7–8 bonds (see Fig. 17.6 for the numbering) are double bonds 

in two of the three Kekulé structures, so these bonds are predicted to be the shortest. 
 
16.43 Let the maxima of these hybrids lie in the xy plane, as follows: 

The direction cosines of lines 1, 2, and 3 are the cosines of the angles each line makes 
with the positive halves of the x, y, and z axes. These angles and their cosines are 

 α β γ cosα  cosβ  cosγ  

line 1 90° 0° 90° 0 1 0 

line 2 210° 120° 90° 1
2 3− 1

2−  0 

line 3 330° 240° 90° 1
2 3  1

2−  0 

 From the discussion after (16.81), the coefficients of the 2p AOs in the hybrids are 
proportional to the direction cosines, and the sp2 hybrids h1, h2, h3 have the forms: 

 
1 1

1 2 2 2

1 1
3 2 2

(C2 ) (C2 ), (C2 ) [ 3(C2 ) (C2 )]

(C2 ) [ 3(C2 ) (C2 )]
y x y

x y

h b s c p h b s c p p

h b s c p p

= + = + − −

= + −
 

 The orthonormality conditions give 2 2 1b c+ =  and 2 21
2 0b c− = . We get 1/21/3b =  and 

1/2(2/3)c =  and substitution in the preceding equations gives the hybrids. 

 
16.44 Let the maxima of these hybrids lie on the z axis as follows: 

x 

y 
1

2 3 
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The direction cosines of lines 1 and 2 are the cosines of the angles each line makes with 
the positive halves of the x, y, and z axes. These angles and their cosines are 

 α β γ cosα  cosβ  cosγ  

line 1 90° 90° 0° 0 0 1 

line 2 90° 90° 180° 0 0 –1 

 From the discussion after (16.81), the coefficients of the 2p AOs in the hybrids are 
proportional to the direction cosines, and the sp hybrids h1, h2 have the forms: 

          1

2

(C2 ) (C2 )
(C2 ) [ (C2 )]

z

z

h b s c p
h b s c p
= +
= + −

 

 The orthonormality conditions give 2 2 1b c+ =  and 2 2 0b c− = . We get 1/21/2b =  and 
1/21/2c = . Substitution in the preceding equations gives the hybrids as    
1/2 1/2

1 22 [(C2 ) (C2 )] 2 [(C2 ) (C2 )]z zh s p h s p− −= + = −  

 
16.45 (a)  To avoid the 180° angle in the Z-matrix, we use a dummy atom, as in Prob. 15.41a. 

The HF/6-31G* geometries are found to be RCH = 1.059 Å, RCN = 1.132 Å, ∠HCN = 180° 
for HCN; RNH = 0.985 Å, RNC = 1.154 Å, ∠HNC = 180° for HNC. 

 (b)  The HF/6-31G* transition-state structure is found to be RCH = 1.155 Å,  
RCN = 1.169 Å, ∠HCN = 77.5°. 

 
16.46 (a)  HF/6-31G* calculations give the stable conformers as the following planar structures:  

  
 where the D(OCOH) dihedral angles are given. A Z-matrix for Conformer I is given in 

Prob. 15.57. A good starting pointing for the search for the transition state is to take 
D(OCOH) equal to 90°. One finds the following HF/6-31G* properties for the conformers 
and the transition state (TS): 

 

O 

C 

H O 

H 

O

C 

H O

I    0° 
II    180° 

1 

2

3 4 

5

12
z

H 
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 μ ∠HC=O ∠OCO ∠COH RCH RC=O RCO ROH 

I 1.60 D 124.7° 124.9° 108.7° 1.083 Å 1.182 Å 1.323 Å 0.953 Å
II 4.37 D 123.1° 123.0 111.5° 1.090 Å 1.176 Å 1.328 Å 0.948 Å
TS 3.20 D 123.0 123.9 112.0 1.087 Å 1.174 Å 1.351 Å 0.950 Å

 
 D(OCOH) EHF/hartrees 
I 0° –188.762310
II 180° –188.752546
TS 96.0° –188.740756

 The energy difference between the more-stable conformer I and the transition state is 
0.021554 hartrees (zero-point energies omitted), corresponding to a 13.5 kcal/mol barrier. 
The energy difference between I and II is predicted to be 6.1 kcal/mol. 

 (b) HF/6-31G* calculations give the following two stable planar conformers: 

 
 where the D(CCOH) dihedral angles are given. A good starting point for the search for the 

transition state is to take D(CCOH) equal to 90°. One finds the following HF/6-31G* 
properties for the conformers and the transition state (TS): 

 
 μ/D ∠H5C=C ∠HCH ∠CCO ∠HCO ∠COH RCH4/Å RCH5/Å RC=C/Å
I 2.09  121.4° 118.5° 122.7° 115.6° 110.7° 1.073 1.074  1.315  
II 1.06  122.3° 117.5 126.9° 110.6° 110.3° 1.073  1.077  1.318  
TS 1.76 121.5 118.1° 123.7 114.1° 110.2 1.074  1.075  1.314  

 
 RCH6/Å RCO/Å ROH/Å D(CCOH) EHF/hartrees 
I 1.077 1.354 0.945 180° –152.885390 
II 1.074 1.347 0.948 0° –152.888887 
TS 1.077 1.368 0.948 85.7° –152.881576 

C C 

H 

H H 

H 

O 

C C 

H 

H H 

H 

O 

I    180° II    0° 

5 

4 6 
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 Although conformers I and II are predicted to be planar, the six atoms CH2CHO of the 
transition state are slightly nonplanar; for example, D(OCCH5) is –1.3°. The energy 
difference between the more-stable conformer II and the transition state is 0.007311 
hartrees (zero-point energies omitted), corresponding to a 4.6 kcal/mol barrier. 
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Chapter 17 

Semiempirical and Molecular-Mechanics  
Treatments of Molecules 

 
 
17.1 (a)  The carbons are numbered 1, 2, and 3, with 1 bonded to 2 and 2 bonded to 3. The 

assumptions (17.11) to (17.13) give eff eff eff
11 22 33H H H α= = = , eff eff

12 23H H β= = , eff
13 0H = . 

The secular equation (17.10) is  

                                                   
0

0
0

k

k

k

e
e

e

α β
β α β

β α

−
− =

−
 

 Division of each row by β gives  

      
1 0

1 1 0
0 1

x
x

x
=  

 where ( )/kx eα β≡ − . Use of (17.21) gives 3
1[ 2cos( /4)] 0j x jπ=∏ − =  and 

2cos( /4), 1, 2, 3;x j jπ= =   x = 1.414, 0, –1.414. The energies (lowest first) are 
1.414 , , 1.414ke xα β α β α α β= − = + − .   

The equations for the HMO coefficients are 

     
1 2

1 2 3

2 3

0

0

0

j j

j j j

j j

xc c

c xc c

c xc

+ =

+ + =

+ =

 

 For the root x = –1.414, we get 2 1 11.414c xc c= − = , 

3 2 2 1 1/ 0.707 0.707(1.414 )c c x c c c= − = = = . Normalization gives 
2 2 2 2 2 2 2 2
1 2 3 1 1 1 11 (1.414) 4c c c c c c c= + + = + + =  and 1 0.5c = . So 2 0.707c =  and 3 0.5c = . 

For the root x = 0, we get 2 0c =  and 3 1c c= − . Normalization gives 2 2 2
1 3 11 2c c c= + = , so 

1 0.707c = , 2 0c = , and 3 0.707c = − .  
For the root x = 1.414, we get 2 1 11.414c xc c= − = − , 

3 2 2 1 1/ 0.707 0.707( 1.414 )c c x c c c= − = − = − − = . Normalization gives 
2 2 2 2 2 2 2 2
1 2 3 1 1 1 11 (1.414) 4c c c c c c c= + + = + + =  and 1 0.5c = . So 2 0.707c = −  and 3 0.5c = . 

The HMOs from lowest to highest are 

 
1 1 2 3

2 1 3

3 1 2 3

0.5 0.707 0.5
0.707 0.707
0.5 0.707 0.5

f f f
f f

f f f

φ
φ
φ

= + +

= −

= − +
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 (b)  We use (17.54): rs i i ri sip n c c= ∑  for real HMOs. This species has three π electrons, 
two of which are in 1φ  and one in 2φ . So 12 232(0.5)0.707 1(0.707)0 0.707p p= + = = . 

 (c)  Use of (17.53) gives 2 2
1 2(0.5) 1(0.707) 1q = + = , 2

2 2(0.707) 1(0) 1q = + = , 
2 2

3 2(0.5) 1( 0.707) 1q = + − = . 

 (d)  1/2 1/2
1 123 3 0.707 1.025F p= − = − = .  1/2 1/2

2 12 233 3 0.707 0.707F p p= − − = − − =  
0.318.  3 1.025F = .  

 (e)  The π-electron energy is due to the two electrons in 1φ  and the one electron in 2φ , and 
is 2( 1.414 ) 3 2.828α β α α β+ + = + . The Hückel energy of a nonconjugated double bond 
is α β+  and the Hückel energy of a nonconjugated electron on a carbon atom is [see 
(17.11)] α, so the nonconjugated Hückel π-electron energy is 2( )α β α+ + , and the 
delocalization energy is 3 2.828 (3 2 ) 0.828α β α β β+ − + = .  

 
17.2 (a)  The conjugated-carbon structure is the same for these ions as for the allyl radical, so 

the HMOs and HMO energies are the same as in Prob. 17.1a. 
 (b)  The cation has two π electrons and these go in the HMO 1φ . The anion has four π 

electrons, two in 1φ  and two in 2φ . For the cation, 12 232(0.5)0.707 0.707p p= = = . For 
the anion, 12 232(0.5)0.707 2(0.707)0 0.707p p= + = = . 

 (c)  For the cation, 2
1 2(0.5) 0.5q = = , 2

2 2(0.707) 1q = = , 2
3 2(0.5) 0.5q = = . For the 

anion, 2 2
1 2(0.5) 2(0.707) 1.5q = + = , 2

2 2(0.707) 2(0) 1q = + = , 
2 2

3 2(0.5) 2( 0.707) 1.5q = + − = . 

 (d)  12p  and 23p  are the same for neutral allyl, for the cation, and for the anion, so the 
free valences of the ions are the same as in Prob. 17.1d. 

 (e)  For the cation, the π-electron energy is 2( 1.414 ) 2 2.828α β α β+ = +  and the 
nonconjugated Hückel π-electron energy is 2( )α β+ , so the delocalization energy is 
2 2.828 2 2 0.828α β α β β+ − − = . For the anion, the π-electron energy is 
2( 1.414 ) 2 4 2.828α β α α β+ + = +  and the nonconjugated Hückel π-electron energy is 
2( ) 2α β α+ + , so the delocalization energy is 4 2.828 4 2 0.828α β α β β+ − − = . The 
stabilities are predicted to be the same. 

 
17.3 For the polyenes (17.28), C 2 2n s= + . Equation (17.31) gives 

{ } 11
HMO 4(37300 cm )sin[ /(4 6)] (67.0 nm) sin[ /(4 6)]s sλ π π

−−= + = + . We find 

s 0 1 2 3 4 5 6 7 9 

experλ /nm 162.5 217 268 303 334 364 390 410 447 

HMOλ  134 217 301 386 471 556 641 726 897 
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HMO error  –18% 0 12% 27% 41% 53% 64% 77% 101% 

 The average absolute error is 44% for the HMO method. 

 

17.4 For 0.618x = − , the first equation of (17.25) gives 2 10.618c c= ; the second equation 
gives 3 1 2 1 1 10.618 0.618(0.618) 0.618c c c c c c= − + = − + = − ; the fourth equation gives 

4 3 1/0.618c c c= = − . Normalization gives 2 2 2 2
1 2 3 41 c c c c= + + + =  

2 2 2 2 2 2 2
1 1 1 1 1(0.618) (0.618) 2.76c c c c c+ + + =  and 1 0.602c = . Then 2 10.618 0.372c c= = ; 

3 10.618 0.372c c= − = − ; 4 1 0.602c c= − = − . 

 For 0.618x = , the first equation of (17.25) gives 2 10.618c c= − ; the second equation 
gives 3 1 2 1 1 10.618 0.618( 0.618) 0.618c c c c c c= − − = − − − = − ; the fourth equation gives 

4 3 1/0.618c c c= − = . Normalization gives 2 2 2 2
1 2 3 41 c c c c= + + + =  

2 2 2 2 2 2 2
1 1 1 1 1(0.618) (0.618) 2.76c c c c c+ + + =  and 1 0.602c = . Then 

2 10.618 0.372c c= − = − ; 3 10.618 0.372c c= − = − ; 4 1 0.602c c= = . 

 For 1.618x = , the first equation of (17.25) gives 2 11.618c c= − ; the second equation gives 

3 1 2 1 1 11.618 1.618( 1.618) 1.618c c c c c c= − − = − − − = ; the fourth equation gives 

4 3 1/1.618c c c= − = − . Normalization gives 2 2 2 2
1 2 3 41 c c c c= + + + =  

2 2 2 2 2 2 2
1 1 1 1 1(1.618) (1.618) 7.24c c c c c+ + + =  and 1 0.372c = . Then 2 11.618 0.602c c= − = − ; 

3 11.618 0.602c c= = ; 4 1 0.372c c= − = − . 

 

17.5 (a)  Similar to the first equation in (17.25), the first equation satisfied by the coefficients is 
1 2 0j jxc c+ = . Substitution of (17.30) and the equation preceding (17.29) gives 

1/2 1/2

C C C C C

2 2 22cos sin sin 0
1 1 1 1 1

j j j
n n n n n
π π π⎛ ⎞ ⎛ ⎞

− + =⎜ ⎟ ⎜ ⎟+ + + + +⎝ ⎠ ⎝ ⎠
 

 Use of sin 2 2sin cosθ θ θ=  gives 
1/2 1/2

C C C C C C

2 22cos sin 2sin cos 0
1 1 1 1 1 1

j j j j
n n n n n n
π π π π⎛ ⎞ ⎛ ⎞

− + =⎜ ⎟ ⎜ ⎟+ + + + + +⎝ ⎠ ⎝ ⎠
 

                    0 0=  
 Similar to the second and third equations in (17.25), equations that are not the first or last 

have the form 1, 1, 0r j rj r jc xc c− ++ + = . Substitution of (17.30) and the equation preceding 

(17.29) gives  
1/2 1/2 1/2

C C C C C C C

2 ( 1) 2 2 ( 1)sin 2cos sin sin 0
1 1 1 1 1 1 1

j r j jr j r
n n n n n n n

π π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞− +
− + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + + + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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 Use of the identity in the problem to combine the first and last terms on the left side gives 
1/2 1/2

C C C C C C

2 22sin cos 2cos sin 0
1 1 1 1 1 1

jr j j jr
n n n n n n

π π π π⎛ ⎞ ⎛ ⎞
− =⎜ ⎟ ⎜ ⎟+ + + + + +⎝ ⎠ ⎝ ⎠

 

                  0 0=  
 Similar to the last equation in (17.25), the last equation satisfied by the coefficients is 

C C1, , 0n j n jc xc− + = . Substitution of (17.30) and the equation preceding (17.29) gives  
1/2 1/2

C C

C C C C C

( 1)2 2sin 2cos sin 0
1 1 1 1 1

j n jnj
n n n n n

π ππ⎛ ⎞ ⎛ ⎞−
− =⎜ ⎟ ⎜ ⎟+ + + + +⎝ ⎠ ⎝ ⎠

 

 Division by 1/2
C[2/( 1)]n +  and use of 1

2sin cos [sin( ) sin( )]A B A B A B= + + −  gives 

C C C

C C C

( 1) ( 1) ( 1)sin sin sin 0
1 1 1

j n j n j n
n n n

π π π− + −
− − =

+ + +
 

        sin 0jπ− =  

         0 0=  

 (b)  From (17.8) and (17.30), C C

1/2

1 1
C C

2 sin
1 1

n n
j rj r rr r

jrc f f
n n

πφ
= =

⎛ ⎞ ⎛ ⎞
= = ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
∑ ∑  and  

C C

1/2 1/2

1 1
C C C C

2 2* sin sin
1 1 1 1

n n
j j r sr s

jr jsd f f d
n n n n

π πφ φ τ τ
= =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⌠
⎮⎮
⌡
∑ ∑∫  

C C

C C

C

1 1
C C C

1 1
C C C

2

1
C C C C C

2 *sin sin
1 1 1

2 sin sin
1 1 1

2 2 1sin exp exp
1 1 1 4 1

n n
r sr s

n n
rsr s

n
r

jr js f f d
n n n

jr js
n n n

jr i jr i jr
n n n n n

π π τ

π π δ

π π π

= =

= =

=

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ ∑ ∫

∑ ∑

∑ C

C C C

C C

2

1

1 1 1
C C C

C C1 1
C

1

1 2 2exp 2 exp
2 2 1 1

1 ( ) 2 ( ) where 2 /( 1)
2 2

n
r

n n n
r r r

n nw r w r
r r

i jr i jr
n n n

e n e w i j n
n

π π

π

=

= = =

−
= =

⎡ ⎤⎛ ⎞
=⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
− − + − =⎢ ⎥⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤− − + ≡ +⎢ ⎥⎣ ⎦+

∑

∑ ∑ ∑

∑ ∑

 

 where a formula in Prob. 1.28 was used. The formula for the sum of a geometric series is 
1

1 1

n
n r
r

b bb
b

+

=

−
=

−∑ .  Taking wb e=  and then wb e−= , we get 
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C C( 1) ( 1)

C
C

1* 2
2 2 1 1

w n w nw w

j j w w
e e e ed n

n e e
φ φ τ

+ − +−

−

⎡ ⎤− −
= − − +⎢ ⎥+ − −⎣ ⎦

∫  

The definition of w gives C( 1) 2 ,w n i jπ+ =  so 
C( 1) 2 cos(2 ) sin(2 ) 1 0 1.w n i je e j i jπ π π+ = = + = + =  Similarly, C( 1) 1.w ne− + =  So 

 C C
C C

1 1 1 1* 2 ( 1 2 1) 1
2 2 2 21 1

w w

j j w w
e ed n n

n ne e
φ φ τ

−

−

⎡ ⎤− −
= − − + = − − − − =⎢ ⎥+ +− −⎣ ⎦

∫  

 
17.6 From Fig. 17.1, the first excited state has two electrons in 1φ , one electron in 2φ , and one 

electron in 3φ . From (17.53) and (17.26), 2 2 2
1 2(0.372) 1(0.602) 1(0.602) 1.00q = + + = ; 

2 2 2
2 2(0.602) 1(0.372) 1(0.372) 1q = + + = ; 3 1q = ; 4 1q = . From (17.54) and (17.26), 

12 2(0.372)0.602 1(0.602)(0.372) 1(0.602)( 0.372) 0.448p = + + − = ; tot
12 1.448p = ; 

23 2(0.602)0.602 1(0.372)( 0.372) 1( 0.372)( 0.372) 0.725p = + − + − − = ; tot
23 1.725p = ; 

tot
34 1.448p = . 

 

17.7 (a)  We have 2
2

ˆ ˆC E=  and the symmetry species are  

 Ê 2Ĉ

A 1 1 
B 1 –1 

 (b)  The 2Ĉ  symmetry rotation interchanges C1 and C4 and interchanges C2 and C3, so the 
normalized symmetry orbitals and their symmetry species are 

1/2 1/2
1 1 4 3 1 4

1/2 1/2
2 2 3 4 2 3

2 ( ) ( ), 2 ( ) ( ),

2 ( ) ( ), 2 ( ) ( )

g f f A g f f B

g f f A g f f B

− −

− −

= + = −

= + = −
 

 As on p. 612, the secular equation is effˆdet[ | | | ] 0p q p q kg H g g g e〈 〉 − 〈 〉 = . We have 
eff eff1 1

1 1 1 4 1 42 2
ˆ ˆ| | | | ( )g H g f f H f f α α α〈 〉 = 〈 + + 〉 = + = ; 

eff eff1 1
1 2 1 4 2 32 2

ˆ ˆ| | | | ( )g H g f f H f f β β β〈 〉 = 〈 + + 〉 = + = ; 
eff eff1 1

2 2 2 3 2 32 2
ˆ ˆ| | | | ( )g H g f f H f f α β β α α β〈 〉 = 〈 + + 〉 = + + + = + ; 

eff eff1 1
3 3 1 4 1 42 2

ˆ ˆ| | | | ( )g H g f f H f f α α α〈 〉 = 〈 − − 〉 = + = ; 
eff eff1 1

3 4 1 4 2 32 2
ˆ ˆ| | | | ( )g H g f f H f f β β β〈 〉 = 〈 − − 〉 = + = ; 

eff eff1 1
4 4 2 3 2 32 2

ˆ ˆ| | | | ( )g H g f f H f f α β β α α β〈 〉 = 〈 − − 〉 = − − + = − ;
1

1 2 1 4 2 32| | 0g g f f f f〈 〉 = 〈 + + 〉 = ;   1
3 4 1 4 2 32| | 0g g f f f f〈 〉 = 〈 − − 〉 = . 

The secular determinant for the A symmetry orbitals is 
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eff eff
1 1 1 2

eff eff
1 2 2 2

ˆ ˆ| | | |
0

ˆ ˆ| | | |
k k

kk

g H g e g H g e
eg H g g H g e

α β
β α β

〈 〉 − 〈 〉 −
= =

+ −〈 〉 〈 〉 −
 

           21
0 1

1 1
x

x x
x

= = + −
+

  and   1.618, 0.618x = −  

For the first root, the equations for the coefficients are 
1 2 1 21.618 0 and 0.618 0c c c c− + = − = , so 2 11.618c c= . Normalization gives 

2 2 2 2 2 2
1 2 1 1 11 (1.618) 3.618c c c c c= + = + =  and 1 0.526c = , 2 0.851c = . So the HMO is 

1/2 1/2
1 1 2 2 1 4 2 30.526(2 )( ) 0.851(2 )( )c g c g f f f f− −+ = + + + =

1 2 3 40.372 0.602 0.602 0.372f f f f+ + + .  
For the second root, the equations for the coefficients are 

1 2 1 20.618 0 and 1.618 0c c c c+ = + = , so 2 10.618c c= − . Normalization gives 
2 2 2 2 2 2
1 2 1 1 11 (0.618) 1.382c c c c c= + = + =  and 1 0.851c = , 2 0.526c = − . So the HMO is 

1/2 1/2
1 1 2 2 1 4 2 30.851(2 )( ) 0.526(2 )( )c g c g f f f f− −+ = + − + =

1 2 3 40.602 0.372 0.372 0.602f f f f− − + . 
The secular determinant for the B symmetry orbitals is 

eff eff
3 3 3 4

eff eff
3 4 4 4

ˆ ˆ| | | |
0

ˆ ˆ| | | |
k k

kk

g H g e g H g e
eg H g g H g e

α β
β α β

〈 〉 − 〈 〉 −
= =

− −〈 〉 〈 〉 −
 

           21
0 1

1 1
x

x x
x

= = − −
−

  and   1.618, 0.618x = −  

For the first root, the equations for the coefficients are 
3 4 3 41.618 0 and 0.618 0c c c c+ = + = , so 4 31.618c c= − . Normalization gives 

2 2 2 2 2 2
3 4 3 3 31 (1.618) 3.618c c c c c= + = + =  and 3 0.526c = , 4 0.851c = − . So the HMO is 

1/2 1/2
3 3 4 4 1 4 2 30.526(2 )( ) 0.851(2 )( )c g c g f f f f− −+ = − − − =

1 2 3 40.372 0.602 0.602 0.372f f f f− + − .  
For the second root, the equations for the coefficients are 

3 4 3 40.618 0 and 1.618 0c c c c− + = − = , so 4 30.618c c= . Normalization gives 
2 2 2 2 2 2
3 4 3 3 31 (0.618) 1.382c c c c c= + = + =  and 3 0.851c = , 4 0.526c = . So the HMO is 

1/2 1/2
3 3 4 4 1 4 2 30.851(2 )( ) 0.526(2 )( )c g c g f f f f− −+ = − + − =

1 2 3 40.602 0.372 0.372 0.602f f f f+ − − . 

 
17.8 Imagine that we set up an xy coordinate system with origin at the center of each circle in 

Fig. 17.5, with the positive direction of the x axis pointing downward (going through the 
lowest apex, which lies at 2 | |α β− ), and with the positive y axis pointing to the right. 
Let points in this plane represent the complex numbers z x iy= +  (as in Fig. 1.3). If each 
circle had a radius of 1, then, as noted in Prob. 1.28b, the z values of the points at each 
apex (the dots) would be the n nth roots of 1, where n, the number of apexes, is the 
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number of carbons, nC. Since the radius of each circle is 2 | |β , rather than 1, the x and y 
coordinates are multiplied by 2 | |β , and the z values of the apex points are 2 | |β  times 
the nCth roots of unity. Use of (1.36) for these roots gives C2 | | exp( 2 / )z i k nβ π= , 

C0,1, , 1k n= −… , as the z values of the apexes. The energy scale in Fig. 17.5 is in the 
vertical direction with energy increasing going upwards. Thus the energy scale is in the –x 
direction (as we have defined the x axis), and because the energy scale is set up with 
energy α occurring at the level of our coordinate origin, the energy of each apex point is α 
minus the x value of the apex point. The x value of a number in the complex plane is the 
real part of the number. Hence the energy of each apex point is 

CRe[2 | | exp( 2 / )]ke i k nα β π= − , where Re denotes the real part of a complex number. 

The real part of cos sinie iθ θ θ= +  equals cosθ , so C2 | | cos(2 / )ke k nα β π= − . Since 
0β < , we have | |β β= − , and C2 cos(2 / )ke k nα β π= +  as in (17.43). 

 
17.9 (a)  The harmonic-oscillator potential-energy function is 21

2 ( )ek R R− . The energy to 

compress three single bonds is 2 10 23
2 (500 N/m)(1.397 1.53) (10  m)−− =  191.3 10 J−× . The 

energy to stretch three double bonds is 2 10 23
2 (950 N/m)(1.397 1.335) (10  m)−− =  

205.5 10 J−= × . The sum of these energies is 19
51.8 10 J−× , and multiplication by the 

Avogadro constant gives 111 kJ/mol = 27 kcal/mol.  
 (b)  Consider the gas-phase processes  
 

 
 We have 1 49.8 kcal/molEΔ = − , 2 2 | |E βΔ = , 3 27 kcal/molEΔ = − , 

4 3( 28.6 kcal/mol) 85.8 kcal/molEΔ = − = − . Substitution in 1 2 3 4E E E EΔ = Δ + Δ + Δ  gives 
2 | | ( 49.8 27 85.8) kcal/mol 63 kcal/molβ = − + + =  and 1

2| | 31 kcal/molβ = , which 

corresponds to 1.37 eV per molecule. 
 

benzene 

nonconjugated benzene 
with equal bond lengths 

nonconjugated benzene 
with unequal bond lengths 

cyclohexane 1 

2 

3 

4
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17.10 Consider the following gas-phase processes: 

 
 We have 1 1323 kcal/molEΔ = , 2 2 | |E βΔ = , 3 27 kcal/molEΔ = −  (see Prob. 17.9), 

4 6(99 kcal/mol) 3(83 kcal/mol) 3(146 kcal/mol) 1281 kcal/molEΔ ≈ + + = . Substitution in 

1 2 3 4E E E EΔ = Δ + Δ + Δ  gives 2 | | (1323 27 1281) kcal/mol 69 kcal/molβ = + − = as the 
"experimental" delocalization energy with allowance for strain energy. (This gives 

1
2| | 34 kcal/molβ = , which corresponds to 1.5 eV per molecule.) If the strain energy is 

omitted, then 3EΔ  is taken as zero and we get the delocalization energy as 
2 | | (1323 1281) kcal/mol 42 kcal/molβ = − = . 

 
17.11 (a)  The Lewis structure is 

 
 where "etc." denotes two resonance structures with the double-bond position changed. 

With carbon 1 bonded to carbons 2, 3, and 4, the HMO secular equation in the notation of 
Eqs. (17.19) and (17.20) is 

1 1 1
1 0 1 1

1 0 0 0 1 1 1
0 1 1 0 1 0 1

1 0 0 0 0 1
1 0 0 1 0

1 0 0

x
x x

x x x
x x x x x

x x x x
x

x

⎛ ⎞
= = − + = − + + =⎜ ⎟

⎝ ⎠

2 2 2 4 2 2( ) ( 1) 3 ( 3) 0x x x x x x x xx x− + − + − = − = − =  
where the first determinant was expanded using the elements of the fourth column. The 
secular equation has two 0x =  roots. The other two roots are found from 2 3 0x − = , so 

1/2 1/20, 0, 3 , 3x = −  and 1/2 1/23 , , , 3ke α β α α α β= + − . The HMO-energy-level 
pattern and ground-state orbital occupancy are  

benzene 

nonconjugated benzene 
with equal bond lengths 

nonconjugated benzene 
with unequal bond lengths 

6C(g) + 6H(g) 

2 

3 

4

1

C

CH2 

·CH2 ·CH2 

etc. 

1 

2

3 4 
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 For the lowest MO,  which has 1/23x = − , the equations for the coefficients are 

   

1/2
1 2 3 4

1/2
1 2

1/2
1 3

1/2
1 4

3 0

3 0

3 0

3 0

c c c c

c c

c c

c c

− + + + =

− =

− =

− =

 

 so 1/2
2 3 4 13c c c c−= = = . Normalization gives 2 2 2 2

1 2 3 41 c c c c= + + + = 2 1 1 1
1 3 3 3(1 )c + + +  and 

1/2
1 2c −= . Then 1/2

2 3 4 6c c c −= = = .  

 Similarly, for the highest MO (with 1/23x = ), we get 1/2
1 2c −= , 1/2

2 3 4 6c c c −= = = − . 

 For the MOs with 0x = , the coefficients satisfy 
2 3 4

1

1

1

0
0
0
0

c c c
c
c
c

+ + =

=
=
=

 

Normalization gives 2 2 2
2 3 4| | | | | | 1c c c+ + = . Because of the degeneracy, there are 

infinitely many possibilities that satisfy the two equations for 2 3 4, ,c c c . Since this 
diradical has a 3C  symmetry axis, we can, if we like, take the degenerate HMOs to be 

eigenfunctions of the operator 
3

ˆ
CO . The eigenvalues of 

3
ˆ

CO  are the cube roots of 1, 

namely 2 /3,ike π  where 0,1, 2k = . Proceeding as was done for benzene, we can use the 
equations (17.37) and (17.38), except that 2 /6ike π  is replaced by 2 /3ike π , 

6
ˆ

CO  is replaced 

by 
3

ˆ
CO , and the sums go from 2r =  to 4r = . Thus (17.38) becomes 2 /3

1,
ik

r j rjc e cπ
+ = . 

This equation shows that 2 3 4| | | | | |c c c= = , so the normalization condition becomes 
2

23 | | 1c =  and 1/2
2| | 3c −= . We shall take 1/2

2 3c −= . In the equation 2 /3
1,

ik
r j rjc e cπ
+ = , k 

cannot be zero, because this would give 4 3 2c c c= = , and these coefficients would not 

satisfy 2 3 4 0c c c+ + = . With 1k = , use of 2 /3
1,

ik
r j rjc e cπ
+ =  gives 1/2

2 3c −= , 
1/2 2 /3

3 3 ic e π−= , 1/2 4 /3
4 3 ic e π−= . Use of cos sinie iθ θ θ= +  shows that these coefficients 

satisfy 2 3 4 0c c c+ + = . With 2k = , use of 2 /3
1,

ik
r j rjc e cπ
+ =  gives  

1/2
2 3c −= , 1/2 4 /3

3 3 ic e π−= , 1/2 8 /3
4 3 ic e π−= . Use of cos sinie iθ θ θ= +  shows that these 
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coefficients satisfy 2 3 4 0c c c+ + = . We thus can use these two sets of coefficients to get 
two complex HMOs 2,complexφ  and 3,complexφ  for the two HMOs with energy α.  

 To avoid dealing with complex MOs, we can (as was done for benzene) take the two 
linear combinations 1/2

2,complex 3,complex2 ( )φ φ− +  and 1/2
2,complex 3,complex2 (1/ )( )i φ φ− −  to get 

real MOs with the coefficients 
1/2 1/2 1/2 1/2 1/2

2 3 4(2/3) , 6 2cos(2 /3) 6 , 6 2cos(4 /3) 6c c cπ π− − − −= = ⋅ = − = ⋅ = −  and 
1/2 1/2 1/2 1/2

2 3 40, 6 2sin(2 /3) 2 , 6 2sin(4 /3) 2c c cπ π− − − −= = ⋅ = = ⋅ = − . This gives 
1/2 1/2 1/2

2,real 2 3 4(2/3) 6 6f f fφ − −= − −  and 1/2 1/2
3,real 3 42 2f fφ − −= − .  

We use (17.54) to get the bond orders, and to avoid any ambiguities due to the partial 
occupation of the degenerate MOs, we shall use the complex coefficients. We have 

1/2 1/2 1/2 1/2 1/2 1/2 1/21 1
12 2 22(2 )6 1 (0 3 3 0) 1 (0 3 3 0) 3 0.577p − − − − − − −= + ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ = = . 

Also, 13 140.577p p= = .  

From (17.53), 1/2 2 2 2
1 2(2 ) 1(0) 1(0) 1q −= + + = , 

1/2 2 1/2 2 1/2 2
2 3 42(6 ) 1(3 ) 1(3 ) 1q q q− − −= + + = = = .  

 From Prob. 17.19, 1/2 1/2 1/2 1/2 1/2
1 21 31 413 3 3 3 3 0F p p p − − −= − − − = − − − = .  

1/2 1/2 1/2
2 21 31 413 3 3 1.155F p p p−= − = − = = = . 

 The orbital occupancies and energies give 
1/2 1/22( 3 ) 1( ) 1( ) 4 (12)Eπ α β α α α β= + + + = + . The energies of two π electrons in an 

isolated double bond and two π electrons each localized on a C add to 
localized 2( ) 4 2E α β α α α β= + + + = + , so the delocalization energy is 

1/24 (12) (4 2 ) 1.464α β α β β+ − + = . 

 (b)  This diradical is linear with the Lewis structure 
• •

1 2 3
— —H C C C H== == . If the 

molecular axis is the z axis, then the π bond between carbons 1 and 2 is formed by overlap 
of 2 xp  AOs and the π bond between carbons 2 and 3 is formed by overlap of 2 yp  AOs. 
The unpaired electron on carbon 3 is in a 2 xp  AO and interacts with the electrons of the π 
bond between carbons 1 and 2. The unpaired electron on carbon 1 is in a 2 yp  AO and 

interacts with the electrons of the π bond between carbons 2 and 3. Thus we have two sets 
of π electrons; one set consists of three xπ  electrons and one set consists of three yπ  

electrons. The conjugated carbon framework is linear with three carbons, and is the same 
framework as for the allyl radical of Prob. 17.1, so the HMO secular equation, the HMO 
energies, and the HMO coefficients are the same as for allyl. Thus the energies (lowest 
first) are 1.414 , , 1.414ke α β α α β= + − ; the HMOs from lowest to highest are 

1 1 2 3

2 1 3

3 1 2 3

0.5 0.707 0.5
0.707 0.707
0.5 0.707 0.5

f f f
f f

f f f

φ
φ
φ

= + +

= −

= − +
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  With three electrons in each set of π MOs, the orbital occupancy is 

 
 In using (17.54), we sum over all four of the occupied π MOs, so 

12 1 2 232(0.5)0.707 2(0.5)0.707 1(0.707)0 1(0.707)0 1.414i i i ip n c c p= ∑ = + + + = = .  

From (17.53), 2 2 2 2
1 32(0.5) 2(0.5) 1(0.707) 1(0.707) 2q q= + + + = = ; 

2 2
2 2(0.707) 2(0.707) 1(0) 1(0) 2q = + + + = .   

From Prob. 17.19, 1/2
1 123 1.732 1.414 0.318F p= − = − = ; 

1/2
2 12 233 1.732 1.414 1.414 1.096F p p= − − = − − = − . 

The orbital occupancies and energies give 
1/2 1/2 1/22( 2 ) 2( 2 ) 1( ) 1( ) 6 (32)Eπ α β α β α α α β= + + + + + = + . The energies of four π 

electrons in two isolated double bonds and two π electrons each localized on a C add to 
localized 4( ) 6 4E α β α α α β= + + + = + , so the delocalization energy is 

1/26 (32) (6 4 ) 1.657α β α β β+ − + = . 

 
17.12 To ionize the molecule by removing an electron from the HOMO of energy xα β−  

requires an energy input of xβ α− , the ionization energy. The x values are known, and 
we have four pieces of data to be fit by varying two parameters α and β. We use the Excel 
Solver (with the constraint that β is negative) to minimize the sums of the squares of the 
deviations of the calculated values xβ α−  from the experimental values. With the initial 
guesses 0α =  and 1β = −  eV, the Solver converges to the values 6.146 eVα = − , 

3.316 eVβ = − . The fit is pretty good, with the predicted ionization energies of the first 
four molecules being 9.46, 8.20, 7.52, and 7.12 eV. The predicted ionization energy for 
pentacene with 0.220x = −  is (–3.316)(–0.220) eV + 6.146 eV = 6.88 eV. 

 
17.13 (a)  In 2 2CH CH—CH CH== == , there are two 2CH CH==  bonds and one CH—CH  

bond, so , 2(2.0000 ) 0.4660 4.466b b bn Eπ β β β∑ = + = . 

 (b)  Benzene has three CH CH==  bonds and three CH—CH  bonds, so 

, 3(2.0699 ) 3(0.4660 ) 7.6077b b bn Eπ β β β∑ = + = . The Hückel Eπ  of benzene is given by 
(17.51) as 6 8α β+ , and is 8β  with α omitted. Hence the Hess–Schaad resonance energy 
of benzene is (7.6077 – 8)β = –0.3923β = 0.3923|β|. The REPE is 0.3923|β|/6 = 0.065|β|. 

 (c)  In cyclobutadiene, there are two CH CH==  bonds and two CH—CH  bonds, so 

, 2(2.0699 ) 2(0.4660 ) 5.0718b b bn Eπ β β β∑ = + = . The Hückel Eπ  of cyclobutadiene is 
given by Fig. 17.5 as 2( 2 ) 2 4 4α β α α β+ + = + , and is 4β  with α omitted. Hence the 
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Hess–Schaad resonance energy of cyclobutadiene is (5.0718 –4)β = 1.0718β = –1.0718|β|. 
The REPE is –1.0718|β|/4 = –0.268|β| (antiaromatic).  

         Planar [8]annulene has four CH CH==  bonds and four CH—CH  bonds, so 

, 4(2.0699 ) 4(0.4660 ) 10.1436b b bn Eπ β β β∑ = + = . The HMO energies with α omitted 

are given by (17.43) as 1/2 1/2 1/2 1/22 , 2 , 2 , 0, 0, 2 , 2 , 2β β β β β β− −  and the Hückel Eπ  

of [8]annulene is 1/2 1/22(2 ) 2(2 ) 2(2 ) 1(0) 1(0) 9.6569β β β β+ + + + = . The Hess–Schaad 
resonance energy of [8]annulene is (10.1436 – 9.6569)β = 0.4867β = –0.4867|β|. The 
REPE is –0.4867|β|/8 = –0.061|β| (antiaromatic). 

         Planar [18]annulene has 9 CH CH==  bonds and 9 CH—CH  bonds, so 

, 9(2.0699 ) 9(0.4660 ) 22.8231b b bn Eπ β β β∑ = + = . The HMO energies with α omitted 

are given by (17.43) as 
2 , 1.8794 , 1.8794 , 1.5321 , 1.5321 , , , 0.3473 , 0.3473 ,β β β β β β β β β  

0.3473 , 0.3473 , , , 1.5321 , 1.5321 , 1.8794 , 1.8794 , 2β β β β β β β β β− − − − − − − − −   
and the Hückel Eπ  of [18]annulene is 2(2 ) 2(1.8794 ) 2(1.8794 )β β β+ + +  
2(1.5321 ) 2(1.5321 ) 2 2 2(0.3473 ) 2(0.3473 ) 23.0352β β β β β β β+ + + + + = . The Hess–
Schaad resonance energy of [18]annulene is (22.8231 – 23.0352)β = –0.2121β = 
0.2121|β|. The REPE is 0.2121|β|/18 = 0.0118|β| (aromatic). 

         Azulene has 3 CH CH==  bonds, 2 CH C==  bonds, 3 CH—CH  bonds, 2 CH—C  
bonds, and one C—C  bond, so 

, 3(2.0699 ) 2(2.1083 ) 3(0.4660 ) 2(0.4362 ) 0.4358 13.1325b b bn Eπ β β β β β β∑ = + + + + = . 
There are 10 π electrons and the Hückel Eπ  with α omitted is 2(2.3103 ) 2(1.6516 )β β+ +  
2(1.3557 ) 2(0.8870 ) 2(0.4773 ) 13.3638β β β β+ + = . The Hess–Schaad resonance energy 
of azulene is (13.1325 – 13.3638)β = –0.2313β = 0.2313|β|. The REPE is 0.2313|β|/10 = 
0.0231|β| (aromatic). 

 

17.14 (a)  The conjugated carbon framework and the HMOs of 5 5C H−  are the same as for 5 5C H . 

The Lewis structure of 5 5C H−  has four π electrons in double bonds and two π electrons as 

a lone pair on the C that has no double bonds. The six π electrons in 5 5C H−  fill the lowest 
three HMOs in the middle figure in Fig. 17.5. The HMO energies are given by (17.43) as 

2 ( 0), 0.618 ( 1), 0.618 ( 4), 1.618 , ( 2),k k k kα β α β α β α β+ = + = + = − =  
1.618 , ( 3)kα β− = . Thus the 0, 1, 4k =  HMOs are occupied. (See also the comment 

after Eq. (17.45).] For each of these three HMOs, we use (17.44) to calculate the 
coefficients 1kc  and 2kc . We get 1/2

1,0 2,0 5c c −= = ;   1/2
1,1 5c −= , 1/2 2 /5

2,1 5 ic e π−= ;   
1/2

1,4 5c −= , 1/2 8 /5
2,4 5 ic e π−= . From (17.54), 
1/2 1/2 1/2 1/2 1/2 1/2 2 /5 1/2 2 /5 1/21 1

12 2 22( )(5 5 5 5 ) 2( )(5 5 5 5 )i ip e eπ π− − − − − − − − −= + + + +  
1/2 1/2 8 /5 1/2 8 /5 1/21

22( )(5 5 5 5 ) 0.4 0.2[2cos(2 /5) 2cos(8 /5)]i ie eπ π π π− − − − −+ = + + = 0.6472.  
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By symmetry, this is the mobile bond order for all the C-C bonds. From (17.57), 
12 (1.521 0.186 0.6472) Å 1.401 ÅR = − ⋅ = .  

 (b)  The conjugated carbon framework and the HMOs of 7 7C H+  are the same as for 

7 7C H . The Lewis structure of 7 7C H+  has six π electrons in three double bonds and a C 

that has no double bonds. The six π electrons in 7 7C H+  fill the lowest three HMOs. From 
the comment after Eq. (17.45), the lowest three HMOs have 0, 1, 6k = . For each of these 
three HMOs, we use (17.44) to calculate the coefficients 1kc  and 2kc . We get 

1/2
1,0 2,0 7c c −= = ;   1/2

1,1 7c −= , 1/2 2 /7
2,1 7 ic e π−= ;   1/2

1,6 7c −= , 1/2 12 /7
2,6 7 ic e π−= . From 

(17.54), 1/2 1/2 1/2 1/2 1/2 1/2 2 /7 1/2 2 /7 1/21 1
12 2 22( )(7 7 7 7 ) 2( )(7 7 7 7 )i ip e eπ π− − − − − − − − −= + + + +  

1/2 1/2 12 /7 1/2 12 /7 1/21 2 1
2 7 72( )(7 7 7 7 ) [2cos(2 /7) 2cos(12 /7)]i ie eπ π π π− − − − −+ = + + = 0.6420. 

By symmetry, this is the mobile bond order for all the C-C bonds. From (17.57), 
12 (1.521 0.186 0.6420) Å 1.402 ÅR = − ⋅ = . 

 (c)  The conjugated carbon framework and the HMOs of 2
8 8C H −  are the same as for 

8 8C H . The ten π electrons in 2
8 8C H −  fill the lowest five HMOs. From the comment after 

Eq. (17.45), the lowest five HMOs have 0, 1, 7, 2, 6k = . For each of these five HMOs, 
we use (17.44) to calculate the coefficients 1kc  and 2kc . We get  

1/2
1,0 2,0 8c c −= = ;   1/2

1,1 8c −= , 1/2 2 /8
2,1 8 ic e π−= ;   1/2

1,7 8c −= , 1/2 14 /8
2,7 8 ic e π−= , 

1/2
1,2 8c −= , 1/2 4 /8

2,2 8 ic e π−= ,   1/2
1,6 8c −= , 1/2 12 /8

2,6 8 ic e π−= .   From (17.54), 
1/2 1/2 1/2 1/2 1/2 1/2 2 /8 1/2 2 /8 1/21 1

12 2 22( )(8 8 8 8 ) 2( )(8 8 8 8 )i ip e eπ π− − − − − − − − −= + + + +  
1/2 1/2 14 /8 1/2 14 /8 1/21

22( )(8 8 8 8 )i ie eπ π− − − − −+ 1/2 1/2 4 /8 1/2 4 /8 1/21
22( )(8 8 8 8 )i ie eπ π− − − − −+ + +  

1/2 1/2 12 /8 1/2 12 /8 1/21
22( )(8 8 8 8 )i ie eπ π− − − − −+  

1
80.25 [2cos( /4) 2cos(14 /8) 2cos( /2) 2cos(12 /8)]π π π π= + + + + = 0.6036.  

By symmetry, this is the mobile bond order for all the C-C bonds. From (17.57), 
12 (1.521 0.186 0.6036) Å 1.409 ÅR = − ⋅ = . 

 
17.15 (a)  For the ua  HMOs, 

eff eff1 1
4 4 1 4 5 8 1 4 5 84 4

ˆ ˆ| | | | ( )g H g f f f f H f f f f α α α α α〈 〉 = 〈 − + − − + − 〉 = + + + = , 
eff eff1 1

4 5 1 4 5 8 2 3 6 74 4
ˆ ˆ| | | | ( )g H g f f f f H f f f f β β β β β〈 〉 = 〈 − + − − + − 〉 = + + + = , 

eff eff1
5 5 2 3 6 7 2 3 6 74

ˆ ˆ| | | |g H g f f f f H f f f f〈 〉 = 〈 − + − − + − 〉  
1
4 ( )α β β α α β β α α β= − − + + − − + = − .  

The symmetry orbitals are orthonormal, and the au secular equation is 
21

0, 0 1, 0.618, 1.618
1 1

k

k

e x
x x x

e x
α β
β α β
−

= = = − − = −
− − −
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 For the 2gb  HMOs, 
eff eff1 1

6 6 1 4 5 8 1 4 5 84 4
ˆ ˆ| | | | ( )g H g f f f f H f f f f α α α α α〈 〉 = 〈 − − + − − + 〉 = + + + =  

eff eff1 1
6 7 1 4 5 8 2 3 6 74 4

ˆ ˆ| | | | ( )g H g f f f f H f f f f β β β β β〈 〉 = 〈 − − + − − + 〉 = + + + =  
eff 3/2 eff 3/2 1/2

6 8 1 4 5 8 9 10
ˆ ˆ| | 2 | | 2 ( ) 2g H g f f f f H f f β β β β β− −〈 〉 = 〈 − − + − 〉 = + + + =

eff eff1
7 7 2 3 6 7 2 3 6 74

ˆ ˆ| | | |g H g f f f f H f f f f〈 〉 = 〈 − − + − − + 〉 =  
1
4 ( )α β β α α β β α α β− − + + − − + = −  

eff 3/2 eff
7 8 2 3 6 7 9 10

ˆ ˆ| | 2 | | 0g H g f f f f H f f−〈 〉 = 〈 − − + − 〉 =  
eff eff1 1

8 8 9 10 9 102 2
ˆ ˆ| | | | ( )g H g f f H f f α β β α α β〈 〉 = 〈 − − 〉 = − − + = −  

The secular equation is 

1/2 1/2

1/2 1/2

2 1 2
0 0, 1 1 0 0

2 0 2 0 1

k

k

k

e x
e x

e x

α β β
β α β

β α β

−
− − = − =

− − −

 

Expansion using the last row gives 2( 1)( 3) 0x x x− − − =  with the roots 
1, 2.303, 1.303x = − . 

 For the 1gb  HMOs, 
eff eff1 1

9 9 1 4 5 8 1 4 5 84 4
ˆ ˆ| | | | ( )g H g f f f f H f f f f α α α α α〈 〉 = 〈 + − − + − − 〉 = + + + =

eff eff1 1
9 10 1 4 5 8 2 3 6 74 4

ˆ ˆ| | | | ( )g H g f f f f H f f f f β β β β β〈 〉 = 〈 + − − + − − 〉 = + + + =  
eff eff1

10 10 2 3 6 7 2 3 6 74
ˆ ˆ| | | |g H g f f f f H f f f f〈 〉 = 〈 + − − + − − 〉 =  

1
4 ( )α β β α α β β α α β+ + + + + + + = +  

The secular equation is  
21

0, 0, 1 0, 0.618, 1.618
1 1

k

k

e x
x x x

e x
α β
β α β
−

= = + − = = −
+ − +

 

The HMO energies xα β−  (including those found on pages 612–613) are  
2.303 , 1.618 , 1.303 , , 0.618 ,α β α β α β α β α β+ + + + +

, 1.618 , 2.3030.618 , , 1.303 β βα β α β α β α α− −− − −  
(b)  The lowest HMO energy 2.303α β+  corresponds to the 3ub  root 2.303x = − . Use of 
this x value and the elements of the secular determinant on p. 612 gives as the equation for 
the coefficients of the symmetry orbitals 1 2 3, ,g g g  

1/2
1 2 3

1 2
1/2

1 3

2.303 2 0
1.303 0

2 1.303 0

c c c
c c

c c

− + + =

− =

− =

 

So 2 10.7675c c= ,  3 11.085c c= . Normalization gives 
2 2 2 2
1 2 3 11 (1 0.5891 1.177)c c c c= + + = + +  and 1 30.601c = , 2 50.461c = , 3 60.652c = . So 

1 1 1 2 2 3 3c g c g c gφ = + + =

1 4 5 8 2 3 6 7 9 100.301( ) 0.231( ) 0.461( )f f f f f f f f f f+ + + + + + + + + . 
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17.16 We have i i iE n eπ = ∑ , where the sum goes over  the HMOs and in  is the number of 

electrons in the ith HMO. Use of (17.8) gives  
eff eff effˆ ˆ ˆ*| | | | | |rii i i r ri r s si s r s si r se H c f H c f c c f H fφ φ= 〈 〉 = 〈∑ ∑ 〉 = ∑ ∑ 〈 〉   (Eq. 1) 

In the sums in Eq. 1, the following kinds of terms occur. For those terms with s r= , we 
have effˆ| |r sf H f α〈 〉 = , and these terms contribute 2| |rir cα ∑  to the double sum. For 

those terms with atom s not bonded to atom r, we have effˆ| | 0r sf H f〈 〉 = , and these 
terms contribute zero. For those terms with atom s bonded to r, we have 

effˆ| |r sf H f β〈 〉 = . There are two terms in the double sum in Eq. 1 for each pair of 
bonded atoms. For example, if carbons 2 and 3 are bonded, then Eq. 1 has the terms 

2 3*i ic c β  and 3 2*i ic c β . Thus, the contribution of terms from pairs of bonded atoms to the 
double sum in Eq. 1 is * *( )s r ri si si ric c c cβ −∑ + . Adding the contributions from the various 

kinds of terms, we have 2 * *| | ( )rii r s r ri si si rie c c c c cα β −= ∑ + ∑ + . Substitution into 

i i iE n eπ = ∑  gives 2 * *| | ( )]rii i r s r ri si si riE n c c c c cπ α β −⎡= ∑ ∑ + ∑ + =⎣  
2 * *| | ( ) 2rir i i s r i i ri si si ri r r s r rsn c n c c c c q pα β α β− −∑ ∑ + ∑ ∑ + = ∑ + ∑ , where (17.53) and 

(17.54) were used and s r−∑  denotes a sum over carbon–carbon bonds. 

 

17.17 (a)  For tot
rsp  equal to 1 and to 3, Eq. (17.57) gives 1.521 Å and 1.149 Å, respectively. The 

typical carbon–carbon single-bond length is 1.53 to 1.54 Å, and the typical carbon–carbon 
triple-bond length is 1.20 Å. 

 (b)  We use the numbering in the figure in Prob. 17.20 part (c). The HMO bond orders, 
the bond lengths found from (17.57), and the experimental lengths [given as the averages 
of three determinations of azulene bond lengths listed in J. M. L. Martin et al., J. Phys. 
Chem., 100, 15358 (1996)] are 

r–s 1–2 1–9 9–10 8–9 7–8 6–7 
tot
rsp  1.656 1.596 1.401 1.586 1.664 1.639 

,(16.63)rsR /Å 1.399 1.410 1.446 1.412 1.397 1.402 

,experrsR /Å 1.395 1.410 1.494 1.386 1.402 1.393 

 An online HMO calculator is at www.chem.ucalgary.ca/SHMO/ 
 
17.18 Equation (17.58) gives 1 2 3 4 12 23 34( ) 2 ( )E q q q q p p pπ α β= + + + + + + =  

(1 1 1 1) 2 (0.894 0.447 0.894)α β+ + + + + + = 4.47α β4 + .   
From (17.27) and Fig. 17.1, 2( 1.618 ) 2( 0.618 ) 4Eπ α β α β α β= + + + = + 4.472 . 
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17.19 1/2
1 12 43 1.732 0.894 0.838F p F= − = − = = .  

1/2
2 12 23 33 ( ) 1.732 0.894 0.447 0.391F p p F= − + = − − = = . The larger value for carbon 1 

indicates that an end carbon is preferentially attacked by free radicals. 
 
17.20 (a)   

              
 
 (b)   

    
 
 (c)  It is impossible to do this for azulene: 

 
 For example, if we star carbons 1, 3, 4, 6, and 8, this leaves the unstarred atoms 9 and 10 

bonded to each other 
 

17.21 Equations (17.9) and (17.14) give eff
C[( ) ] 0, 1, 2, ,s rs rs i siH e c r nδ∑ − = = … . From (17.11) 

to (17.13): when s r= , the sum has the term ( )i rie cα − ; atoms s that are bonded to r 
contribute the terms s r sicβ→∑ ; atoms s not bonded to r contribute 0. Thus (17.9) 
becomes ( ) 0i ri s r sie c cα β→− + ∑ = . Division by β and use of (17.20) gives 

C0, 1, 2, ,i ri s r six c c r n→+ ∑ = = … . 

 (b)  Let the two sets of carbons (starred and unstarred) be called A and B. Let the carbon 
atoms in set A be numbered 1, 2,…, h and those in set B be numbered h + 1, h + 2,…, nC. 
Then the set of equations in part (a) consists of the two sets 

*

* *

*

* **

* *

1 

2

3
4 

5 

6 

7 
8 

9 

10
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0, 1, 2, ,i ri s r six c c r h→+ ∑ = = …  (set 1) and C0, 1, 2, ,i ri s r six c c r h h n→+ ∑ = = + + …  
(set 2). Since the atoms r in the equations of set 1 belong to set A, the atoms s bonded to 
each r in the set 1 equations belong to set B. In the equations of set 2, the atoms r belong 
to B and the atoms s belong to A. We now make the following changes in all the equations 
of sets 1 and 2. We replace ix  by ix−  and replace the coefficients of the atoms of set A by 
their negatives. The set A atoms are the r atoms in set 1 and are the s atoms in set 2. 
Hence the set 1 equations become ( )( ) 0, 1, 2, ,i ri s r six c c r h→− − + ∑ = = … . These 
equations are unchanged from their previous forms and so are satisfied. The set 2 
equations become C( ) ( ) 0, 1, 2, ,i ri s r six c c r h h n→− + ∑ − = = + + … . The left side of each 
equation has been multiplied by –1, and since the right side is zero, these equations are 
still satisfied. 

 
17.22 (a)  From Fig. 17.5, the HMO energies are 2 , , , 2α β α α α β+ − . The molecule has four 

π electrons and 2( 2 ) 1( ) 1( ) 4 4i i iE n eπ α β α α α β= ∑ = + + + = + . The energy of the four 
π electrons in two isolated double bonds is [as noted after E. (17.50)] 4 4α β+ . 
Subtraction gives the delocalization energy as 0. 

 (b)  As noted after Eq. (17.45), the lowest MO has 0k =  and the next two MOs have 
1k =  and 3k = . From (17.44), the coefficients of the carbon 1 and 2 AOs in the occupied 

MOs are 1
1,0 2c = , 1

2,0 2c = ;   1
1,1 2c = , 2 /41 1

2,1 2 2
ic e iπ= = ;   1

1,3 2c = , 6 /41 1
2,3 2 2

ic e iπ= = − . 

Then (17.54) gives 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2(2)( ) (1)( ) (1)[ ( ) ] 0.5p i i i i= + + − + − + =  

and tot
12 1.5p = . By symmetry, tot tot tot

23 34 41 1.5p p p= = = . 

 

17.23 From (17.53), 2 2| | | |r r r i i ri i i r ri i iq n c n c n nπ∑ = ∑ ∑ = ∑ ∑ = ∑ = , where we used the 
normalization condition (17.16) and the fact that the sum of the numbers of π electrons in 
the various HMOs gives the total number of π electrons. 

 
17.24 (a)  With the overlap integral for each pair of bonded carbons taken as S and the 

assumptions (17.11) to (17.13) used, the HMO secular equation (17.9) for benzene is 
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0 0 0
0 0 0

0 0 0
0

0 0 0
0 0 0

0 0 0

i i i

i i i

i i i

i i i

i i i

i i i

e Se Se
Se e Se

Se e Se
Se e Se

Se e Se
Se Se e

α β β
β α β

β α β
β α β

β α β
β β α

− − −
− − −

− − −
=

− − −
− − −

− − −

,    

1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1

w
w

w
w

w
w

=  where each row of the first determinant was divided by 

iSeβ − , so ( )/( )i iw e Seα β≡ − − .  
(b)  Solving the definition of w in part (a), we get 

  (1 ) ( )
1 1 1 1 1i

w w Sw Sw Sw w S we
Sw Sw Sw Sw Sw

α β α β α α α β α γα− − + − − −
= = = − = −

− − − − −
  

 where Sγ β α≡ − . 
(c)  As noted in part (a), the w values are the same as the x values found without overlap. 
Hence from (17.35), w = –2, –1, –1, 1, 1, 2. The formula in (b) with S = 0.25 gives ie =  

( 2) /[1 0.25( 2)] 1.33 , 0.80 , 0.80 , 1.33 , 1.33 , 4α γ α γ α γ α γ α γ α γ α γ− − − − = + + + − − −
. 

 (d)  Use of the orbital-energy formula of part (b) gives  

LU HO
LUMO HOMO

LU HO1 1
w whch e e

Sw Sw
γ γν α α

λ
⎛ ⎞

= = − = − − −⎜ ⎟− −⎝ ⎠
 

HO LU LU HO HO LU
2

LU HO LU HO LU HO

(1 ) (1 )1
(1 )(1 ) 1 ( )

w Sw w Sw w w
hc Sw Sw hc S w w S w w
γ γ

λ
− − − −

= =
− − + − +

  

 The w values are the same as the x values found without overlap, and for an alternant 
hydrocarbon, LU HOx x= − . so LU HOw w= −  with overlap included. Hence LU HO 0w w+ = . 

Also, 2
LU HO LU LU LUw w w w w= − = − . Note that LU HO LU LU LU| | | | 2 | |w w w w w wΔ ≡ − = + =  

and 2 2
LU( ) 4w wΔ = , so 2 21

LU HO LU 4 ( )w w w w= − = − Δ . The equation for 1/λ  becomes 

2 21
4

1 | |
1 ( )

w
hc S w
γ

λ
Δ

=
− Δ

. 

 

17.25 From (17.60) and (17.63) with r s= , core 1
, , 1 1 2[( | ) ( | )]b b
rr rr t u tuF H P rr tu ru trπ π = == + ∑ ∑ − =   

core core1 1
, , 1 1 , 12 2( ) ( )b b b
rr rr t u tu tu rt ru tr rt rr t tt rt tr tr rtF H P H P Pπ π πδ γ δ δ γ γ δ γ= = == + ∑ ∑ − = + ∑ − =  

core 1
, 1 2

b
rr t tt rt rr rrH P Pπ γ γ=+ ∑ − . 
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From (17.60) and (17.63) with r s≠ , core 1
, , 1 1 2[( | ) ( | )]b b
rs rs t u tuF H P rs tu ru tsπ π = == + ∑ ∑ − =  

core core1 1
, 1 1 , 12 2( ) [ (0) ]b b b
rs t u tu rs tu rt ru ts rt rs t tt rt tr ts rtH P H P Pπ πδ δ γ δ δ γ γ δ γ= = =+ ∑ ∑ − = + ∑ − =

core 1
, 2rs sr rsH Pπ γ− , where rsδ  was replaced by 0, since r s≠ .  

 
17.26 There are two valence AOs, 1sA and 1sB, so the sum in (17.66) contains two terms and the 

secular determinant in (17.68) has order 2. From (17.70), eff eff
11 22 13.6 eVH H= = − . From 

(17.71), eff eff eff1
12 11 22 12 12 122 (1.75)( ) 1.75(0.5)(13.6 13.6) eV 23.8 eVH H H S S S= + = − + = − . 

The secular equation (17.68) is  
eff eff
11 12 12 eff 2 eff 2 eff eff

11 12 12 11 12 12eff eff
12 12 11

0, ( ) ( ) 0, ( )i i
i i i i

i i

H e H e S
H e H e S H e H e S

H e S H e

− −
= − − − = − = ± −

− −
eff eff
11 12 12

12 12

( 13.6 23.8 ) eV
1 1i

H H Se
S S
± −

= =
± ±

∓             where 21
12 3(1 )RS e R R−= + +  

where R is in atomic units (bohrs). From (17.67), val 2 iE e= . We set up a spreadsheet with 
R values in column A, 12S  values in column B, one valE  value in column C and the 
second valE  in column D. The results are  

-41

-36

-31

-26

-21

-16

-11

-6
0 1 2 3 4 5 6

R /bohr

 
 For all values of R, the valE  found using the lower signs in the formula lies above the 

other valE . The ground state valE  continually decreases as R decreases and the excited-
state valE  continually increases as R decreases. The EHT method (which omits 
internuclear repulsion) fails completely, predicting a bond distance of 0.  
         If symmetry orbitals are used, then the unnormalized symmetry orbitals are 

1 1 2H 1 H 1g s s= +  and 2 1 2H 1 H 1g s s= − . We have 
eff eff eff

1 eff 1 1 2 eff 1 2 11 22 12
ˆ ˆ| | H 1 H 1 | |H 1 H 1 2g H g s s H s s H H H〈 〉 = 〈 + + 〉 = + + =  eff eff

11 122( )H H+  
and 1 1 1 2 1 2 12| H 1 H 1 |H 1 H 1 2 2g g s s s s S〈 〉 = 〈 + + 〉 = + . The symmetry orbitals 1g  and 2g  
belong to different symmetry species, so the secular equation for the ground electronic 

Eval/eV 
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state is 1 eff 1 1 1
ˆ| | | 0ig H g e g g〈 〉 − 〈 〉 = . So 

eff eff
1 eff 1 1 1 11 12 12

ˆ| | / | ( )/(1 )ie g H g g g H H S= 〈 〉 〈 〉 = + +  = as above.  

 
17.27 (a)  We number the valence AOs as follows: 
 

1 2 3 4 5 6 7 8 

1H 1s  2H 1s  3H 1s 4H 1s C2s C2 xp C2 yp C2 zp  

 From (17.70), eff eff eff eff
11 22 33 44 13.6 eVH H H H= = = = − ; eff

55 20.8 eVH = − , 
eff eff eff
66 77 88 11.3 eVH H H= = = − . The molecule is tetrahedral with CH 41.09R =  Å = 2.067 

bohr. The distance between two H's is given by the law of cosines as 
2 2 1/2 1/2

HH /Å [(1.094) (1.094) 2(1.094)(1.094)cos109.47 ] 1.094(8/3) 1.786R = + − ° = =  and 

HH 3.376R =  bohr. Equation (13.60) with 1k =  gives 12 13 34S S S= = = =" 0.2795. 
Orthogonality gives 56 57 58 67 68 78 0S S S S S S= = = = = = . Slater's rules give the orbital 
exponents as 1.625 for C2s and C2p and 1 for H1s.  
        For 15 1H 1 | C2S s s= 〈 〉 , the parameters defined in the Prob. 15.24 solution have the 
values 1

2 (1 1.625)2.067 2.713p = + = , (1 1.625) / (1 1.625) 0.238t = − + = − . Interpolation 
in the MROO reference of Prob. 15.29 gives 15 25 35 450.568S S S S= = = = .  
        To evaluate 16 1H 1 | C2 xS s p= 〈 〉 , we express C2 xp  as a linear combination of a 2p 
AO on an axis that points to H1 (a 2 pσ  AO) and a 2p AO on an axis perpendicular to the 
C-H1 line (a 2 pπ  AO), as was done in Prob. 15.24. The x axis and the C-H1 line in Fig. 
15.9 are in the directions (1, 0, 0) and (1, 1, 1), respectively. Use of the vector dot product 
shows that the angle α between these directions satisfies 1/21(1) 0(1) 0(1) 1(3 )cosα+ + = , 
so 1/2cos 3α −=  and 54.736α = ° . We use modified versions of Fig. 15.6 and Eq. (15.40) 
in which z and z′  are changed to x and x′ , respectively. The 2px  and 2py AOs are 
proportional to x and y, respectively, and multiplication of the modified equations in 
(15.40) by the exponential part of a 2p AO gives 
2 2 2 cos 2 sinx x yp p p pσ α α′ = = +     and     2 2 2 sin 2 cosy x yp p p pπ α α′ = = − + . 

(Note that the y direction in these equations is not the same as the y direction in Fig. 15.9.) 
From these two equations, we get (using Cramer's rule) 
2 2 cos 2 sin 0.5773(2 ) 0.8165(2 )xp p p p pσ α π α σ π= − = −  
Then 1 1 1H 1 | C2 0.5773 H 1 | C2 0.8165 H 1 | C2xs p s p s pσ π〈 〉 = 〈 〉 − 〈 〉 . The overlap of the 
negative half of C2pπ with H11s cancels the overlap of the positive half of C2pπ with 
H11s, so 1H 1 | C2s pπ〈 〉  = 0. For 1H 1 | C2s pσ〈 〉 , p = 2.713 and t = –0.238. Interpolation in 
the MROO tables gives 1H 1 | C2s pσ〈 〉  = 0.464, so 1H 1 | C2 xs p〈 〉  = 0.5773(0.464) = 0.268 
= 16S .  
       The angle between the C-Hl line and the y axis (or the z axis) in Fig. 15.9 is the same 
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as that between C-Hl and the x axis, so 1 1 1H 1 | C2 H 1 | C2 H 1 | C2x y zs p s p s p〈 〉 = 〈 〉 = 〈 〉 =  

17 180.268 S S= = . 
        The angle β between the C-H2 line and the positive side of the y axis in Fig. 15.9 is 
found (using the dot product) to have cos β = –3–1/2, and the same procedure used for 

1H 1 | C2 xs p〈 〉  gives 2H 1 | C2 ys p〈 〉  = –0.268 = 27S . (This is clear from Fig. 15.9, where 
we see that whereas H11s overlaps mainly the positive half of C2 xp , H21s overlaps 
mainly the negative half of C2 yp .) Similarly, 2H 1 | C2 zs p〈 〉  = –0.268 = 28S . Also, 

26 0.268S = , 36 0.268S = − , 37 0.268S = , 38 0.268S = − , 46 0.268S = − , 47 0.268S = − , 

48 0.268.S =   

       Equation (17.71) gives eff
12 0.5(1.75)( 13.6  eV 13.6 eV)0.2795 6.65 eVH = − − = −  = 

eff eff eff
13 14 34H H H= =" ;   eff

15 0.5(1.75)( 13.6 eV 20.3 eV)0.568 16.8 eVH = − − = − =  

25 35 45H H H= = ;   
eff eff eff
16 17 18 0.5(1.75)( 13.6 eV 11.3 eV)0.268 5.84 eVH H H= = = − − = − ;   
eff eff
27 28 5.84 eVH H= = , etc. 

        The secular equation effdet( ) 0rs i rsH e S− =  is 

12 12 12 15 16 16 16

12 12 12 15 16 16 16

12 12 12 15 16 16 16

12 12 12 15 1

i i i i i i i i

i i i i i i i i

i i i i i i i i

i i i i i

a e d S e d S e d S e f S e k S e k S e k S e
d S e a e d S e d S e f S e k S e k S e k S e
d S e d S e a e d S e f S e k S e k S e k S e
d S e d S e d S e a e f S e k S

− − − − − − − −
− − − − − − − + − +
− − − − − − + − − +
− − − − − − + 6 16 16

15 15 15 15

16 16 16 16

16 16 16 16

16 16 16 16

0
0 0 0

0 0 0
0 0 0
0 0 0

i i i

i i i i i

i i i i i

i i i i i

i i i i i

e k S e k S e
f S e f S e f S e f S e b e
k S e k S e k S e k S e c e
k S e k S e k S e k S e c e
k S e k S e k S e k S e c e

− + −
=

− − − − −
− − − + − + −
− − + − − + −
− − + − + − −

 

 where 13.6 eVa ≡ − , 20.8 eVb ≡ − , 11.3 eVc ≡ − , 6.65 eVd ≡ − , 16.8 eVf ≡ − , 
5.84 eVk ≡ − , and the S values are given earlier in this solution. 

 (b)  The unnormalized symmetry orbitals for the hydrogens are given by (15.42) to 
(15.45). The C2s, C2 xp , C2 yp , C2 zp  AOs are symmetry orbitals. Let the symmetry 
orbitals (15.42) and C2s, which belong to symmetry species 1a , be numbered 1 and 2. Let 
the 2t  symmetry orbitals be numbered as follows: 

(15.43) C2 xp (15.44) C2 yp (15.45) C2 zp  

3g  4g  5g  6g  7g  8g  

 The matrix elements for the 1a  orbitals are 

1 eff 1 1 2 3 4 eff 1 2 3 4
ˆ ˆ| | H 1 H 1 H 1 H 1 | |H 1 H 1 H 1 H 1g H g s s s s H s s s s〈 〉 = 〈 + + + + + + 〉 =  

eff eff eff eff eff eff eff eff eff eff
11 22 33 44 12 13 14 23 24 342 2 2 2 2 2H H H H H H H H H H+ + + + + + + + + =  

eff eff
11 124 12 4 12H H a d+ = +  (where the notation and AO numbering of part (a) are used); 

eff
1 eff 2 1 2 3 4 eff 15

ˆ ˆ| | H 1 H 1 H 1 H 1 | |C2 4 4g H g s s s s H s H f〈 〉 = 〈 + + + 〉 = = ; 
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eff
2 eff 2 eff 55

ˆ ˆ| | C2 | |C2g H g s H s H b〈 〉 = 〈 〉 = = ; 

1 1 1 2 3 4 1 2 3 4 12| H 1 H 1 H 1 H 1 |H 1 H 1 H 1 H 1 4 12g g s s s s s s s s S〈 〉 = 〈 + + + + + + 〉 = + ; 

1 2 1 2 3 4 15| H 1 H 1 H 1 H 1 |C2 4g g s s s s s S〈 〉 = 〈 + + + 〉 = ; 2 2| C2 |C2 1g g s s〈 〉 = 〈 〉 = .  
The 1a  secular equation is 

                                  12 15

15

4 12 (4 12 ) 4 4
0

4 4
i i

i i

a d S e f S e
f S e b e

+ − + −
=

− −
 

 The matrix elements for the 2t  orbitals are 

3 eff 3 1 2 3 4 eff 1 2 3 4
ˆ ˆ| | H 1 H 1 H 1 H 1 | |H 1 H 1 H 1 H 1g H g s s s s H s s s s〈 〉 = 〈 + − − + − − 〉  

eff eff eff eff eff eff eff eff eff eff
11 22 33 44 12 13 14 23 24 342 2 2 2 2 2H H H H H H H H H H= + + + + − − − − +  

eff eff
11 124 4 4 4H H a d= − = − ; 

eff eff eff eff
3 eff 4 1 2 3 4 eff 16 26 36 46

ˆ ˆ| | H 1 H 1 H 1 H 1 | |C2 4xg H g s s s s H p H H H H k〈 〉 = 〈 + − − 〉 = + − − =

3 eff 5 1 2 3 4 eff 1 2 3 4
ˆ ˆ| | H 1 H 1 H 1 H 1 | |H 1 H 1 H 1 H 1g H g s s s s H s s s s〈 〉 = 〈 + − − − + − 〉  

eff eff eff eff
11 22 33 44 0H H H H= − − + + =" ; 

eff eff eff eff
3 eff 6 1 2 3 4 eff 17 27 37 47

ˆ ˆ| | H 1 H 1 H 1 H 1 | |C2 0yg H g s s s s H p H H H H〈 〉 = 〈 + − − 〉 = + − − = ; 

3 eff 7 1 2 3 4 eff 1 2 3 4
ˆ ˆ| | H 1 H 1 H 1 H 1 | |H 1 H 1 H 1 H 1 0g H g s s s s H s s s s〈 〉 = 〈 + − − − − + 〉 = ; 

eff eff eff eff
3 eff 8 1 2 3 4 eff 18 28 38 48

ˆ ˆ| | H 1 H 1 H 1 H 1 | |C2 0zg H g s s s s H p H H H H〈 〉 = 〈 + − − 〉 = + − − = ;

4 eff 4 eff
ˆ ˆ| | C2 | |C2x xg H g p H p c〈 〉 = 〈 〉 = ;   

eff eff eff eff
4 eff 5 eff 1 2 3 4 16 26 36 46

ˆ ˆ| | C2 | |H 1 H 1 H 1 H 1 0xg H g p H s s s s H H H H〈 〉 = 〈 − + − 〉 = − + − =

4 eff 6 eff
ˆ ˆ| | C2 | |C2 0x yg H g p H p〈 〉 = 〈 〉 = ; 

eff eff eff eff
4 eff 7 eff 1 2 3 4 16 26 36 46

ˆ ˆ| | C2 | |H 1 H 1 H 1 H 1 0xg H g p H s s s s H H H H〈 〉 = 〈 − − + 〉 = − − + = ;

4 eff 8 eff
ˆ ˆ| | C2 | |C2 0x zg H g p H p〈 〉 = 〈 〉 = ;

5 eff 5 1 2 3 4 eff 1 2 3 4
ˆ ˆ| | H 1 H 1 H 1 H 1 | |H 1 H 1 H 1 H 1g H g s s s s H s s s s〈 〉 = 〈 − + − − + − 〉

eff eff
11 124 4 4 4 ;H H a d= − = −  

eff eff eff eff
5 eff 6 1 2 3 4 eff 17 27 37 47

ˆ ˆ| | H 1 H 1 H 1 H 1 | |C2 4yg H g s s s s H p H H H H k〈 〉 = 〈 − + − 〉 = − + − =

5 eff 7 1 2 3 4 eff 1 2 3 4
ˆ ˆ| | H 1 H 1 H 1 H 1 | |H 1 H 1 H 1 H 1 0;g H g s s s s H s s s s〈 〉 = 〈 − + − − − + 〉 =  

eff eff eff eff
5 eff 8 1 2 3 4 eff 18 28 38 48

ˆ ˆ| | H 1 H 1 H 1 H 1 | |C2 0zg H g s s s s H p H H H H〈 〉 = 〈 − + − 〉 = − + − = ;

6 eff 6 eff
ˆ ˆ| | C2 | |C2y yg H g p H p c〈 〉 = 〈 〉 = ; 

eff eff eff eff
6 eff 7 eff 1 2 3 4 17 27 37 47

ˆ ˆ| | C2 | |H 1 H 1 H 1 H 1 0yg H g p H s s s s H H H H〈 〉 = 〈 − − + 〉 = − − + = ; 

6 eff 8 eff
ˆ ˆ| | C2 | |C2 0y zg H g p H p〈 〉 = 〈 〉 = ;

7 eff 7 1 2 3 4 eff 1 2 3 4
ˆ ˆ| | H 1 H 1 H 1 H 1 | |H 1 H 1 H 1 H 1g H g s s s s H s s s s〈 〉 = 〈 − − + − − + 〉  

eff eff
11 124 4 4 4 ;H H a d= − = −  

eff eff eff eff
7 eff 8 1 2 3 4 eff 18 28 38 48

ˆ ˆ| | H 1 H 1 H 1 H 1 | |C2 4zg H g s s s s H p H H H H k〈 〉 = 〈 − − + 〉 = − − + =

8 eff 8 eff
ˆ ˆ| | C2 | |C2z zg H g p H p c〈 〉 = 〈 〉 =  
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3 3 1 2 3 4 1 2 3 4 12| H 1 H 1 H 1 H 1 |H 1 H 1 H 1 H 1 4 4g g s s s s s s s s S〈 〉 = 〈 + − − + − − 〉 = − ; 

3 4 1 2 3 4 16 26 36 46 16| H 1 H 1 H 1 H 1 |C2 4xg g s s s s p S S S S S〈 〉 = 〈 + − − 〉 = + − − = ;

3 5 1 2 3 4 1 2 3 4| H 1 H 1 H 1 H 1 |H 1 H 1 H 1 H 1 0g g s s s s s s s s〈 〉 = 〈 + − − − + − 〉 = ; 

3 6 1 2 3 4 17 27 37 47| H 1 H 1 H 1 H 1 |C2 0yg g s s s s p S S S S〈 〉 = 〈 + − − 〉 = + − − = ;

3 7 1 2 3 4 1 2 3 4| H 1 H 1 H 1 H 1 |H 1 H 1 H 1 H 1 0g g s s s s s s s s〈 〉 = 〈 + − − − − + 〉 = ;  

3 8 1 2 3 4 18 28 38 48| H 1 H 1 H 1 H 1 |C2 0zg g s s s s p S S S S〈 〉 = 〈 + − − 〉 = + − − = ; 

4 4| C2 |C2 1x xg g p p〈 〉 = 〈 〉 = ;

4 5 1 2 3 4 16 26 36 46| C2 |H 1 H 1 H 1 H 1 0xg g p s s s s S S S S〈 〉 = 〈 − + − 〉 = − + − = ;

4 6| C2 |C2 0x yg g p p〈 〉 = 〈 〉 =  

4 7 1 2 3 4 16 26 36 46| C2 |H 1 H 1 H 1 H 1 0xg g p s s s s S S S S〈 〉 = 〈 − − + 〉 = − − + = ; 

4 8| C2 |C2 0;x zg g p p〈 〉 = 〈 〉 =

5 5 1 2 3 4 1 2 3 4 12| H 1 H 1 H 1 H 1 |H 1 H 1 H 1 H 1 4 4g g s s s s s s s s S〈 〉 = 〈 − + − − + − 〉 = − ; 

5 6 1 2 3 4 17 27 37 47 16| H 1 H 1 H 1 H 1 |C2 4yg g s s s s p S S S S S〈 〉 = 〈 − + − 〉 = − + − = ;

5 7 1 2 3 4 1 2 3 4| H 1 H 1 H 1 H 1 |H 1 H 1 H 1 H 1 0;g g s s s s s s s s〈 〉 = 〈 − + − − − + 〉 =    

5 8 1 2 3 4 18 28 38 48| H 1 H 1 H 1 H 1 |C2 0zg g s s s s p S S S S〈 〉 = 〈 − + − 〉 = − + − = ; 

6 6| C2 |C2 1y yg g p p〈 〉 = 〈 〉 = ;

6 7 1 2 3 4 17 27 37 47| C2 |H 1 H 1 H 1 H 1 0yg g p s s s s S S S S〈 〉 = 〈 − − + 〉 = − − + = ;

6 8| C2 |C2 0y zg g p p〈 〉 = 〈 〉 = ;

7 7 1 2 3 4 1 2 3 4 12| H 1 H 1 H 1 H 1 |H 1 H 1 H 1 H 1 4 4g g s s s s s s s s S〈 〉 = 〈 − − + − − + 〉 = − ;   

7 8 1 2 3 4 18 28 38 48 16| H 1 H 1 H 1 H 1 |C2 4zg g s s s s p S S S S S〈 〉 = 〈 − − + 〉 = − − + = ;       

8 8| C2 |C2 1z zg g p p〈 〉 = 〈 〉 = .  
       The secular equation is 

0 0 0 0
0 0 0 0

0 0 0 0
0

0 0 0 0
0 0 0 0
0 0 0 0

i

i

i

A B
B c e

A B
B c e

A B
B c e

−

=
−

−

 

 where 124 4 (4 4 ) iA a d S e≡ − − − , 164 4 iB k S e≡ − , and the notation is as in part (a). 

 
17.28 In the ZDO approximation (17.62) and (17.63), ( | )rs tu  equals rs tu rtδ δ γ  and is zero 

unless r = s and t = u. The CNDO method uses the ZDO approximation for all electron-
repulsion integrals, and so neglects all integrals with r s≠  and/or with t u≠ . Thus 
CNDO neglects integrals b, d, e, f, and g. INDO neglects fewer integral than CNDO, in 
that the ZDO approximation is not applied when r, s, t, and u are all centered on the same 
atom. The AOs in integral b are all on the same atom, so INDO does not neglect b but 
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still neglects d, e, f, and g. MNDO uses the NDDO approximation, in which the ZDO 

approximation 1*(1) (1) 0r sf f d =v  is used only when rf  and sf  are on different atoms. 
Hence in NDDO, ( | )rs tu  in (14.39) is zero only if either r and s are on different atoms or 
t and u are on different atoms. Hence MNDO does not neglect integrals b and f, but 
neglects d, e, and g. AM1 neglects the same integrals as MNDO, namely, d, e, and g. 

 

17.29 Substitution in the equation on p. 627 gives 
2,298,H O( )f gH °Δ =  

23 1(6.02214 10 mol )( 493.358 144.796 2 11.396 316.100)eV−× − + + ⋅ + +  
 [2(52.102) + 59.559] kcal/mol = 

24 19(5.82341 10 eV)(1.602177 10 J/eV) 163.763 kcal/mol−− × × +  =  
–933.013 kJ/mol + 163.763 kcal/mol = –59.232 kcal/mol 

 
17.30 (a)  The results are (where C1 is an end carbon) 

propane /Dμ  
,298,f gH °Δ  RCC/Å

1C H /ÅR  2C H /ÅR ∠CCC ∠HC1H ∠HC2H

AM1 0.004 –24.3 kcal/mol 1.507 1.117 1.122 111.8° 108.4° 107.1° 
PM3 0.005 –23.6 kcal/mol 1.512 1.098 1.108 111.8° 107.4° 105.6° 
exper. 0.083 –25.0 kcal/mol 1.526 1.091 1.096 112.4° 107.7° 106.1° 

 (b)   
H2S /Dμ

,298,f gH °Δ  RHS/Å ∠HSH

AM1 1.98 4.0 kcal/mol 1.317 98.8° 
PM3 1.77 –0.9 kcal/mol 1.290 93.5° 
exper. 0.97 –4.9 kcal/mol 1.328 92.2° 

 (c)   
benzene ,298,f gH °Δ  RCC/Å RCH/Å

AM1 22.0 kcal/mol 1.395 1.110 
PM3 23.5 kcal/mol 1.391 1.095 
exper. 19.8 kcal/mol 1.397 1.084 

17.31 The differences between ,298,f gH °Δ  for the geometry-optimized eclipsed and staggered 

forms give a barrier of 1.25 kcal/mol in AM1 and 1.4 kcal/mol in PM3. These results are 
in poor agreement with the experimental value 2.9 kcal/mol. 

 
17.32 The results are  

CH2O /Dμ RCH/Å RCO/Å ∠HCH
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AM1 2.32 1.110 1.227 115.6° 
exper. 2.33 1.111 1.205 116.1 

  
wavenumbers/cm–1 

1b  2b  1a  1a  1a  2b  

AM1 1155* 1162* 1443 2053 3121 3083 
experimental 1167 1249 1500 1746 2783 2843 

 where the symmetry species of the vibrations are listed. (*One finds that different 
programs running AM1 give somewhat different wavenumbers for the two lowest 
frequencies.) 

 
17.33 Partial results are (where the carbons are numbered 1, 2, 3, 4 starting at one end) 

butane AM1 /Dμ  
,298fH °Δ  12 /ÅR 23 /ÅR (4321)D  ∠123 

gauche 0.005 –30.5 kcal/mol 1.507 1.515 74.7° 112.7° 
anti 0 –31.2 kcal/mol 1.507 1.514 180° 111.6° 

 
17.34 Results are (where the conformers I and II are shown in the Prob. 15.57 solution) 

AM1 μ ∠HC=O ∠OCO ∠COH RCH RC=O RCO ROH 

I 1.48 D 130.1° 117.6° 110.6° 1.103 Å 1.230 Å 1.357 Å 0.971 Å
II 4.02 D 127.3° 114.1 109.6° 1.105 Å 1.227 Å 1.366 Å 0.966 Å

 The predicted ,298fH °Δ  values are –97.4 kcal/mol for I and –90.0 kcal/mol for II. 

 
17.35 (a)  Use of MOPAC in WebMO to first optimize the geometry and then find the 

vibrational wavenumbers gives the following PM6 results: 249, 1003, 1074, 1137.5, 
1250.3, 1250.6, 1321, 1354.5, 2556, 2674, 2683, 2759 cm–1. 

 (b)  With anharmonicity neglected, the zero-point energy (ZPE) per molecule is 
34 8 –11

2 0.5(6.6261 10  J s)(2.9979 10  m/s)(19311 cm )(100 cm)/(1 m)i ihc ν −∑ = × × =�  
191.918 10  J.−×  The ZPE per mole is 
19 23 1(1.918 10  J)(6.0221 10  mol ) 115.5 kJ/mol = 27.6 kcal/mol.− −× × =  

 (c)  1138 cm–1 for CO stretching; 2556 cm–1 for OH stretching; 249 cm–1 for CO torsion; 
1355 cm–1 for COH bending; 2759 cm–1 for symmetric CH stretching. 

 (d)  The Tables of Molecular Vibrational Frequencies Consolidated Volume I, T. 
Shimanouchi, at www.nist.gov/data/nsrds/NSRDS-NBS-39.pdf gives the following 
fundamental wavenumbers in cm–1: 1033 for CO stretching, 1060 for CH3 rocking, 1165 
for CH3 rocking, 1345 for OH bending, 1455 for CH3 symmetric deformation, 1477 for 
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CH3 deformation, 1477 for CH3 deformation, 2844 for symmetric CH3 stretching, 2960 
for CH3 stretching, 3000 for CH3 stretching, 3681 for OH stretching. Because of 
interaction between torsion (internal rotation) and molecular rotation, the torsional 
frequency is not well defined, but this reference lists two related quantities as 200 and 295 
cm–1. The PM6 OH stretching shows a huge error. 

    Use of MOPAC in WebMO to first optimize the geometry and then find the vibrational 
wavenumbers gives the following RM1 results in cm–1: 308 (CO torsion), 1011, 1094, 
1257, 1260, 1280, 1381 (COH bending), 1461 (CO stretching), 2957,  2977, 3018 
(symmetric CH stretching), 3332 (OH stretching). 

 
17.36 Results are 

AM1 RHC/Å RCN/Å RHN/Å ∠HCN
HCN 1.069 1.160  180° 
transition state 1.298 1.216 1.398 67.5° 
HNC  1.178 0.967 180° 

 
17.37 (a)  F3COH has 5 bonds and so has 5 bond-stretching terms. There are 1

2 (4)3 6=  different 

ways to select two of the four atoms bonded to C, so there are 6 bond angles centered at C. 
There is one bond angle at O. Thus there are 7 bond-bending terms. There are three 1,4 
atom pairs, namely, Fa -H, Fb -H, Fc -H, where the subscripts label the F atoms bonded to 
C. Hence there are 3 torsion terms. With three 1,4 atoms and no 1,5 atoms, there are 3 van 
der Waals terms and 3 electrostatic terms. 

 (b)  Cl3CCCl2OH has 8 bonds and so has 8 bond-stretching terms. There are 6 bond angles 
centered at the end C, 6 centered at the second C, and one at the O, giving 13  
bond-bending terms. There are 9 pairs of 1,4 atoms that have the two carbon atoms as 
atoms 2 and 3 (as in ethane), and 3 pairs of 1,4 atoms that have C and O as atoms 2 and 3, 
so we have 12 torsion terms. Besides these twelve 1,4 atom pairs, there are three 1,5 atom 
pairs, each such pair consisting of an H and one of the Cl atoms on the end C. Thus there 
are 15 van der Waals terms and 15 electrostatic terms. 

 

17.38 (a)  Setting 0V =  at R σ= , we have 12 60 / /a bσ σ= −  and 6a bσ= . Substitution of this 
expression for a into V gives 6 12 6/ /V b R b Rσ= − . 

 (b)  At the minimum, we have 6 13 7/ 0 12 / 6 /dV dR b R b Rσ= = − + . Solving this equation 
for R, and calling the result *R , we get 1/6* 2R σ= . 

 (c)  Use of the V expression found in part (a) gives ( ) 0V ∞ =  and 
6 1/6 12 1/6 6 6( *) /(2 ) /(2 ) /4V R b b bσ σ σ σ= − = − . So 6( ) ( *) /4V V R bε σ= ∞ − =  and 

64b σ ε= .  
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 (d)  Substitution of 64b σ ε=  into 6 12 6/ /V b R b Rσ= −  gives 12 12 6 64 [ / / ]V R Rε σ σ= − . 
Substitution of 1/62 *Rσ −=  into the last expression for V gives 

12 12 6 6[( *) / 2( *) / ]V R R R Rε= − . 

 
17.39 Spartan Student Version 5.0 (which has the MMFF94s force field) gives these results for 

the two planar conformers shown in the Prob. 16.46a solution: 

 ∠HC=O ∠OCO ∠COH RCH RC=O RCO ROH 

I 126.7° 121.8° 104.3° 1.100 Å 1.217 Å 1.342 Å 0.980 Å 
II 124.6° 124.3 112.0° 1.101 Å 1.217 Å 1.346 Å 0.976 Å 

 The steric energies are –0.040756 hartrees or –107.005 kJ/mol for I and –0.0329555 
hartrees or –86.525 kJ/mol for II, so II IE E− =  20.48 kJ/mol = 4.89 kcal/mol.  

      If we choose Comprehensive-Mechanics in the Clean-Up menu in the Editor in 
WebMO Version 13.0 (www.webmo.net), we get (to view a bond length or angle, click on 
the Adjust arrow icon and then click and shift-click on the relevant atoms to select them) 

 ∠HC=O ∠OCO ∠COH RCH RC=O RCO ROH 

I 127.1° 121.8° 102.3° 1.116 Å 1.206 Å 1.344 Å 0.972 Å 
II 124.9° 125.7 108.4° 1.115 Å 1.209 Å 1.348 Å 0.971 Å 

 The steric energies are –3.348 kcal/mol for I and 3.608 kcal/mol for II, so II IE E− =  6.96 
kcal/mol. 

 
17.40 Spartan Student 5.0 (which has the MMFF94s force field) gives the steric energy as –

19.809 kJ/mol for the staggered conformation and –6.358 kJ/mol for the eclipsed 
conformation, for a barrier of 13.45 kJ/mol = 3.21 kcal/mol. Comprehensive-Mechanics in 
the Clean-Up menu in the Editor in WebMO Version 13.0 (www.webmo.net) gives 0.816 
kcal/mol for the eclipsed and 3.548 kcal/mol for the staggered, for a barrier of 2.73 
kcal/mol. (See the online manual for how to adjust a dihedral angle.) 

 
17.41 Spartan Student 5.0 gives the steric energy as –21.24 kJ/mol for the anti conformer and  

–17.97 kJ/mol for the higher-energy gauche conformer, for an energy difference of 3.27 
kJ/mol = 0.78 kcal/mol. The CCCC dihedral angle in the gauche conformer is predicted to 
be 65.3°. The predicted CC bond distances are C1C2 = 1.520 Å, C2C3 = 1.527 Å in the 
anti conformer and C1C2 = 1.521 Å, C2C3 = 1.529 Å in the gauche conformer. 

      Comprehensive-Mechanics in the Clean-Up menu in the Editor in WebMO 
(www.webmo.net) gives 2.172 kcal/mol for the anti conformer and 3.035 kcal/mol for the 
gauche conformer, for an energy difference of 0.86 kcal/mol. The gauche CCCC dihedral 
angle is predicted to be 65.2°. The CC bond distances are predicted to be C1C2 = 1.534 Å, 
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C2C3 = 1.537 Å in the anti conformer and C1C2 = 1.534 Å, C2C3 = 1.538 Å in the 
gauche conformer. (To view a bond length or angle or dihedral angle, click on the Adjust 
arrow icon and then click and shift-click on the relevant atoms to select them.) 

 
17.42 Use of Tinker in WebMO to first optimize the geometry and then find the vibrational 

wavenumbers gives the following MM3 wavenumbers in cm–1: 263 (torsion), 1053 (CO 
stretching), 1087, 1107, 1288 (COH bending), 1432, 1447, 1485, 2874 (symmetric CH 
stretching), 2972, 2977, 3680 (OH stretching). These are in much better agreement with 
experiment than the semiempirical results. (These is also a 10 cm–1 wavenumber listed, 
but when viewed this is seen to involve rotational, not vibrational, motion.) The ZPE is 
found to be 192.152 10  J−×  per molecule and 129.6 kJ/mol. 

 

17.43 Spartan Student 5.0 (which has the MMFF94s force field) gives the following geometries 
for the two conformers shown in the Prob. 16.46 solution: 

 ∠H5C=C ∠HCH ∠CCO ∠HCO ∠COH RCH4/ Å RCH5/Å RC=C/Å
I 120.7° 118.2° 121.7° 114.5° 108.2° 1.084  1.085  1.331 
II 122.4° 117.5 124.5° 111.5° 108.7° 1.086  1.084  1.333 

  
 RCH6/Å RCO/Å ROH/Å D(CCOH)
I 1.082 1.365 0.973 180° 
II 1.084 1.365 0.973 0° 

 The steric energies are 6.337 kJ/mol for I and 0.343 kJ/mol for II, for an energy difference 
of 5.99 kJ/mol = 1.43 kcal/mol with II more stable at 0 K. 
      Comprehensive-Mechanics in the Clean-Up menu in the Editor in WebMO gives 
2.113 kcal/mol for conformer I and –0.516 kcal/mol for conformer II, for an energy 
difference of 2.63 kcal/mol. Bond lengths are 1.340 Å for CC and 1.357 Å for CO in 
conformer I, and 1.339 Å for CC and 1.357 Å for CO in conformer II. 

 
17.44 (a) Spartan Student 5.0 (which has the MMFF94s force field) gives these results 

 

 ∠FCC ∠HCC RCF/Å RCH/Å RC=C/Å Esteric 
cis CHFCHF 121.9° 126.6° 1.345  1.079 1.327 8.73 kJ/mol 

trans CHFCHF 121.7° 126.4° 1.345  1.079 1.326 2.12 kJ/mol 
 The trans isomer is predicted to be more stable by 6.61 kJ/mol = 1.6 kcal/mol. 
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       Comprehensive-Mechanics in the Clean-Up menu in the Editor in WebMO Version 
13.0 (www.webmo.net) gives 

  
 ∠FCC ∠HCC RCF/Å RCH/Å RC=C/Å Esteric 

cis CHFCHF 121.8° 119.9° 1.323  1.102 1.343 1.552 kcal/mol 
trans CHFCHF 121.0° 120.2° 1.323  1.102 1.342 2.509 kcal/mol 

 The cis isomer is predicted to be more stable by 0.96 kcal/mol. (For the experimental 
results, see part (c) below.) 

 (b)  Comprehensive-Mechanics in the Clean-Up menu in the Editor in WebMO gives 
 ∠ClCC ∠HCC RCCl/Å RCH/Å RC=C/Å Esteric 

cis CHClCHCl 124.9° 122.0° 1.722  1.102 1.340 2.661 kcal/mol 
trans CHClCHCl 122.0° 124.1° 1.721  1.102 1.339 2.716 kcal/mol 

 The cis isomer is predicted to be more stable by 0.06 kcal/mol. 
 (c) Comprehensive-Mechanics in the Editor in WebMO gives 

 ∠ICC ∠HCC RCI/Å RCH/Å RC=C/Å Esteric 
cis CHICHI 127.4° 120.7° 2.079  1.102 1.339 –0.19 kcal/mol 

trans CHICHI 122.9° 123.7° 2.077  1.102 1.339 –0.19 kcal/mol 
 The isomers are predicted to be of equal stability. 
         Experimental data show that for CHFCHF, the cis isomer is more stable than the 

trans by 1.1 kcal/mol and for CHClCHCl, the cis isomer is more stable by 0.7 kcal/mol 
[N. C. Craig et al., J. Phys. Chem., 75, 1453 (1971)]. For CHICHI, the cis–trans energy 
difference is 0.0 kcal/mol [S. Furuyama et al., J. Phys. Chem., 72, 3204 (1968)].  
        In view of electrostatic and steric  repulsions between the cis halogens, the greater 
stability of many of the cis isomers is surprising and not yet fully explained. 

 

17.45 (a)  For CH3CH2CH3, ,298fH °Δ  = 2.05 kcal/mol + 8(–4.590 kcal/mol) + 2(2.447 kcal/mol) 
+ 4(0.001987 kcal/mol-K)(298.1 K)  + 2(1.045 kcal/mol)  = –25.32 kcal/mol. 

 (b)  For (CH3)3CH, ,298fH °Δ /(kcal/mol) = 3.18 + 10(–4.590) + 3(2.447) + 
4(0.001987)(298.1)  + 3(1.045) – 2.627 = –32.50. 

 (c)  For C4H8, ,298fH °Δ /(kcal/mol) = 32.63 + 8(–4.590) + 4(2.447) + 4(0.001987)(298.1)  

– 1.780 = 6.29. 
 (d)  Three; two gauche conformers that are mirror images of each other and one anti 

conformer. 
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17.46 (a)  CH2==CHCH==CHCH==CH2  has 6 π electrons, so the HOMO is the third lowest and 
has two nodes (not counting the node in the plane of the carbons), as follows: 

 
 The π AOs on the two end carbons have the same signs for their upper lobes, so a figure 

like Fig. 17.12 but with the signs reversed for one of the end AOs shows that a disrotatory 
path produces a bonding interaction. The reaction path is predicted to be disrotatory. 

 (b)  For the photochemical reaction, a photon excites an electron from the HOMO shown 
in part (a) to an MO with three nodes, and the HOMO is now 

  
 [The signs of the AOs can be found from Eq. (17.30).] The π AOs on the two end carbons 

have opposite signs for their upper lobes, so the reaction path is predicted to be 
conrotatory. 

 (c)  The polyene (17.28) has 2s + 2 carbons and has 2 2n sπ = +  π electrons. These 
electrons fill the lowest s + 1 MOs. The highest-occupied π MO has s nodes. As we go 
from one end of the molecule to the other, each node produces a sign change. If s is an 
even number, then an even number of sign changes gives the sign of the upper lobe on the 
last carbon as the same as the upper lobe on the first carbon. Hence, as in parts (a) and (b), 
if s is even, the thermal reaction proceeds by a disrotatory path and the photochemical 
reaction goes by a conrotatory path. If s is an odd number, an odd number of sign changes 
gives the sign of the upper lobe on the last carbon as the opposite of the upper lobe on the 
first carbon. Hence, if s is odd, the thermal reaction proceeds by a conrotatory path and the 
photochemical reaction goes by a disrotatory path. 

 

C    C    C    C    C    C 

+ + – 

– –+ 

– 

+

C    C    C    C    C    C 

+ + – 

– –+ 
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17.47 (a)  The HOMOs (shaded) and LUMOs are 

 
 The overlap is not positive and a high activation energy is predicted for a broadside path. 

 (b)  From Sec. 13.7, the N2 HOMO is 2g pσ  and the N2 LUMO is *2g pπ . The O2 HOMO 

is *2g pπ  and the O2 LUMO is also *2g pπ .  (Each of the two *2g pπ  MOs in O2 is half-

filled.)  

 
 The overlap between the N2 HOMO and the O2 LUMO is not positive. The overlap 

between the O2 HOMO and the N2 LUMO is positive, but flow of electrons out of the O2 
HOMO, which is antibonding, would strengthen the oxygen–oxygen bond. Hence a high 
activation energy is predicted for a broadside path. (The phase of a wave function is 
arbitrary, and in the figure, the O2 HOMO and the N2 LUMO have been given opposite 
phases.) 

 (c)  Although the following figures show some positive overlap, flow of electrons out of 
antibonding HOMOs would strengthen a bond that needs to be broken, so a high 
activation energy is predicted. [Since the HOMOs are antibonding, one should also 
consider electron flow out the highest-occupied bonding MO (whose shape is shown by 
the 2g pσ  MO in Fig. 13.11) of one species into the LUMO of the other. These MO pairs 

do not have positive overlap.] 
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 (d)  The ethylene HOMO is a uπ  MO and the LUMO is a *gπ  MO (see Sec. 15.9). In the 

following figures, the plane of the ethylene molecule is perpendicular to the plane of the 
paper. A high activation energy is predicted. 
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